Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Comprehensive Review of Potential Diagnostic Serum microRNAs as Biomarkers for Myocardial Infarction
2.2. Participants
2.3. Ethics and Consents
2.4. Sample Preparation for Next-Generation Sequencing
2.5. Next-Generation Sequencing: Data Preparation for Analyzes
2.6. Sample Preparation for Quantitative Real-Time Polymerase Chain Reaction
2.7. Quantitative Real-Time Polymerase Chain Reaction: Data Preparation for Statistical Analyzes
2.8. Statistics
3. Results
3.1. Comprehensive Review of Serum microRNA Biomarkers of Myocardial Infarction
3.2. Patients Undergoing Strenuous Exercise
3.3. Next-Generation Sequencing to Identify Abundant and Reliably Measurable Serum microRNAs in Marathon Runners
3.4. Quantitative Real-Time Polymerase Chain Reaction to Further Stratify Suitable Myocardial Infarction Candidate microRNAs
3.5. Co-Release of microRNAs and Cardiac Troponin T
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, I.S.; Goulart, A.C.; Brandao, R.M.; Santos, R.C.; Bittencourt, M.S.; Sitnik, D.; Pereira, A.C.; Pastore, C.A.; Samesima, N.; Lotufo, P.A.; et al. One-year Mortality after an Acute Coronary Event and its Clinical Predictors: The ERICO Study. Arquivos Brasileiros de Cardiologia 2015, 105, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.C.; Mateus, P.; Santos, L.; Mateus, C.; Sampaio, F.; Adao, L.; Bettencourt, N.; Ribeiro, J.; Teixeira, M.; Fonseca, C.; et al. Acute coronary syndrome and predictors of quality of life. Revista Portuguesa de Cardiologia 2005, 24, 819–831. [Google Scholar] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Group, E.S.C.S.D. Fourth universal definition of myocardial infarction. Eur. Heart J. 2018, 72, 2231–2264. [Google Scholar] [CrossRef] [PubMed]
- Pickering, J.W.; Greenslade, J.H.; Cullen, L.; Flaws, D.; Parsonage, W.; George, P.; Worster, A.; Kavsak, P.A.; Than, M.P. Validation of presentation and 3 h high-sensitivity troponin to rule-in and rule-out acute myocardial infarction. Heart 2016, 102, 1270–1278. [Google Scholar] [CrossRef]
- Kanjwal, K.; Imran, N.; Grubb, B.; Kanjwal, Y. Troponin elevation in patients with various tachycardias and normal epicardial coronaries. Indian Pacing Electrophysiol. J. 2008, 8, 172–174. [Google Scholar]
- McCarthy, C.P.; Donnellan, E.; Phelan, D.; Griffin, B.P.; Enriquez-Sarano, M.; McEvoy, J.W. High sensitivity troponin and valvular heart disease. Trends Cardiovasc. Med. 2017, 27, 326–333. [Google Scholar] [CrossRef]
- Perna, E.R.; Macin, S.M.; Parras, J.I.; Pantich, R.; Farias, E.F.; Badaracco, J.R.; Jantus, E.; Medina, F.; Brizuela, M. Cardiac troponin T levels are associated with poor short- and long-term prognosis in patients with acute cardiogenic pulmonary edema. Am. Heart J. 2002, 143, 814–820. [Google Scholar] [CrossRef]
- Rittoo, D.; Jones, A.; Lecky, B.; Neithercut, D. Elevation of cardiac troponin T, but not cardiac troponin I, in patients with neuromuscular diseases: Implications for the diagnosis of myocardial infarction. J. Am. Coll. Cardiol. 2014, 63, 2411–2420. [Google Scholar] [CrossRef] [Green Version]
- Urhausen, A.; Scharhag, J.; Herrmann, M.; Kindermann, W. Clinical significance of increased cardiac troponins T and I in participants of ultra-endurance events. Am. J. Cardiol. 2004, 94, 696–698. [Google Scholar] [CrossRef]
- Regwan, S.; Hulten, E.A.; Martinho, S.; Slim, J.; Villines, T.C.; Mitchell, J.; Slim, A.M. Marathon Running as a Cause of Troponin Elevation: A Systematic Review and Meta-Analysis. J. Interv. Cardiol. 2010, 23, 443–450. [Google Scholar] [CrossRef]
- Baker, P.; Leckie, T.; Harrington, D.; Richardson, A. Exercise-induced cardiac troponin elevation: An update on the evidence, mechanism and implications. Int. J. Cardiol. Heart Vasc. 2019, 22, 181–186. [Google Scholar] [CrossRef]
- Thygesen, K.; Mair, J.; Katus, H.; Plebani, M.; Venge, P.; Collinson, P.; Lindahl, B.; Giannitsis, E.; Hasin, Y.; Galvani, M.; et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care (dagger). Eur. Heart J. 2010, 31, 2197–2204b. [Google Scholar] [CrossRef] [Green Version]
- Neumayr, G.; Pfister, R.; Mitterbauer, G.; Maurer, A.; Gaenzer, H.; Sturm, W.; Hoertnagl, H. Effect of the “Race Across The Alps” in elite cyclists on plasma cardiac troponins I and T. Am. J. Cardiol. 2002, 89, 484–486. [Google Scholar] [CrossRef]
- Scherr, J.; Braun, S.; Schuster, T.; Hartmann, C.; Moehlenkamp, S.; Wolfarth, B.; Pressler, A.; Halle, M. 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med. Sci. Sports Exerc. 2011, 43, 1819–1827. [Google Scholar] [CrossRef]
- Giannitsis, E.; Kehayova, T.; Vafaie, M.; Katus, H.A. Combined testing of high-sensitivity troponin T and copeptin on presentation at prespecified cutoffs improves rapid rule-out of non-ST-segment elevation myocardial infarction. Clin. Chem. 2011, 57, 1452–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figiel, L.; Kasprzak, J.D.; Peruga, J.; Lipiec, P.; Drozdz, J.; Krzeminska-Pakula, M.; Smigielski, J. Heart-type fatty acid binding protein--a reliable marker of myocardial necrosis in a heterogeneous group of patients with acute coronary syndrome without persistent ST elevation. Kardiologia Polska 2008, 66, 253–259. [Google Scholar]
- Ertekin, B.; Kocak, S.; Dundar, Z.D.; Girisgin, S.; Cander, B.; Gul, M.; Doseyici, S.; Mehmetoglu, I.; Sahin, T.K. Diagnostic value of ischemia-modified albumin in acute coronary syndrome and acute ischemic stroke. Pak. J. Med. Sci. 2013, 29, 1003–1007. [Google Scholar] [CrossRef]
- Meder, B.; Keller, A.; Vogel, B.; Haas, J.; Sedaghat-Hamedani, F.; Kayvanpour, E.; Just, S.; Borries, A.; Rudloff, J.; Leidinger, P.; et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res. Cardiol. 2011, 106, 13–23. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Jonas, S.; Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16, 421–433. [Google Scholar] [CrossRef]
- Pillai, R.S.; Bhattacharyya, S.N.; Artus, C.G.; Zoller, T.; Cougot, N.; Basyuk, E.; Bertrand, E.; Filipowicz, W. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005, 309, 1573–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Liang, H.; Zhang, J.; Zen, K.; Zhang, C.Y. Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol. 2012, 22, 125–132. [Google Scholar] [CrossRef]
- Mall, C.; Rocke, D.M.; Durbin-Johnson, B.; Weiss, R.H. Stability of miRNA in human urine supports its biomarker potential. Biomark. Med. 2013, 7, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsaweed, M.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. Int. J. Environ. Res. Public Health 2015, 12, 13981–14020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomankova, T.; Petrek, M.; Kriegova, E. Involvement of microRNAs in physiological and pathological processes in the lung. Respir. Res. 2010, 11, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, R.M.; Rao, D.S.; Chaudhuri, A.A.; Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 2010, 10, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar]
- Jia, K.; Shi, P.; Han, X.; Chen, T.; Tang, H.; Wang, J. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Mol. Med. Rep. 2016, 14, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Oerlemans, M.I.; Mosterd, A.; Dekker, M.S.; de Vrey, E.A.; van Mil, A.; Pasterkamp, G.; Doevendans, P.A.; Hoes, A.W.; Sluijter, J.P. Early assessment of acute coronary syndromes in the emergency department: The potential diagnostic value of circulating microRNAs. EMBO Mol. Med. 2012, 4, 1176–1185. [Google Scholar] [CrossRef]
- Bai, R.; Yang, Q.; Xi, R.; Li, L.; Shi, D.; Chen, K. miR-941 as a promising biomarker for acute coronary syndrome. BMC Cardiovasc. Disord. 2017, 17, 227. [Google Scholar] [CrossRef] [Green Version]
- Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease. Circ. Cardiovasc. Gene 2010, 3, 499–506. [Google Scholar] [CrossRef]
- Biener, M.; Giannitsis, E.; Thum, T.; Bar, C.; Costa, A.; Andrzejewski, T.; Stoyanov, K.M.; Vafaie, M.; Meder, B.; Katus, H.A.; et al. Diagnostic value of circulating microRNAs compared to high-sensitivity troponin T for the detection of non-ST-segment elevation myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 653–660. [Google Scholar] [CrossRef]
- Goldbergova, M.P.; Lipkova, J.; Fedorko, J.; Sevcikova, J.; Parenica, J.; Spinar, J.; Masarik, M.; Vasku, A. MicroRNAs in pathophysiology of acute myocardial infarction and cardiogenic shock. Bratislavske Lekarske Listy 2018, 119, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Mompeon, A.; Ortega-Paz, L.; Vidal-Gomez, X.; Costa, T.J.; Perez-Cremades, D.; Garcia-Blas, S.; Brugaletta, S.; Sanchis, J.; Sabate, M.; Novella, S.; et al. Disparate miRNA expression in serum and plasma of patients with acute myocardial infarction: A systematic and paired comparative analysis. Sci. Rep. 2020, 10, 5373. [Google Scholar] [CrossRef]
- Backes, C.; Fehlmann, T.; Kern, F.; Kehl, T.; Lenhof, H.P.; Meese, E.; Keller, A. miRCarta: A central repository for collecting miRNA candidates. Nucleic Acids Res. 2018, 46, D160–D167. [Google Scholar] [CrossRef] [Green Version]
- Scherr, J.; Nieman, D.C.; Schuster, T.; Habermann, J.; Rank, M.; Braun, S.; Pressler, A.; Wolfarth, B.; Halle, M. Nonalcoholic beer reduces inflammation and incidence of respiratory tract illness. Med. Sci. Sports Exerc. 2012, 44, 18–26. [Google Scholar] [CrossRef]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Fehlmann, T.; Backes, C.; Kahraman, M.; Haas, J.; Ludwig, N.; Posch, A.E.; Wurstle, M.L.; Hubenthal, M.; Franke, A.; Meder, B.; et al. Web-based NGS data analysis using miRMaster: A large-scale meta-analysis of human miRNAs. Nucleic Acids Res. 2017, 45, 8731–8744. [Google Scholar] [CrossRef]
- Rosner, B. Percentage Points for a Generalized Esd Many-Outlier Procedure. Technometrics 1983, 25, 165–172. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Cheng, Y.; Tan, N.; Yang, J.; Liu, X.; Cao, X.; He, P.; Dong, X.; Qin, S.; Zhang, C. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin. Sci. 2010, 119, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Fang, Z.; Jiang, T.; Zhang, Q.; Liu, C.; Zhang, C.; Xiang, Y. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med. Genom. 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, H.; Guo, Z.; Shi, Y.; Zhang, L.; Song, C. Serum Exosomal MicroRNA-21, MicroRNA-126, and PTEN Are Novel Biomarkers for Diagnosis of Acute Coronary Syndrome. Front. Physiol. 2020, 11, 654. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, D.; Wang, J.; Liu, P.; Xu, B. Clinical significance and correlation of microRNA-21 expression and the neutrophil-lymphocyte ratio in patients with acute myocardial infarction. Clinics 2019, 74, e1237. [Google Scholar] [CrossRef] [Green Version]
- Maciejak, A.; Kiliszek, M.; Opolski, G.; Segiet, A.; Matlak, K.; Dobrzycki, S.; Tulacz, D.; Sygitowicz, G.; Burzynska, B.; Gora, M. miR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs. Mol. Med. Rep. 2016, 14, 2867–2875. [Google Scholar] [CrossRef] [Green Version]
- Bukauskas, T.; Mickus, R.; Cereskevicius, D.; Macas, A. Value of Serum miR-23a, miR-30d, and miR-146a Biomarkers in ST-Elevation Myocardial Infarction. Med. Sci. Monit. 2019, 25, 3925–3932. [Google Scholar] [CrossRef]
- Hsu, A.; Chen, S.J.; Chang, Y.S.; Chen, H.C.; Chu, P.H. Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. BioMed Res. Int. 2014, 2014, 418628. [Google Scholar] [CrossRef]
- Dai, Y.; Yan, T.; Gao, Y. Silence of miR-32-5p promotes endothelial cell viability by targeting KLF2 and serves as a diagnostic biomarker of acute myocardial infarction. Diagn. Pathol. 2020, 15, 19. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.; Guo, Z.; Du, S.; Liao, Y.; Li, Y.; Ding, C.; Song, C. Serum exosomal miR-122-5p is a new biomarker for both acute coronary syndrome and underlying coronary artery stenosis. Biomarkers 2020, 25, 539–547. [Google Scholar] [CrossRef]
- Ji, Q.; Jiang, Q.; Yan, W.; Li, X.; Zhang, Y.; Meng, P.; Shao, M.; Chen, L.; Zhu, H.; Tian, N. Expression of circulating microRNAs in patients with ST segment elevation acute myocardial infarction. Minerva Cardioangiol. 2015, 63, 397–402. [Google Scholar]
- Chen, Z.; Pan, X.; Yan, G.; Sheng, Z.; Ma, G. miR-142 is a Sensitive Biomarker for the Diagnosis and Prognosis of Acute Myocardial Infarction. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef]
- Guo, X.; Chen, Y.; Lu, Y.; Li, P.; Yu, H.; Diao, F.R.; Tang, W.D.; Hou, P.; Zhao, X.X.; Shi, C.Y. High level of circulating microRNA-142 is associated with acute myocardial infarction and reduced survival. Ir. J. Med. Sci. 2020, 189, 933–937. [Google Scholar] [CrossRef]
- Wu, S.; Sun, H.; Sun, B. MicroRNA-145 is involved in endothelial cell dysfunction and acts as a promising biomarker of acute coronary syndrome. Eur. J. Med. Res. 2020, 25, 2. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yan, Y.; Wu, J.; Qi, C.; Liu, J.; Wang, J. Expression level and diagnostic value of exosomal NEAT1/miR-204/MMP-9 in acute ST-segment elevation myocardial infarction. IUBMB Life 2020, 72, 2499–2507. [Google Scholar] [CrossRef]
- Shalaby, S.M.; El-Shal, A.S.; Shoukry, A.; Khedr, M.H.; Abdelraheim, N. Serum miRNA-499 and miRNA-210: A potential role in early diagnosis of acute coronary syndrome. IUBMB Life 2016, 68, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Qian, H.; Shi, Q.; Zhang, H. MicroRNA-363-3p serves as a diagnostic biomarker of acute myocardial infarction and regulates vascular endothelial injury by targeting KLF2. Cardiovasc. Diagn. Ther. 2020, 10, 421–430. [Google Scholar] [CrossRef]
- Guo, L.L.; Chen, H.H.; Qu, F.C.; Lu, Q.H. Clinical significance of miR-492 in peripheral blood of acute myocardial infarction. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9041–9045. [Google Scholar] [CrossRef]
- Su, J.; Li, J.; Yu, Q.; Wang, J.; Li, X.; Yang, J.; Xu, J.; Liu, Y.; Xu, Z.; Ji, L.; et al. Exosomal miRNAs as potential biomarkers for acute myocardial infarction. IUBMB Life 2020, 72, 384–400. [Google Scholar] [CrossRef]
- Gholikhani-Darbroud, R.; Khaki-Khatibi, F.; Mansouri, F.; Hajahmadipoorrafsanjani, M.; Ghojazadeh, M. Decreased circulatory microRNA-4478 as a specific biomarker for diagnosing non-ST-segment elevation myocardial infarction (NSTEMI) and its association with soluble leptin receptor. Bratislavske Lekarske Listy 2017, 118, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Soplinska, A.; Zareba, L.; Wicik, Z.; Eyileten, C.; Jakubik, D.; Siller-Matula, J.M.; De Rosa, S.; Malek, L.A.; Postula, M. MicroRNAs as Biomarkers of Systemic Changes in Response to Endurance Exercise-A Comprehensive Review. Diagnostics 2020, 10, 813. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Hopman, M.T.E.; Thompson, P.D.; Bakker, E.A.; George, K.P.; Thijssen, D.H.J.; Eijsvogels, T.M.H. Exercise-Induced Cardiac Troponin I Increase and Incident Mortality and Cardiovascular Events. Circulation 2019, 140, 804–814. [Google Scholar] [CrossRef]
- Gioffre, S.; Chiesa, M.; Cardinale, D.M.; Ricci, V.; Vavassori, C.; Cipolla, C.M.; Masson, S.; Sandri, M.T.; Salvatici, M.; Ciceri, F.; et al. Circulating MicroRNAs as Potential Predictors of Anthracycline-Induced Troponin Elevation in Breast Cancer Patients: Diverging Effects of Doxorubicin and Epirubicin. J. Clin. Med. 2020, 9, 1418. [Google Scholar] [CrossRef]
- May, S.M.; Abbott, T.E.F.; Del Arroyo, A.G.; Reyes, A.; Martir, G.; Stephens, R.C.M.; Brealey, D.; Cuthbertson, B.H.; Wijeysundera, D.N.; Pearse, R.M.; et al. MicroRNA signatures of perioperative myocardial injury after elective noncardiac surgery: A prospective observational mechanistic cohort study. Br. J. Anaesth. 2020, 125, 661–671. [Google Scholar] [CrossRef]
- Clauss, S.; Wakili, R.; Hildebrand, B.; Kaab, S.; Hoster, E.; Klier, I.; Martens, E.; Hanley, A.; Hanssen, H.; Halle, M.; et al. MicroRNAs as Biomarkers for Acute Atrial Remodeling in Marathon Runners (The miRathon Study--A Sub-Study of the Munich Marathon Study). PLoS ONE 2016, 11, e0148599. [Google Scholar] [CrossRef]
- Xing, X.; Guo, S.; Zhang, G.; Liu, Y.; Bi, S.; Wang, X.; Lu, Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Braz. J. Med. Biol. Res. 2020, 53, e9106. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Du, X.; Ma, K.; Li, G.; Liu, Z.; Rong, W.; Miao, H.; Zhu, F.; Cui, Q.; Wu, S.; et al. Circulating miRNAs Related to Long-term Adverse Cardiovascular Events in STEMI Patients: A Nested Case-Control Study. Can. J. Cardiol. 2021, 37, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stockel, D.; Meese, E.; Lenhof, H.P.; Keller, A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2020, 48, D142–D147. [Google Scholar] [CrossRef]
- Hoekstra, M. MicroRNA-499-5p: A therapeutic target in the context of cardiovascular disease. Ann. Transl. Med. 2016, 4, 539. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Li, S.Y.; Liu, M.; Ruan, J.W.; Wang, Z.D.; Xie, W.C. Value of the expression of miR-208, miR-494, miR-499 and miR-1303 in early diagnosis of acute myocardial infarction. Life Sci. 2019, 232, 116547. [Google Scholar] [CrossRef] [PubMed]
- Kayvanpour, E.; Gi, W.T.; Sedaghat-Hamedani, F.; Lehmann, D.H.; Frese, K.S.; Haas, J.; Tappu, R.; Samani, O.S.; Nietsch, R.; Kahraman, M.; et al. microRNA neural networks improve diagnosis of acute coronary syndrome (ACS). J. Mol. Cell Cardiol. 2021, 151, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal. 2019, 9, 217–226. [Google Scholar] [CrossRef] [PubMed]
MicroRNA | Disease * | Direction of Dysregulation | Reference |
---|---|---|---|
miR-1-3p | MI | Upregulation | [42,43] |
miR-21-5p | ACS MI | Upregulation | [44] [45] |
miR-22-5p | STEMI | Upregulation | [46] |
miR-23a-3p | STEMI | Downregulation | [47] |
miR-26a-5p | STEMI | Downregulation | [48] |
miR-32-5p | MI | Upregulation | [49] |
miR-122-5p | MI | Upregulation | [50] |
miR-126-3p | MI STEMI | Upregulation Downregulation | [44] [48] |
miR-133a-3p | MI | Upregulation | [51] |
miR-133b | MI STEMI | Upregulation | [51] [46] |
miR-134-5p | MI | Upregulation | [43] |
miR-142-5p | MI | Upregulation | [52,53] |
miR-145-5p | ACS | Downregulation | [54] |
miR-150-3p | STEMI | Upregulation | [48] |
miR-186-5p | MI | Upregulation | [43] |
miR-191-5p | STEMI | Downregulation | [48] |
miR-204-5p | STEMI | Downregulation | [55] |
miR-208a-3p | MI | Upregulation | [43] |
miR-210-3p | NSTEMI | Upregulation | [56] |
miR-223-3p | MI | Upregulation | [43] |
miR-363-3p | MI | Upregulation | [57] |
miR-486-3p | STEMI | Upregulation | [48] |
miR-492 | MI | Upregulation | [58] |
miR-499a-5p | MI NSTEMI | Upregulation | [43,51] [56] |
miR-1915-3p | MI | Downregulation | [59] |
miR-3656 ** | MI | Downregulation | [59] |
miR-4507 | MI | Downregulation | [59] |
miR-4478 | NSTEMI | Downregulation | [60] |
Method | NGS | qPCR | |||
---|---|---|---|---|---|
Cohort | Low cTnT Cohort (n = 19) | High cTnT Cohort (n = 27) | Low cTnT Cohort n = 31) | High cTnT Cohort (n = 56) | Correlation Cohort (n = 210) |
Age (yrs) ( ± σ) | 46 ± 5.03 (n = 19) | 48.44 ± 6.69 (n = 27) | 45.19 ± 5.89 (n = 31) | 38.48 ± 11.25 * (n = 56) | 41.63 ± 9.16 (n = 210) |
Body-Mass-Index (kg/m2) ( ± σ) | 23.18 ± 1.92 (n = 19) | 24.19 ± 2.35 (n = 27) | 23.39 ± 2.31 (n = 31) | 23.25 ± 2.07 (n = 56) | 23.55 ± 2.12 (n = 209) |
Active smokers (n) | 0 (n = 19) | 0 (n = 27) | 0 (n = 31) | 0 (n = 56) | 6 (n = 210) |
Maximum heart rate § (bpm) ( ± σ) | 175.8 ± 3.43 (n = 19) | 174.09 ± 4.59 (n = 27) | 176.36 ± 4.06 (n = 31) | 181.06 ± 7.8 (n = 56)* | 178.86 ± 6.4 (n = 210) |
Running time during marathon (h:min) ( ± σ) | 4:01 ± 0:32 (n = 19) | 3:55 ± 0:32 (n = 27) | 3:53 ± 0:30 (n = 26) | 3:49 ± 0:31 (n = 53) | 3:50 ± 0:30 (n = 196) |
Mean heart rate during the marathon §§ (bpm) ( ± σ) | 150.94 ± 10.2 (n = 18) | 154.91 ± 10.02 (n = 23) | 153.24 ± 9.09 (n = 25) | 161.44 ± 9.78 * (n = 43) | 156.66 ± 10 (n = 163) |
Cardiac troponin T before the marathon (ng/L) ( (Q1–Q3)) | 3 (3–3) (n = 19) | 5.75 (3.91–10.13) * (n = 27) | 3 (3–3.18) (n = 31) | 4.15 (3–5.98) * (n = 56) | 3 (3–4.92) (n = 210) |
Cardiac troponin T after the marathon (ng/L) ( (Q1–Q3)) | 11.41 (6.36–12.72) (n = 19) | 64.34 (58.06–89.81) * (n = 27) | 10.98 (7.22–12.91) (n = 31) | 67.95 (58.55–96.2) * (n = 56) | 31.44 (18.22–53.33) (n = 210) |
N-terminal pro-brain natriuretic peptide before the marathon (pg/mL) ( (Q1–Q3)) | 31.63 (21.74–54.64) (n = 19) | 37.95 (20.12–55.02) (n = 27) | 28.54 (18.17–38.93) (n = 31) | 21.94 (10.38–37.58) (n = 56) | 24.81 (13.12–42.62) (n = 210) |
MicroRNA | Correlation Coefficient | p-Value ** | Reliably Measurable in Number of Runners |
---|---|---|---|
miR-1-3p | r = 0.33 | p = 0.002 | n = 95 |
miR-21-5p | r = 0.21 | p = 0.02 | n = 163 |
miR-26a-5p | r = 0.2 | p = 0.02 | n = 151 |
miR-122-5p | r = 0.34 | p < 0.001 | n = 147 |
miR-133a-3p | r = 0.39 | p < 0.001 | n = 120 |
miR-134-5p | r = 0.17 | p = 0.19 | n = 69 |
miR-142-5p | r = 0.26 | p = 0.001 | n = 176 |
miR-191-5p | r = 0.16 | p = 0.04 | n = 167 |
miR-486-3p | r = 0.29 | p = 0.02 | n = 73 |
miR-499a-5p | r = 0.09 | p = 0.6 | n = 36 |
MicroRNA | Fold Change in the Low cTnT Cohort (Median, Q1–Q3) | Fold Change in the High cTnT Cohort (Median, Q1–Q3) | p-Value ** |
---|---|---|---|
miR-1-3p | N/A (n = 1) | 2.1, 1.32–4.6 (n = 16) | p = N/A *** |
miR-21-5p | 1.07, 0.64–1.49 (n = 17) | 1.51, 0.95–2.57 (n = 39) | p = 0.09 |
miR-26a-5p | 0.6, 0.47–0.82 (n = 17) | 1.11, 0.59–1.77 (n = 33) | p = 0.046 |
miR-122-5p | 1.13, 0.37–1.61 (n = 12) | 1.19, 0.66–4.31 (n = 31) | p = 0.14 |
miR-133a-3p | 1.01, 0.61–1.43 (n = 5) | 5.63, 2.86–10.06 (n = 17) | p = 0.03 |
miR-134-5p | N/A (n = 1) | 2.69, 2.14–3.13 (n = 5) | p = N/A |
miR-142-5p | 0.64, 0.45–1.08 (n = 18) | 1.72, 0.83–2.73 (n = 40) | p = 0.01 |
miR-191-5p | 0.91, 0.63–1.08 (n = 15) | 0.96, 0.76–2.28 (n = 40) | p = 0.21 |
miR-486-3p | N/A (n = 4) | N/A (n = 4) | p = N/A |
miR-499a-5p | N/A (n = 0) | N/A (n = 1) | p = N/A |
MicroRNA | Direction of Dysregulation in Patients with MI * | Direction of Dysregulation in Marathon Runners with cTnT Rise from qPCR ** |
---|---|---|
miR-1-3p | Upregulation | N/A |
miR-21-5p | Upregulation | No significant difference of Dysregulation *** |
miR-22-5p | Upregulation | N/A |
miR-23a-3p | Downregulation | N/A |
miR-26a-5p | Downregulation | Upregulation |
miR-32-5p | Upregulation | N/A |
miR-122-5p | Upregulation | No significant difference of dysregulation |
miR-126-3p | Upregulation and downregulation | N/A |
miR-133a-3p | Upregulation | Upregulation |
miR-133b | Upregulation | N/A |
miR-134-5p | Upregulation | N/A |
miR-142-5p | Upregulation | Upregulation |
miR-145-5p | Downregulation | N/A |
miR-150-3p | Upregulation | N/A |
miR-186-5p | Upregulation | N/A |
miR-191-5p | Downregulation | No significant difference of dysregulation |
miR-204-5p | Downregulation | N/A |
miR-208a-3p | Upregulation | N/A |
miR-210-3p | Upregulation | N/A |
miR-223-3p | Upregulation | N/A |
miR-363-3p | Upregulation | N/A |
miR-486-3p | Upregulation | N/A |
miR-492 | Upregulation | N/A |
miR-499a-5p | Upregulation | N/A |
miR-1915-3p | Downregulation | N/A |
miR-4507 | Downregulation | N/A |
miR-4478 | Downregulation | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirvani Samani, O.; Scherr, J.; Kayvanpour, E.; Haas, J.; Lehmann, D.H.; Gi, W.-T.; Frese, K.S.; Nietsch, R.; Fehlmann, T.; Sandke, S.; et al. Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction. J. Clin. Med. 2022, 11, 5. https://doi.org/10.3390/jcm11010005
Shirvani Samani O, Scherr J, Kayvanpour E, Haas J, Lehmann DH, Gi W-T, Frese KS, Nietsch R, Fehlmann T, Sandke S, et al. Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction. Journal of Clinical Medicine. 2022; 11(1):5. https://doi.org/10.3390/jcm11010005
Chicago/Turabian StyleShirvani Samani, Omid, Johannes Scherr, Elham Kayvanpour, Jan Haas, David H. Lehmann, Weng-Tein Gi, Karen S. Frese, Rouven Nietsch, Tobias Fehlmann, Steffi Sandke, and et al. 2022. "Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction" Journal of Clinical Medicine 11, no. 1: 5. https://doi.org/10.3390/jcm11010005
APA StyleShirvani Samani, O., Scherr, J., Kayvanpour, E., Haas, J., Lehmann, D. H., Gi, W. -T., Frese, K. S., Nietsch, R., Fehlmann, T., Sandke, S., Weis, T., Keller, A., Katus, H. A., Halle, M., Frey, N., Meder, B., & Sedaghat-Hamedani, F. (2022). Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction. Journal of Clinical Medicine, 11(1), 5. https://doi.org/10.3390/jcm11010005