Hypertriglyceridemia Is Associated with More Severe Histological Glomerulosclerosis in IgA Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Data Collection Definitions and Measurement
2.3. Histopathologic Parameters
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Relationship between Lipid Profiles and Clinical Variables
3.3. Histopathologic Characteristics by TG Group
3.4. Association of Serum TG with Histopathologic Parameters
3.5. Treatment Patterns of TG Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.-C.; Hung, C.-C.; Kuo, M.-C.; Lee, J.-J.; Chiu, Y.-W.; Chang, J.-M.; Hwang, S.-J.; Chen, H.-C. Association of dyslipidemia with renal outcomes in chronic kidney disease. PLoS ONE 2013, 8, e55643. [Google Scholar] [CrossRef]
- Cases, A.; Coll, E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int. 2005, 68, S87–S93. [Google Scholar] [CrossRef] [PubMed]
- Schaeffner, E.S.; Kurth, T.; Curhan, G.C.; Glynn, R.J.; Rexrode, K.; Baigent, C.; Buring, J.E.; Gaziano, J.M. Cholesterol and the risk of renal dysfunction in apparently healthy men. J. Am. Soc. Nephrol. 2003, 14, 2084–2091. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Chen, Y.; Huang, Y.; Lu, Y.; Liu, X.; Zhou, H.; Yuan, H. Association of the TG/HDL-C and non-HDL-C/HDL-C ratios with chronic kidney disease in an adult Chinese population. Kidney Blood Press. Res. 2017, 42, 1141–1154. [Google Scholar] [CrossRef]
- Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. Triglyceride–glucose index is a predictor of incident chronic kidney disease: A population-based longitudinal study. Clin. Exp. Nephrol. 2019, 23, 948–955. [Google Scholar] [CrossRef]
- Samuelsson, O.; Attman, P.O.; Knight-Gibson, C.; Larsson, R.; Mulec, H.; Weiss, L.; Alaupovic, P. Complex apolipoprotein B-containing lipoprotein particles are associated with a higher rate of progression of human chronic renal insufficiency. J. Am. Soc. Nephrol. 1998, 9, 1482–1488. [Google Scholar] [CrossRef]
- Abrass, C.K. Cellular lipid metabolism and the role of lipids in progressive renal disease. Am. J. Nephrol. 2004, 24, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Oda, H.; Yorioka, N. Effect of lipoproteins on mesangial cell proliferation. Kidney Int. 1999, 56, S51–S53. [Google Scholar] [CrossRef]
- Joles, J.A.; Van Goor, H.; Van der Horst, M.L.; Van Tol, A.; Elema, J.D.; Koomans, H.A. High lipid levels in very low density lipoprotein and intermediate density lipoprotein may cause proteinuria and glomerulosclerosis in aging female analbuminemic rats. Lab. Investig. 1995, 73, 912–921. [Google Scholar] [PubMed]
- Joles, J.A.; Kunter, U.; Janssen, U.; Kriz, W.; Rabelink, T.; Koomans, H.A.; Floege, J. Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J. Am. Soc. Nephrol. 2000, 11, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, D.K.; Oh, K.-H.; Joo, K.W.; Kim, Y.S.; Chae, D.-W.; Kim, S.; Chin, H.J. Mortality and renal outcome of primary glomerulonephritis in Korea: Observation in 1,943 biopsied cases. Am. J. Nephrol. 2013, 37, 74–83. [Google Scholar] [CrossRef]
- Syrjänen, J.; Mustonen, J.; Pasternack, A. Hypertriglyceridaemia and hyperuricaemia are risk factors for progression of IgA nephropathy. Nephrol. Dial. Transplant. 2000, 15, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, O.; Mulec, H.; Knight-Gibson, C.; Attman, P.O.; Kron, B.; Larrson, R.; Weiss, L.; Wedel, H.; Alaupovic, P. Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol. Dial. Transplant. 1997, 12, 1908–1915. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D.R. The modification of diet in renal disease study group. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Tang, Y.; Tan, L.; Qin, W. Crescents and global glomerulosclerosis in Chinese IgA nephropathy patients: A five-year follow-up. Kidney Blood Press. Res. 2019, 44, 103–112. [Google Scholar] [CrossRef]
- Massy, Z.A.; Khoa, T.N.; Lacour, B.; Descamps-Latscha, B.; Man, N.K.; Jungers, P. Dyslipidaemia and the progression of renal disease in chronic renal failure patients. Nephrol. Dial. Transplant. 1999, 14, 2392–2406. [Google Scholar] [CrossRef]
- Wang, J.; He, L.; Yan, W.; Peng, X.; He, L.; Yang, D.; Liu, H.; Peng, Y. The role of hypertriglyceridemia and treatment patterns in the progression of IgA nephropathy with a high proportion of global glomerulosclerosis. Int. Urol. Nephrol. 2020, 52, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Keane, W.F.; Kasiske, B.L.; O’Donnell, M.P. Lipids and progressive glomerulosclerosis. Am. J. Nephrol. 1988, 8, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Bussolati, B.; Deregibus, M.C.; Fonsato, V.; Doublier, S.; Spatola, T.; Procida, S.; Di Carlo, F.; Camussi, G. Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-Kinase/AKT-signaling pathway. J. Am. Soc. Nephrol. 2005, 16, 1936–1947. [Google Scholar] [CrossRef] [PubMed]
- Olbricht, C.J.; Wanner, C.; Thiery, J.; Basten, A. Simvastatin in nephrotic syndrome. Simvastatin in nephrotic syndrome study group. Kidney Int. Suppl. 1999, 71, S113–S116. [Google Scholar] [PubMed]
- Unger, R.H.; Clark, G.O.; Scherer, P.E.; Orci, L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2010, 1801, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Hua, W.; Huang, H.-Z.; Tan, L.-T.; Wan, J.-M.; Gui, H.-B.; Zhao, L.; Ruan, X.-Z.; Chen, X.-M.; Du, X.-G. CD36 mediated fatty acid-induced podocyte apoptosis via. oxidative stress. PLoS ONE 2015, 10, e0127507. [Google Scholar] [CrossRef]
- Shang, J.; Yu, D.; Cai, Y.; Wang, Z.; Zhao, B.; Zhao, Z.; Simmons, D. The triglyceride glucose index can predict newly diagnosed biopsy-proven diabetic nephropathy in type 2 diabetes: A nested case control study. Medicine 2019, 98, e17995. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007–2010 Korean national health and nutrition examination survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef] [PubMed]
- Kambham, N.; Markowitz, G.S.; Valeri, A.M.; Lin, J.; D’Agati, V.D. Obesity-related glomerulopathy: An emerging epidemic. Kidney Int. 2001, 59, 1498–1509. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.; Romero, R.; Lopez, D.; Navarro, M.; Esteve, A.; Perez, N.; Alastrue, A.; Ariza, A. Renal injury in the extremely obese patients with normal renal function. Kidney Int. 2008, 73, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, A.Y.; Li, G.; Wang, L. Association of high body mass index with development of interstitial fibrosis in patients with IgA nephropathy. BMC Nephrol. 2018, 19, 381. [Google Scholar] [CrossRef]
- Hong, Y.A.; Min, J.W.; Ha, M.A.; Koh, E.S.; Kim, H.D.; Ban, T.H.; Kim, Y.S.; Kim, Y.K.; Kim, D.; Shin, S.J.; et al. The Impact of obesity on the severity of clinicopathologic parameters in patients with IgA nephropathy. J. Clin. Med. 2020, 9, 2824. [Google Scholar] [CrossRef]
TG | ||||
---|---|---|---|---|
Total | Group 1 <150 (n = 313) | Group 2 ≥150 (n = 167) | p * | |
Age (years) | 41.38 ± 14.44 | 40.49 ± 14.99 | 43.41 ± 13.20 | 0.035 |
Sex (male, %) | 236 (49.2) | 139 (44.4) | 97 (58.1) | 0.004 |
BMI (kg/m2) | 23.97 ± 3.71 | 23.04 ± 3.35 | 25.76 ± 3.75 | <0.001 |
SBP (mmHg) | 124.62 ± 16.51 | 123.30 ± 16.88 | 127.26 ± 15.24 | 0.012 |
DBP (mmHg) | 76.29 ± 10.24 | 75.27 ± 10.51 | 78.30 ± 9.46 | 0.002 |
Hypertension (%) | 158 (33.8) | 100 (32.8) | 58 (35.8) | 0.512 |
Alcohol (yes, %) | 88 (18.3) | 53 (16.9) | 35 (21.0) | 0.278 |
Smoking (yes, %) | 51 (10.6) | 28 (8.9) | 23 (13.8) | 0.263 |
Triglyceride (mg/dL) | 152.21 ± 124.65 | 92.13 ± 28.82 | 264.80 ± 153.99 | <0.001 |
Total cholesterol (mg/dL) | 186.45 ± 48.80 | 175.34 ± 38.89 | 206.93 ± 58.08 | <0.001 |
LDL-C (mg/dL) | 106.83 ± 39.31 | 104.23 ± 36.84 | 111.53 ± 43.40 | 0.057 |
HDL-C (mg/dL) | 52.25 ± 16.85 | 54.86 ± 17.53 | 47.61 ± 14.47 | <0.001 |
Hemoglobin (g/dL) | 13.18 ± 1.94 | 13.00 ± 1.82 | 13.54 ± 2.09 | 0.004 |
hs-CRP (mg/dL) | 0.60 ± 3.57 | 0.68 ± 4.29 | 0.44 ± 1.55 | 0.491 |
Glucose (mg/dL) | 105.29 ± 26.12 | 100.62 ± 20.27 | 114.28 ± 32.99 | <0.001 |
Serum creatinine (mg/dL) | 1.13 ± 0.92 | 1.10 ± 1.00 | 1.18 ± 0.76 | 0.361 |
eGFR (mL/min/1.73 m2) | 82.55 ± 33.77 | 85.05 ± 33.76 | 76.94 ± 32.07 | 0.011 |
Serum albumin (g/dL) | 4.02 ± 0.58 | 4.05 ± 0.57 | 3.98 ± 0.60 | 0.235 |
AST (IU/L) | 23.25 ± 11.45 | 22.45 ± 10.32 | 24.95 ± 13.30 | 0.023 |
ALT (IU/L) | 22.14 ± 25.31 | 19.01 ± 15.37 | 28.30 ± 36.96 | <0.001 |
Serum uric acid (mg/dL) | 6.01 ± 1.88 | 5.74 ± 1.77 | 6.54 ± 1.99 | <0.001 |
Urine P/Cr (mg/mg) | 1.49 ± 2.48 | 1.08 ± 1.28 | 2.19 ± 3.70 | <0.001 |
Urine RBCs (grade) | 2.82 ± 1.55 | 2.85 ± 1.56 | 2.74 ± 1.55 | 0.485 |
Serum C3 (mg/dL) | 105.92 ± 22.02 | 102.18 ± 21.77 | 112.76 ± 20.97 | <0.001 |
Serum C4 (mg/dL) | 28.91 ± 9.34 | 27.53 ± 9.00 | 31.28 ± 9.49 | <0.001 |
Serum IgA (mg/dL) | 312.01 ± 146.56 | 306.72 ± 150.57 | 317.49 ± 120.04 | 0.432 |
TG | ||||
---|---|---|---|---|
Total | Group 1 (<150 mg/dL) (n = 324) | Group 2 (≥150 mg/dL) (n = 187) | p * | |
TGs/HDL | 3.48 ± 4.12 | 1.89 ± 0.99 | 6.45 ± 5.79 | <0.001 |
Non-HDL/HDL | 2.94 ± 1.74 | 2.52 ± 1.49 | 3.73 ± 1.92 | <0.001 |
LDL/HDL | 2.15 ± 0.88 | 2.02 ± 0.84 | 2.38 ± 0.92 | <0.001 |
TyG | 4.72 ± 0.34 | 4.53 ± 0.20 | 5.09 ± 0.22 | <0.001 |
r | p | |
---|---|---|
TGs/HDL | −0.106 | 0.022 |
Non-HDL/HDL | −0.017 | 0.714 |
LDL/HDL | 0.058 | 0.210 |
TyG | −0.148 | 0.001 |
TGs | −0.084 | 0.065 |
LDL-C | 0.051 | 0.271 |
HDL-C | −0.028 | 0.551 |
Total cholesterol | 0.005 | 0.911 |
r | p | |
---|---|---|
TGs/HDL | 0.095 | 0.044 |
Non-HDL/HDL | 0.032 | 0.032 |
LDL/HDL | 0.298 | <0.001 |
TyG | 0.253 | <0.001 |
TGs | 0.257 | <0.001 |
LDL-C | 0.273 | <0.001 |
HDL-C | −0.003 | 0.949 |
Total cholesterol | 0.042 | 0.364 |
TG | |||
---|---|---|---|
Group 1 <150 (n = 313) | Group 2 ≥150 (n = 167) | p | |
Light microscopy | |||
Global sclerosis (%) | 14.95 ± 16.86 | 21.81 ± 23.65 | <0.001 |
Segmental sclerosis (%) | 7.56 ± 11.66 | 11.57 ± 14.91 | 0.001 |
Capsular adhesion (%) | 7.90 ± 11.66 | 11.63 ± 15.01 | 0.004 |
Mesangial matrix expansion (0−4) | 2.04 ± 0.85 | 2.26 ± 0.86 | 0.008 |
Mesangial cell proliferation (0−4) | 2.03 ± 0.84 | 2.25 ± 0.86 | 0.007 |
Endocapillary proliferation (0−4) | 0.13 ± 0.44 | 0.21 ± 0.58 | 0.074 |
Interstitial fibrosis (0−4) | 1.34 ± 0.99 | 1.38 ± 0.91 | 0.741 |
Tubular atrophy (0−4) | 1.31 ± 1.01 | 1.35 ± 0.92 | 0.637 |
Arterial intimal hyalinosis (0−4) | 0.19 ± 0.60 | 0.27 ± 0.72 | 0.200 |
Monocyte infiltration (0−4) | 1.46 ± 0.99 | 1.36 ± 0.89 | 0.314 |
Neutrophil infiltration (0−4) | 0.07 ± 0.37 | 0.08 ± 0.34 | 0.741 |
Immunofluorescence microscopy | |||
Mesangial deposit, IgA (0−4) | 3.28 ± 0.97 | 3.30 ± 0.97 | 0.794 |
Mesangial deposit, C3 (0−4) | 2.11 ± 1.18 | 2.16 ± 1.15 | 0.660 |
Mesangial deposit, C4d (0−4) | 0.03 ± 0.25 | 0.06 ± 0.34 | 0.348 |
WHO classification (n = 432) | n = 262 | n = 141 | |
Class (1−6) | 3.04 ± 0.84 | 2.96 ± 0.89 | 0.390 |
TG | ||||||||
---|---|---|---|---|---|---|---|---|
Univariable | Multivariable | |||||||
β | t | r2 | p | β | t | r2 | p | |
Global sclerosis | 0.187 | 4.128 | 0.033 | <0.001 | 0.173 | 3.544 | 0.060 | <0.001 |
Segmental sclerosis | 0.174 | 3.850 | 0.028 | <0.001 | 0.149 | 2.995 | 0.107 | 0.003 |
Capsular adhesion | 0.161 | 3.480 | 0.024 | 0.001 | 0.129 | 2.643 | 0.094 | 0.009 |
Mesangial matrix expansion | 0.115 | 2.525 | 0.011 | 0.012 | 0.109 | 2.129 | 0.024 | 0.034 |
Mesangial cell proliferation | 0.117 | 2.564 | 0.012 | 0.011 | 0.139 | 2.825 | 0.017 | 0.005 |
Endocapillary proliferation | 0.039 | 0.845 | 0.001 | 0.398 | - | - | - | - |
Monocyte infiltration | 0.004 | 0.086 | 0.000 | 0.931 | - | - | - | - |
Neutrophil infiltration | 0.076 | 1.654 | 0.004 | 0.099 | - | - | - | - |
Interstitial fibrosis | 0.054 | 1.182 | 0.001 | 0.238 | - | - | - | - |
Tubular atrophy | 0.057 | 1.233 | 0.001 | 0.218 | - | - | - | - |
Arterial intimal hyalinosis | 0.002 | 0.043 | 0.000 | 0.965 | - | - | - | - |
IgA mesangial deposit | 0.012 | 0.264 | 0.000 | 0.792 | - | - | - | - |
C3 mesangial deposit | 0.036 | 0.784 | 0.001 | 0.433 | - | - | - | - |
C4d mesangial deposit | 0.000 | −0.010 | 0.000 | 0.992 | - | - | - | - |
Crude | p | Model 1 | p | Model 2 | p | Model 3 | p | |
---|---|---|---|---|---|---|---|---|
Global sclerosis | ||||||||
Group 1 | Ref. | Ref. | Ref. | Ref. | ||||
Group 2 | 1.715 (1.131−2.601) | 0.011 | 1.701 (1.122−2.579) | 0.012 | 1.695 (1.055−2.723) | 0.029 | 1.791 (1.111−2.887) | 0.017 |
Segmental sclerosis | ||||||||
Group 1 | Ref. | Ref. | Ref. | Ref. | ||||
Group 2 | 2.382(1.325−4.282) | <0.001 | 2.366 (1.316−4.253) | 0.004 | 2.334 (1.213−4.492) | 0.011 | 2.310 (1.200−4.446) | 0.012 |
Mesangial matrix expansion | ||||||||
Group 1 | Ref. | Ref. | Ref. | Ref. | ||||
Group 2 | 1.689 (0.998−2.859) | 0.051 | 1.703 (1.006−2.882) | 0.047 | 1.586 (0.907−2.774) | 0.106 | 1.563 (0.893−2.737) | 0.118 |
Mesangial cell proliferation | ||||||||
Group 1 | Ref. | Ref. | Ref. | |||||
Group 2 | 1.587 (0.952−2.646) | 0.076 | 1.600 (0.960−2.668) | 0.072 | 1.409 (0.818−2.428) | 0.216 | 1.303 (0.745−2.281) | 0.353 |
TG | |||
---|---|---|---|
Group 1 <150 (n = 310) | Group 2 ≥150 (n = 163) | p | |
Anti-hypertensive drug | |||
RAAS inhibitor | 227 (73.2) | 128 (78.5) | 0.220 |
Calcium channel blocker | 57 (18.4) | 27 (16.6) | 0.704 |
Anti-platelet agents | |||
Aspirin | 0 (0.0) | 1 (0.6) | 0.346 |
Clopidogrel | 1 (0.3) | 0 (0.0) | 1.000 |
Lipid-lowering agents | |||
Omega-3 | 60 (19.4) | 28 (17.2) | 0.620 |
Statin | 92 (29.7) | 52 (31.9) | 0.674 |
Fenofibrate | 3 (1.0) | 2 (1.2) | 1.000 |
Immunosuppressive agents | |||
Steroids | 76 (24.5) | 58 (35.6) | 0.013 |
Any immunosuppressant | 7 (2.20 | 6 (3.6) | 0.389 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.J.; Hong, Y.A.; Min, J.W.; Koh, E.S.; Kim, H.D.; Ban, T.H.; Kim, Y.S.; Kim, Y.K.; Shin, S.J.; Kim, S.Y.; et al. Hypertriglyceridemia Is Associated with More Severe Histological Glomerulosclerosis in IgA Nephropathy. J. Clin. Med. 2021, 10, 4236. https://doi.org/10.3390/jcm10184236
Choi WJ, Hong YA, Min JW, Koh ES, Kim HD, Ban TH, Kim YS, Kim YK, Shin SJ, Kim SY, et al. Hypertriglyceridemia Is Associated with More Severe Histological Glomerulosclerosis in IgA Nephropathy. Journal of Clinical Medicine. 2021; 10(18):4236. https://doi.org/10.3390/jcm10184236
Chicago/Turabian StyleChoi, Won Jung, Yu Ah Hong, Ji Won Min, Eun Sil Koh, Hyung Duk Kim, Tae Hyun Ban, Young Soo Kim, Yong Kyun Kim, Seok Joon Shin, Seok Young Kim, and et al. 2021. "Hypertriglyceridemia Is Associated with More Severe Histological Glomerulosclerosis in IgA Nephropathy" Journal of Clinical Medicine 10, no. 18: 4236. https://doi.org/10.3390/jcm10184236
APA StyleChoi, W. J., Hong, Y. A., Min, J. W., Koh, E. S., Kim, H. D., Ban, T. H., Kim, Y. S., Kim, Y. K., Shin, S. J., Kim, S. Y., Yang, C. W., & Chang, Y. -K. (2021). Hypertriglyceridemia Is Associated with More Severe Histological Glomerulosclerosis in IgA Nephropathy. Journal of Clinical Medicine, 10(18), 4236. https://doi.org/10.3390/jcm10184236