Is the Sympathetic System Detrimental in the Setting of Septic Shock, with Antihypertensive Agents as a Counterintuitive Approach? A Clinical Proposition
Abstract
:1. Introduction
2. Coordination of Pressor Systems
3. How to Decrease Administration of Exogenous Catecholamines in Septic Shock?
3.1. Short-Term vs. Prolonged Sympathetic Hyperactivity
3.2. Autonomic Dysfunction and Vascular Hyporesponsiveness
3.3. Refractory Septic Shock
- (1)
- (2)
- (3)
- renal medullary ischemia and hypoxia in septic sheep [149];
- (4)
3.4. Sympatholytics in the Setting of Septic Shock
4. Beta-Blockers
5. Alpha-2 Agonists
5.1. Minimization of Sympathetic Hyperactivity toward Baseline Levels
- (1)
- (2)
- Alpha-2 agonists lower NA release through alpha-2 receptors located on central NA neurons and peripheral sympathetic post-ganglionic neurons (auto-receptor or pre-synaptic receptor). These alpha-2 receptors prevent central and peripheral NA hyperactivity [112,181]. In a supine resting hypertensive human, clonidine lowers the sympathetic activity only when the baseline activity is high (recorded from the postganglionic sympathetic fibers innervating the vascular smooth muscle of the striated muscle (peroneal nerve) [182]). In the CCU patient, this is compatible with a normalization of high sympathetic hyperactivity with a high baseline endogenous NA plasma concentration. However, this setting is different from the sympathetic inhibition observed in the healthy supine resting volunteer from low baseline sympathetic nervous activity to lowered activity and from normal baseline endogenous NA concentration to very low NA concentration.
- (a)
- administration of clonidine 1 μg·kg−1·h−1 to a patient in refractory septic shock increased SBP (+30–40 mm Hg), lowered NA requirements (−78%), and increased diuresis (0.2 to 2.0 mL·kg−1·h−1) despite reduced diuretic requirement [198]. Similarly, in a neonate presenting with necrotizing enterocolitis, clonidine 1 μg·kg−1·h−1 lowered NA requirements (−87%) [183];
- (b)
- (c)
- dexmedetomidine 0.7 μg·kg−1·h−1·4 h after withdrawal of propofol (but not remifentanil) lowered NA requirements (−56%) in the setting of septic shock (n = 38) [9]. The cross-over design precludes excluding the withdrawal of propofol as causing reduced NA requirements;
- (d)
5.2. Pressure vs. Flow: Microcirculation and the Autonomic Nervous System
- (a)
- increased coronary flow is observed in septic shock without coronary disease and compatible with lost autoregulation. By contrast, the lowest MAP (thus diastolic pressure) is associated with decreased coronary perfusion pressure, flow, lactate uptake, and myocardial hypoxia in septic shock patients [229]. The patients with the lowest MAP and diastolic pressure are the patients with the lowest coronary flow (219). However, reduced coronary reserve or flow does not necessarily imply myocardial ischemia, ST changes, and regional dysfunction;
- (b)
- restoring diastolic pressure is a rescue treatment to avoid circulatory collapse; it does not restore peripheral perfusion [218]. NA increases right and LV contractility. LV ejection fraction increased from 36% to 44% despite increased afterload (target MAP = 65 mm Hg; NA requirement = 0.23–0.40 μg·kg−1·min−1 i.e., ~1.7 mg·h−1/70 kg) [230]. When refractory septic shock is adequately managed, CO is relatively preserved. Exogenous NA exerted a weak beta agonist effect [230,231] and squeezed the hepatosplanchnic blood into the right atrium [202,231]. A reanalysis suggests that NA increases SVR by ~24% and CO by ~10% [221] but increased pressure does not necessarily mean increased peripheral perfusion.
- (1)
- increased BP: when NA increases mean BP from 65 to 85 mm Hg, (a) the patients with preserved microcirculation and the highest capillary density present with the largest reduction in capillary density. Schematically, NA is harmful. (b) Conversely, the patients with the most altered microcirculation present with a small improvement in capillary density (Figure 6 in ref. [245]). In this subgroup, NA is modestly beneficial. Indeed, when perfusion is more severely altered at baseline, the microcirculatory improvement is more important [246];
- (2)
- beta-adrenergic vasodilation: the beta-agonist, dobutamine (5 μg·kg−1·min−1), increases capillary perfusion without changing capillary density or a relationship to CO or BP [246]. Therefore, a postulated beta-mediated dilatation of large arterioles [246] bears no relationship with either the increased driving pressure evoked by NA or the vasoconstriction of large or small arterioles or to the skin sympathetic system;
- (3)
- lactate: oxygenation vs. sympathetic hyperactivity? Lactate concentration decreases as capillary perfusion increases [246]. Very low lactate concentration appears related to better outcome in the setting of septic shock [247]. If lactate is not a marker of hypoxia or poor perfusion but a function of beta-2 mediated sympathetic activation [186], then normalization of the sympathetic hyperactivity is important immediately after salvage. To sum up, lowered lactate concentration is a marker of improved microcirculation, presumably a consequence of sympathetic deactivation rather than of improved oxygenation.
5.3. Sympatho-Immune Interactions and Inflammation
5.4. Alpha-2 Agonists and Acute Kidney Injury
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Glossary
ADH | antidiuretic hormone, vasopressin |
AKI | acute kidney injury |
BP | blood pressure |
bpm | beats per min |
cardiac parasympathetic activity | cardiac vagal activity projecting to the sinus node |
cardiac sympathetic activity | sympathetic activity projecting to the sinus node and ventricles |
CHF | congestive heart failure |
CO | cardiac output |
CPB | cardiopulmonary bypass |
Conventional sedation | sedation evoked by e.g., propofol + opioid or midazolam + opioid, etc. |
Cooperative sedation | rousable, arousable sedation evoked by an alpha-2 agonist |
d | day |
DBP | diastolic blood pressure |
ECMO | extracorporeal membrane oxygenator |
FCD | functional capillary density |
LV | left ventricle |
HR | heart rate |
MAP | mean arterial pressure |
NA | noradrenaline |
NO | nitric oxide |
OFA | opioid free analgesia |
PLR | passive leg raising |
RRT | renal replacement therapy |
Salvage | stabilization of acute cardioventilatory distress |
SILI | self-inflicted lung injury |
SBP | systolic blood pressure |
SV | stroke volume |
unstressed volume | volume necessary to fill the veins without inducing stress on the vessel walls |
Vasomotor sympathetic activity | sympathetic activity projecting to veins (“capacitance”) and arteries |
References
- Laborit, H.; Huguenard, P. Artificial hibernation by pharmacodynamical and physical means. La Presse Médicale 1951, 59, 1329. [Google Scholar] [PubMed]
- Rhodes, A.A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit. Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensiv. Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef] [PubMed]
- Ince, C. The microcirculation is the motor of sepsis. Crit. Care 2005, 9, S13–S19. [Google Scholar] [CrossRef] [Green Version]
- Lillehei, R.C.; Longerbeam, J.K.; Bloch, J.H.; Manax, W.G. The Nature of Irreversible Shock. Ann. Surg. 1964, 160, 682–710. [Google Scholar] [CrossRef]
- Lillehei, R.C. History of vasodilation in treating shock and low flow states. Adv. Shock. Res. 1978, 1, 1–17. [Google Scholar]
- Pichot, C.; Géloën, A.; Ghignone, M.; Quintin, L. Alpha-2 agonists to reduce vasopressor requirements in septic shock? Med. Hypotheses 2010, 75, 652–656. [Google Scholar] [CrossRef]
- Petitjeans, F.; Leroy, S.; Pichot, C.; Geloen, A.; Ghignone, M.; Quintin, L. Hypothesis: Fever control, a niche for alpha-2 agonists in the setting of septic shock and severe acute respiratory distress syndrome? Temprature 2018, 5, 224–256. [Google Scholar] [CrossRef]
- Morelli, A.; Sanfilippo, F.; Arnemann, P.; Hessler, M.; Kampmeier, T.G.; D’Egidio, A.; Orecchioni, A.; Santonocito, C.; Frati, G.; Greco, E.; et al. The Effect of Propofol and Dexmedetomidine Sedation on Norepinephrine Requirements in Septic Shock Patients. Crit. Care Med. 2019, 47, e89–e95. [Google Scholar] [CrossRef]
- Cioccari, L.; Luethi, N.; Bailey, M.; Shehabi, Y.; Howe, B.; Messmer, A.S.; Proimos, H.K.; Peck, L.; Young, H.; Eastwood, G.M.; et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: A subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit. Care 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Gheibi, S.; Ala, S.; Heidari, F.; Salehifar, E.; Kasgari, H.A.; Moradi, S. Evaluating the Effect of Dexmedetomidine on Hemodynamic Status of Patients with Septic Shock Admitted to Intensive Care Unit: A Single-Blind Randomized Controlled Trial. Iran. J. Pharm Res. 2020, 19, 255–263. [Google Scholar]
- Longrois, D.; Petijeans, F.; Simonet, O.; de Kock, M.; Belliveau, M.; Pichot, C.; Lieatud, T.; Ghignone, M.; Quintin, L. How should dexmedetomidine and clonidine be prescribed in the critical care setting? Rev. Bras. Ter. Intensiva 2021, 27, 219–237. [Google Scholar]
- Chatterjee, K. The Fear of β-Blocker Therapy in Heart Failure. Arch. Intern. Med. 2004, 164, 1370–1371. [Google Scholar] [CrossRef]
- Pichot, C.; Ghignone, M.; Quintin, L. Dexmedetomidine and Clonidine. J. Intensiv. Care Med. 2012, 27, 219–237. [Google Scholar] [CrossRef]
- Longrois, D.; Petitjeans, F.; Simonet, O.; de Kock, M.; Belliveau, M.; Pichot, C.; Lieutaud, T.; Ghignone, M.; Quintin, L. Clinical Practice: Should we Radically Alter our Sedation of Critical Care Patients, Especially Given the COVID-19 Pandemics? Rom. J. Anaesth. Intensiv. Care 2021, 27, 43–76. [Google Scholar]
- Gehrung, E.; Reyes, H.; Gazmuri, R. Septic shock treated with a vasodilator drug (chlorpromazine). Rev. Médica Chile 1966, 94, 502–504. [Google Scholar]
- Quenot, J.P.; Binquet, C.; Pavon, A. Cardiovascular collapse: Lack of understanding or failure to anticipate heart-lung interac-tion? Reanimation 2012, 21, 710–714. [Google Scholar] [CrossRef]
- Pichot, C.; Longrois, D.; Ghignone, M.; Quintin, L. Dexmédetomidine et clonidine: Revue de leurs propriétés pharmacody-namiques en vue de définir la place des agonistes alpha-2 adrénergiques dans la sédation en réanimation. Ann. Fr. Anesth. Reanim. 2012, 31, 876–896. [Google Scholar] [CrossRef]
- Permutt, S. Circulatory effects of weaning from mechanical ventilation: The importance of transdiaphragmatic pressure. Anesthesiology 1988, 69, 157–160. [Google Scholar]
- Monnet, X.; Teboul, J.-L. Passive leg raising. Intensiv. Care Med. 2008, 34, 659–663. [Google Scholar] [CrossRef]
- Marik, P.; Bellomo, R. A rational approach to fluid therapy in sepsis. Br. J. Anaesth. 2016, 116, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Jozwiak, M.; Silva, S.; Persichini, R.; Anguel, N.; Osman, D.; Richard, C.; Teboul, J.-L.; Monnet, X. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit. Care Med. 2013, 41, 472–480. [Google Scholar] [CrossRef]
- Monnet, X.; Teboul, J.-L. Passive leg raising: Five rules, not a drop of fluid! Crit. Care 2015, 19, 18. [Google Scholar] [CrossRef] [Green Version]
- Pottecher, J.; Deruddre, S.; Teboul, J.-L.; Georger, J.-F.; LaPlace, C.; Benhamou, D.; Vicaut, E.; Duranteau, J. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensiv. Care Med. 2010, 36, 1867–1874. [Google Scholar] [CrossRef]
- De Backer, D.; Foulon, P. Minimizing catecholamines and optimizing perfusion. Crit. Care 2019, 23, 149. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, W.C.; Appel, P.L.; Waxman, K.; Schwartz, S.; Chang, P. Clinical trial of survivors’ cardiorespiratory patterns as therapeutic goals in critically ill postoperative patients. Crit. Care Med. 1982, 10, 398–403. [Google Scholar] [CrossRef]
- Chanques, G.; Jaber, S.; Jung, B.; Payen, J.F. Sédation-analgésie en réanimation de l’adulte. Encycl. Med.-Chir. Anesthésie Reanim. 2013, 10, 1–12. [Google Scholar]
- Moss, M.; Huang, D.T.; Brower, R.G.; Ferguson, N.D.; Ginde, A.A.; Gong, M.N.; Grissom, C.K.; Gundel, S.; Hayden, D.; Hite, R.D.; et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2019, 380, 1997–2008. [Google Scholar] [CrossRef]
- Slutsky, A.S.; Villar, J. Early Paralytic Agents for ARDS? Yes, No, and Sometimes. N. Engl. J. Med. 2019, 380, 2061–2063. [Google Scholar] [CrossRef]
- Petitjeans, F.; Desgenettes, L.H.D.D.A.; Pichot, C.; Ghignone, M.; Quintin, L.; Physiology, U.O.L. Building on the Shoulders of Giants: Is the use of Early Spontaneous Ventilation in the Setting of Severe Diffuse Acute Respiratory Distress Syndrome Actually Heretical? Turk. J. Anesthesia Reanim. 2018, 46, 339–347. [Google Scholar] [CrossRef]
- Pichot, C.; Picoche, A.; Saboya-Steinbach, M.; Rousseau, R.; de Guys, J.; Lahmar, M.; Thomas, D.; Guerry, M.; Lalot, J.M.; Monarch, R.; et al. Combination of clonidine sedation and spontaneous breathing-pressure support upon acute respiratory distress syndrome: A feasability study in four patients. Acta Anaesthesiol. Belg. 2012, 63, 127–133. [Google Scholar] [PubMed]
- Petitjeans, F.; Pichot, C.; Ghignone, M.; Quintin, L. Early severe acute respiratory distress syndrome: What’s going on? Part II: Controlled vs. spontaneous ventilation? Anestezjol. Intensywna Ter. 2016, 48, 339–351. [Google Scholar] [CrossRef]
- Petitjeans, F.; Martinez, J.; Danguy des Deserts, M.; Leroy, S.; Quintin, L.; Escarment, J. A centrally acting antihy-pertensive, clonidine, sedates patients presenting with acute res-piratory distress syndrome evoked by SARS-coronavirus 2. Crit. Care Med. 2020, 48, e991–e993. [Google Scholar] [CrossRef] [PubMed]
- Akada, S.; Takeda, S.; Yoshida, Y.; Nakazato, K.; Mori, M.; Hongo, T.; Tanaka, K.; Sakamoto, A. The efficacy of dexmedetomidine in pa-tients with noninvasive ventilation: A preliminary study. Anesth. Analg. 2008, 107, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Galland, C.; Sergent, B.; Pichot, C.; Ghignone, M.; Quintin, L. Acute iterative bronchospasm and “do not re-intubate” orders: Sedation by an alpha-2 agonist combined with noninvasive ventilation. Am. J. Emerg. Med. 2015, 33, 857.e3–857.e5. [Google Scholar] [CrossRef]
- Longrois, D.; Quintin, L. Dexmedetomidine: Superiority trials needed? Anaesth. Crit. Care Pain Med. 2016, 35, 237–238. [Google Scholar] [CrossRef] [PubMed]
- Constantin, J.-M.; Godet, T.; James, A.; Monsel, A. A small step for sedation that may become a giant leap for critical care medicine. Anaesth. Crit. Care Pain Med. 2019, 38, 425–427. [Google Scholar] [CrossRef]
- Dargent, A.; Quintin, L.; Jacquier, M.; Fournel, I.; Quenot, J.P. Vasopressor for refractory septic shock: Dexme-detomidine could help decrease norepinephrine requirements. Minerva Anestesiol. 2020, 86, 885–886. [Google Scholar] [CrossRef]
- Venn, R.M.; Newman, P.J.; Grounds, R.M. A phase II study to evaluate the efficacy of dexmedetomidine for seda-tion in the medical intensive care unit. Intensiv. Care Med. 2003, 29, 201–207. [Google Scholar] [CrossRef]
- Sauder, P.; Andreoletti, M.; Cambonie, G.; Capellier, G.; Feissel, M.; Gall, O. Sedation and analgesia in inten-sive care. French Critical Care Society. Ann. Fr. Anesth. Reanim. 2008, 27, 541–551. [Google Scholar] [CrossRef]
- Shehabi, Y.; Botha, J.A.; Ernest, D.; Freebairn, R.C.; Reade, M.; Roberts, B.L.; Seppelt, I.; Weisbrodt, L. Clinical application, the use of dexmedetomidine in intensive care sedation. Crit. Care Shock. 2010, 13, 40–50. [Google Scholar]
- Riker, R.R.; Shehabi, Y.; Bokesch, P.M.; Ceraso, D.; Wisemandle, W.; Koura, F.; Whitten, P.; Margolis, B.D.; Byrne, D.W.; Ely, E.W.; et al. Dexmedetomidine vs midazo-lam for sedation of critically ill patients: A randomized trial. J. Am. Med. Assoc. 2009, 301, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Aars, H. Effects of clonidine on aortic diameter and aortic baroreceptor activity. Eur. J. Pharmacol. 1972, 20, 52–59. [Google Scholar] [CrossRef]
- Motz, W.; Ippisch, R.; Strauer, B.E. The Role of Clonidine In Hypertensive Heart Disease: Influence on Myocardial Contractility and Left Ventricular Afterload. Chest 1983, 83, 433–435. [Google Scholar] [CrossRef]
- Giles, T.D.; Iteld, B.J.; Mautner, R.K.; A Rognoni, P.; Dillenkoffer, R.L. Short-term effects of intravenous clonidine in congestive heart failure. Clin. Pharmacol. Ther. 1981, 30, 724–728. [Google Scholar] [CrossRef]
- Hermiller, J.B.; Magorien, R.D.; Leithe, M.E.; Unverferth, D.V.; Leier, C.V. Clonidine in congestive heart failure: A vasodilator with negative inotropic effects. Am. J. Cardiol. 1983, 51, 791–795. [Google Scholar] [CrossRef]
- Olivari, M.T.; Levine, T.B.; Cohn, J.N. Acute hemodynamic and hormonal effects of central vs. peripheral sympa-thetic inhibition in patients with congestive heart failure. J. Cardiovasc. Pharmacol. 1986, 8, 973–978. [Google Scholar] [CrossRef]
- Manolis, A.J.; Olympios, C.; Sifaki, M.; Handanis, S.; Bresnahan, M.; Gavras, I.; Gavras, H. Suppressing sympathetic acti-vation in congestive heart failure. A new therapeutic strategy. Hypertension 1995, 26, 719–724. [Google Scholar] [CrossRef]
- Stefanadis, C.; Manolis, A.; Dernellis, J.; Tsioufis, C.; Tsiamis, E.; Gavras, I.; Gavras, H.; Toutouzas, P. Acute effect of clonidine on left ventricular pressure-volume relation in hypertensive patients with diastolic heart dysfunction. J. Hum. Hypertens. 2001, 15, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Krassioukov, A.V.; Gelb, A.W.; Weaver, L.C. Action of propofol on central sympathetic mechanisms controlling blood pressure. Can. J. Anaesth. 1993, 40, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Huang, Y.; Guo, F.; Yang, Y.; Teboul, J.-L.; Qiu, H. The effects of propofol and dexmedetomidine infusion on fluid responsiveness in critically ill patients. J. Surg. Res. 2013, 185, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Bourelli, B.; Bernard, J.M.; Pinaud, M.; Lechevalier, T.; Bainvel, J.V. Additive effects of oral clonidine and fentanyl on isoflurane-induced hypotension: A double-blind randomized study. Anesthesiology 1988, 69, A68. [Google Scholar] [CrossRef]
- Ince, C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit. Care 2015, 19, S8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M.; De Santis, V.; Vitale, D.; Jeffcoate, W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 2004, 364, 545–548. [Google Scholar] [CrossRef]
- Ribeiro, A.; Mulinari, R.; Gavras, I.; Kohlmann, O.; Ramos, O.; Gavras, H. Sequential elimination of pressor mech-anisms in severe hypertension in humans. Hypertension 1986, 8, I-169–I-173. [Google Scholar]
- Cornish, K.G.; Barazanji, M.J.; Iaffaldano, R. Neural and hormonal control of blood pressure in conscious mon-keys. Am. J. Physiol. 1990, 258, H107–H112. [Google Scholar]
- Hasser, E.M.; Bishop, V.S. Neurogenic and humoral factors maintaining arterial pressure in conscious dogs. Am. J. Physiol. 1988, 255, R693–R698. [Google Scholar] [CrossRef]
- Sun, M.-K.; Guyenet, P.G. Effects of vasopressin and other neuropeptides on rostral medullary sympathoexcitatory neurons ‘in vitro’. Brain Res. 1989, 492, 261–270. [Google Scholar] [CrossRef]
- Li, Y.-W.; Guyenet, P.G. Angiotensin II Decreases a Resting K + Conductance in Rat Bulbospinal Neurons of the C1 Area. Circ. Res. 1996, 78, 274–282. [Google Scholar] [CrossRef]
- McAllen, R.M.; Spyer, K.M. The baroreceptor input to cardiac vagal motoneurones. J. Physiol. 1978, 282, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Levy, B.; Fritz, C.; Tahon, E.; Jacquot, A.; Auchet, T.; Kimmoun, A. Vasoplegia treatments: The past, the present, and the future. Crit. Care 2018, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Buckley, M.S.; Barletta, J.F.; Smithburger, P.L.; Radosevich, J.J.; Kane-Gill, S.L. Catecholamine Vasopressor Support Sparing Strategies in Vasodilatory Shock. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 382–398. [Google Scholar] [CrossRef]
- Smyth, H.S.; Sleight, P.; Pickering, G.W. Reflex Regulation of Arterial Pressure during Sleep in Man. Circ. Res. 1969, 24, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Denton, K.M.; Anderson, W.P.; Sinniah, R. Effects of angiotensin II on regional afferent and efferent arteriole dimensions and the glomerular pole. Am. J. Physiol. Integr. Comp. Physiol. 2000, 279, R629–R638. [Google Scholar] [CrossRef] [Green Version]
- Holm, L.; Morsing, P.; Casellas, D.; Persson, A.E.G. Resetting of the pressure range for blood flow autoregulation in the rat kidney. Acta Physiol. Scand. 1990, 138, 395–401. [Google Scholar] [CrossRef]
- Ma, S.; Evans, R.; Iguchi, N.; Tare, M.; Parkington, H.C.; Bellomo, R.; May, C.N.; Lankadeva, Y.R. Sepsis-induced acute kidney injury: A disease of the microcirculation. Microcirculation 2019, 26, e12483. [Google Scholar] [CrossRef]
- Wan, L.; Langenberg, C.; Bellomo, R.; May, C.N. Angiotensin II in experimental hyperdynamic sepsis. Crit. Care 2009, 13, R190. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, T.D.; Takala, J.; Jakob, S.M. Angiotensin II in septic shock. Crit. Care 2015, 19, 98. [Google Scholar] [CrossRef] [Green Version]
- Lankadeva, Y.R.; Kosaka, J.; Evans, R.; Bellomo, R.; May, C.N. Urinary Oxygenation as a Surrogate Measure of Medullary Oxygenation During Angiotensin II Therapy in Septic Acute Kidney Injury. Crit. Care Med. 2018, 46, e41–e48. [Google Scholar] [CrossRef]
- Boldt, J.; Papsdorf, M.; Kumle, B.; Piper, S.; Hempelmann, G. Influence of angiotensin-converting enzyme inhibitor enalaprilat on endothelial-derived substances in the critically ill. Crit. Care Med. 1998, 26, 1663–1670. [Google Scholar] [CrossRef]
- Chawla, L.S.; Busse, L.; Brasha-Mitchell, E.; Davison, D.; Honiq, J.; Alotaibi, Z.; Seneff, M.G. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): A pilot study. Crit. Care 2014, 18, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumlin, J.A.; Murugan, R.; Deane, A.; Ostermann, M.; Busse, L.W.; Ham, K.R.; Kashani, K.; Szerlip, H.M.; Prowle, J.; Bihorac, A.; et al. Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit. Care Med. 2018, 46, 949–957. [Google Scholar] [CrossRef]
- Senatore, F.; Jagadeesh, G.; Rose, M.; Pillai, V.C.; Hariharan, S.; Liu, Q.; Tzu-Yun, M.; Sapru, M.K.; Southworth, M.R.; Stockbridge, N. FDA Approval of Angiotensin II for the Treatment of Hypotension in Adults with Distributive Shock. Am. J. Cardiovasc. Drugs 2019, 19, 11–20. [Google Scholar] [CrossRef]
- Kimmoun, A.; Ducrocq, N.; Levy, B. Mechanisms of vascular hyporesponsiveness in septic shock. Curr. Vasc. Pharmacol. 2013, 11, 139–149. [Google Scholar]
- Géloën, A.; Pichot, C.; Leroy, S.; Julien, C.; Ghignone, M.; May, C.N.; Quintin, L. Pressor Response to Noradrenaline in the Setting of Septic Shock: Anything New under the Sun—Dexmedetomidine, Clonidine? A Minireview. BioMed Res. Int. 2015, 2015, 863715. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.; Balarini, M.; Caixeta, D.; Bouskela, E. Microcirculatory dysfunction in sepsis: Pathophysiology, clinical monitoring, and potential therapies. Am. J. Physiol. Circ. Physiol. 2016, 311, H24–H35. [Google Scholar] [CrossRef] [Green Version]
- Bellissant, E.; Annane, D. Effect of hydrocortisone on phenylephrine–mean arterial pressure dose-response relationship in septic shock. Clin. Pharmacol. Ther. 2000, 68, 293–303. [Google Scholar] [CrossRef]
- Kirov, M.Y.; Evgenov, O.V.; Evgenov, N.V.; Egorina, E.M.; Sovershaev, M.A.; Sveinbjørnsson, B.; Nedashkovsky, E.; Bjertnaes, L.J. Infusion of methylene blue in human septic shock: A pilot, randomized, controlled study. Crit. Care Med. 2001, 29, 1860–1867. [Google Scholar] [CrossRef]
- Pasin, L.; Umbrello, M.; Greco, T.; Zambon, M.; Pappalardo, F.; Crivellari, M.; Borghi, G.; Morelli, A.; Zangrillo, A.; Landoni, G. Methylene blue as a vasopres-sor: A meta-analysis of randomised trials. Crit. Care Resusc. 2013, 15, 42–48. [Google Scholar]
- Marik, P.E.; Khangoora, V.; Rivera, R.; Hooper, M.H.; Catravas, J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock. Chest 2017, 151, 1229–1238. [Google Scholar] [CrossRef]
- Masood, H.; Burki, A.M.; Sultan, A.; Sharif, H.; Ghauri, A.; Khan, S.; Qureshi, M.S.S.; Qadeer, A.; Rasheed, G. Effect of Intravenous Vitamin C, Thiamine, and Hydrocortisone (The Metabolic Resuscitation Protocol) on Early Weaning from Vasopressors in Patients with Septic Shock. A Descriptive Case Series Study. Cureus 2019, 11, e5016. [Google Scholar] [CrossRef] [PubMed]
- Spronk, P.E.; Ince, C.; Gardien, M.J.; Mathura, K.R.; Straaten, H.M.O.-V.; Zandstra, D.F. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 2002, 360, 1395–1396. [Google Scholar] [CrossRef]
- Boerma, E.C.; Koopmans, M.; Konijn, A.; Kaiferova, K.; Bakker, A.J.; Van Roon, E.N.; Buter, H.; Bruins, N.; Egbers, P.H.; Gerritsen, R.T.; et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: A double-blind randomized placebo controlled trial. Crit. Care Med. 2010, 38, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Harbin, M.; Shuster, C.; Griesdale, D.E.G.; Foster, D.; Sweet, D.; Wood, M.D.; Dhingra, V.K. Adding vitamin C to hydrocortisone lacks benefit in septic shock: A historical cohort study. Can. J. Anesth. J. Can. Anesthésie 2020, 67, 1798–1805. [Google Scholar] [CrossRef]
- Moskowitz, A.; Huang, D.T.; Hou, P.C.; Gong, J.; Doshi, P.B.; Grossestreuer, A.V.; Andersen, L.W.; Ngo, L.; Sherwin, R.L.; Berg, K.M.; et al. Effect of Ascorbic Acid, Corticosteroids, and Thiamine on Organ Injury in Septic Shock. JAMA 2020, 324, 642–650. [Google Scholar] [CrossRef]
- Menon, V.; Mohamed, Z.U.; Prasannan, P.; Moni, M.; Edathadathil, F.; Prasanna, P.; Menon, A.; Nair, S.; Greeshma, C.; Sathyapalan, D.T.; et al. Vitamin C Therapy for Routine Care in Septic Shock (ViCTOR) Trial: Effect of Intravenous Vitamin C, Thiamine, and Hydrocortisone Administration on Inpatient Mortality among Patients with Septic Shock. Indian J. Crit. Care Med. 2020, 24, 653–661. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Ryoo, S.M.; Park, J.E.; Jo, Y.H.; Jang, D.-H.; Suh, G.J.; Kim, T.; Kim, Y.-J.; Kim, S.; Cho, H.; et al. Combination therapy of vitamin C and thiamine for septic shock: A multi-centre, double-blinded randomized, controlled study. Intensiv. Care Med. 2020, 46, 2015–2025. [Google Scholar] [CrossRef]
- Dampney, R.A.; McAllen, R.M. Differential control of sympathetic fibres supplying hindlimb skin and muscle by subretrofacial neurones in the cat. J. Physiol. 1988, 395, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Abrahams, V.C.; Hilton, S.M.; Zbrożyna, A. Active muscle vasodilatation produced by stimulation of the brain stem: Its significance in the defence reaction. J. Physiol. 1960, 154, 491–513. [Google Scholar] [CrossRef] [Green Version]
- Rundfeldt, L.C.; Maggioni, M.A.; Coker, R.H.; Gunga, H.-C.; Riveros-Rivera, A.; Schalt, A.; Steinach, M. Cardiac Autonomic Modulations and Psychological Correlates in the Yukon Arctic Ultra: The Longest and the Coldest Ultramarathon. Front. Physiol. 2018, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- White, D.W.; Raven, P.B. Autonomic neural control of heart rate during dynamic exercise: Revisited. J. Physiol. 2014, 592, 2491–2500. [Google Scholar] [CrossRef]
- Nunn, J.F. Applied Respiratory Physiology, 2nd ed.; Butterworths: London, UK, 1977; 524p. [Google Scholar]
- Crotti, S.; Bottino, N.; Ruggeri, G.M.; Spinelli, E.; Tubiolo, D.; Lissoni, A.; Protti, A.; Gattinoni, L. Spontaneous Breathing during Extracorporeal Membrane Oxygenation in Acute Respiratory Failure. Anesthesiology 2017, 126, 678–687. [Google Scholar] [CrossRef]
- Grassi, G.; Mancia, G.; Esler, M. Central and peripheral sympathetic activation in heart failure. Cardiovasc. Res. 2021. [Google Scholar] [CrossRef]
- Mellander, S. Comparative studies on the adrenergic neuro-hormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol. Scand. Suppl. 1960, 50, 1–86. [Google Scholar]
- Andrews, P.J.D.; Citerio, G. Lund Therapy—pathophysiology-based therapy or contrived over-interpretation of limited data? Intensiv. Care Med. 2006, 32, 1461–1463. [Google Scholar] [CrossRef]
- Benedict, C.R.; Rose, J.A. Arterial norepinephrine changes in patients with septic shock. Circ. Shock. 1992, 38, 165–172. [Google Scholar]
- Boldt, J.; Menges, T.; Kuhn, D.; Diridis, C.; Hempelmann, G. Alterations in circulating vasoactive substances in the critically ill—A comparison between survivors and non-survivors. Intensiv. Care Med. 1995, 21, 218–225. [Google Scholar] [CrossRef]
- Cannon, W.B. A Consideration Of Possible Toxic And Nervous Factors In the production of traumatic shock. Ann. Surg. 1934, 100, 704–713. [Google Scholar] [CrossRef]
- Freeman, N.E.; Shaffer, S.A.; Schecter, A.E.; Holling, H.E.; Marean, N.E. The effect of total sympathectomy on the occurrence of shock from hemorrhage. J. Clin. Investig. 1938, 17, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Wiggers, H.C.; Ingraham, R.C.; Roemhild, F.; Goldberg, H. Vasoconstriction and the development of irreversible hemorrhagic shock. Am. J. Physiol. Content 1948, 153, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Cannon, W.B. “Voodoo” Death. Am. Anthr. 1942, 44, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Selye, H. A Syndrome produced by Diverse Nocuous Agents. Nat. Cell Biol. 1936, 138, 32. [Google Scholar] [CrossRef]
- Selye, H. Stress and the General Adaptation Syndrome. BMJ 1950, 1, 1383–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laborit, H. La notion de “reaction oscillante post agressive”. Therapie 1951, 6, 207–210. [Google Scholar] [PubMed]
- Laborit, H.; Huguenard, P. Technique actuelle de l’hibernation artificielle. La Presse Médicale 1952, 60, 1455–1456. [Google Scholar] [PubMed]
- Dünser, M.W.; Hasibeder, W.R. Sympathetic Overstimulation During Critical Illness: Adverse Effects of Adrenergic Stress. J. Intensiv. Care Med. 2009, 24, 293–316. [Google Scholar] [CrossRef]
- Andreis, D.T.; Singer, M. Catecholamines for inflammatory shock: A Jekyll-and-Hyde conundrum. Intensiv. Care Med. 2016, 42, 1387–1397. [Google Scholar] [CrossRef]
- Habes, Q.L.; van Ede, L.; Gerretsen, J.; Kox, M.; Pickkers, P. Norepinephrine Contributes to Enterocyte Damage in Septic Shock Patients: A Prospective Cohort Study. Shock 2018, 49, 137–143. [Google Scholar] [CrossRef]
- Chippaux, C.; Carayon, A.; Rouffilange, F.; Fabre, A.; Borjeix, L.; Lapalle, J. Artificial hibernation in war surgery: With reference to its use in Indochina. La Presse Médicale 1954, 62, 504–506. [Google Scholar]
- Kawazoe, Y.; Miyamoto, K.; Morimoto, T.; Yamamoto, T.; Fuke, A.; Hashimoto, A.; Koami, H.; Beppu, S.; Katayama, Y.; Itoh, M.; et al. Effect of Dexmedetomidine on Mortality and Ventilator-Free Days in Patients Requiring Mechanical Ventilation with Sepsis. JAMA 2017, 317, 1321–1328. [Google Scholar] [CrossRef]
- Quintin, L.; Ghignone, M. Central noradrenergic systems: Basic and clinical aspects relevant to anesthesia. In Progress in Catecholamine Research Part C: Clinical Aspects (Proceedings of the Sixth International Catecholamine Symposium); Belmaker, R.H., Sandler, M., Dahlstrom, A., Eds.; A.R. Liss: New York, NY, USA, 1988; pp. 447–459. [Google Scholar]
- McEwen, B.S.; Wingfield, J.C. Allostasis and Allostatic Load. In Encyclopedia of Stress 2; Fink, G., Ed.; Academic Press: New York, NY, USA, 2007; pp. 135–141. [Google Scholar] [CrossRef]
- Janig, W. The Integrative Action of the Autonomic Nervous System: Neurobiology of Homestasis; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Freeman, N.E. Decrease in blood volume after prolonged hyperactivity of the sympathetic nervous system. Am. J. Physiol. 1932, 103, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Borst, C.; Wieling, W.; van Brederode, J.F.; Hond, A.; de Rijk, L.G.; Dunning, A.J. Mechanisms of initial heart rate re-sponse to postural change. Am. J. Physiol. 1982, 243, H676–H681. [Google Scholar]
- Glick, G.; Braunwald, E.; Lewis, R.M. Relative Roles of the Sympathetic and Parasympathetic Nervous Systems in the Reflex Control of Heart Rate. Circ. Res. 1965, 16, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Korner, P.I.; West, M.J.; Shaw, J.; Uther, J.B. ’Steady-state’ properties of the baroreceptor-heart rate reflex in essen-tial hypertension in man. Clin. Exp. Pharmacol. Physiol. 1974, 1, 65–76. [Google Scholar] [CrossRef]
- Hill-Smith, I.; Purves, R.D. Synaptic delay in the heart: An ionophoretic study. J. Physiol. 1978, 279, 31–54. [Google Scholar] [CrossRef]
- Little, R.A. Heart rate changes after haemorrhage and injury: A reappraisal. J. Trauma 1989, 29, 903–906. [Google Scholar] [CrossRef]
- Annane, D.; Trabold, F.; Sharshar, T.; Jarrin, I.; Blanc, A.S.; Raphael, J.C.; Gajdos, P. Inappropriate Sympathetic Activation at Onset of Septic Shock. Am. J. Respir. Crit. Care Med. 1999, 160, 458–465. [Google Scholar] [CrossRef]
- Parlow, J.; Begou, G.; Sagnard, P.; Cottet-Emard, J.M.; Levron, J.C.; Annat, G.; Bonnet, F.; Ghignone, M.; Hughson, R.; Viale, J.P.; et al. Cardiac baroreflex during the postoperative period in patients with hypertension: Effect of clonidine. Anesthesiology 1999, 90, 681–692. [Google Scholar] [CrossRef]
- Ahlquist, R.P. A study of the adrenotropic receptors. Am. J. Physiol. 1948, 153, 586–600. [Google Scholar] [CrossRef]
- Insel, P.A. Adrenergic Receptors—Evolving Concepts and Clinical Implications. N. Engl. J. Med. 1996, 334, 580–585. [Google Scholar] [CrossRef]
- Maccari, S.; Vezzi, V.; Barbagallo, F.; Stati, T.; Ascione, B.; Grò, M.C.; Catalano, L.; Marano, G.; Matarrese, P.; Ambrosio, C.; et al. β-blockers Reverse Agonist-Induced β2-AR Downregulation Regardless of Their Signaling Profile. Int. J. Mol. Sci. 2020, 21, 512. [Google Scholar] [CrossRef] [Green Version]
- Feldman, R.D.; Limbird, L.E.; Nadeau, J.; Fitzgerald, G.A.; Robertson, D.; Wood, A.J. Dynamic regulation of leukocyte beta adrenergic receptor-agonist interactions by physiological changes in circulating catecholamines. J. Clin. Investig. 1983, 72, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Zoukos, Y.; Thomaides, T.; Pavitt, D.V.; Leonard, J.P.; Cuzner, M.L.; Mathias, C.J. Upregulation of beta adrenoceptors on circulating mononuclear cells after reduction of central sympathetic outflow by clonidine in normal subjects. Clin. Auton. Res. 1992, 2, 165–170. [Google Scholar] [CrossRef]
- Butler, J.; Kelly, J.G.; O’Malley, O.; Pidgeon, F. Beta-adrenoceptor adaptation to acute exercise. J. Physiol. 1983, 344, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Ohman, E.M.; Butler, J.; Kelly, J.; Horgan, J.; O’Malley, K. Beta-adrenoceptor adaptation to endurance training. J. Cardiovasc. Pharmacol. 1987, 10, 728–731. [Google Scholar] [CrossRef]
- Schultz, K.D.; Fritschka, E.; Kribben, A.; Rothschild, M.; Thiede, H.M.; Distler, A.; Philipp, T. Alpha 2- and beta 2-adrenoceptor downregulation in marathon runners. J. Hypertens. Suppl. 1989, 7, S48–S49. [Google Scholar] [CrossRef]
- Mantz, J.; Marty, J.; Pansard, Y.; Henzel, D.; Loiseau, A.; Pocidalo, M.; Langlois, J.; Desmonts, J.-M. Beta-adrenergic receptor changes dur-ing coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 1990, 99, 75–81. [Google Scholar] [CrossRef]
- Quintin, L.; Bouilloc, X.; Butin, E.; Bayon, M.C.; Brudon, J.R.; Levron, J.C.; Tassan, H.; Boucaud, C.; Tissot, S.; Frehring, B.; et al. Clonidine for aortic surgery in hyper-tensive patients: A double blind controlled randomized study. Anesth. Analg. 1996, 83, 687–695. [Google Scholar] [CrossRef]
- Parlow, J.; Sagnard, P.; Begou, G.; Viale, J.P.; Quintin, L. The effects of clonidine on sensitivity to phenylephrine and nitroprusside in patients with essential hypertension recovering from surgery. Anesth. Analg. 1999, 88, 1239–1243. [Google Scholar]
- Silverman, H.J.; Penaranda, R.; Orens, J.B.; Lee, N.H. Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: Association with myocardial hyporesponsiveness to catechola-mines. Crit. Care Med. 1993, 21, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.L.; Lau, Y.T.; Huang, S.F.; Chen, M.F.; Liu, M.S. Changes of alpha 1-adrenergic receptors in human liver during intraabdominal sepsis. Hepatology 1994, 20, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, A.C.L.; O’Leary, D.; Silva, B.; Marongiu, E.; Piepoli, M.F.; Crisafulli, A. Neural Regulation of Cardiovascular Response to Exercise: Role of Central Command and Peripheral Afferents. BioMed Res. Int. 2014, 2014, 478965. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.; Perez, P.; Thivilier, C.; Levy, B. Early prediction of norepinephrine dependency and refractory sep-tic shock with a multimodal approach of vascular failure. J. Crit. Care 2015, 30, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Caille, V.; Charron, C.; Belliard, G.; Aegerter, P.; Page, B.; Jardin, F. Reversal of refractory septic shock with drotrecogin alpha (activated). Intensive Care Med. 2009, 35, 1204–1209. [Google Scholar] [CrossRef]
- Annane, D.; Bellissant, E.; Cavaillon, J.-M. Septic shock. Lancet 2005, 365, 63–78. [Google Scholar] [CrossRef]
- Donadello, K.; Taccone, F.S. Refractory septic shock: Who and how should we purify? Minerva Anestesiol. 2014, 81, 475–477. [Google Scholar]
- Annane, D. Why My Steroid Trials in Septic Shock Were “Positive”. Crit. Care Med. 2019, 47, 1789–1793. [Google Scholar] [CrossRef]
- Dargent, A.; Nguyen, M.; Fournel, I.; Bourredjem, A.; Charles, P.-E.; Quenot, J.-P. Vasopressor Cumulative Dose Requirement and Risk of Early Death During Septic Shock: An Analysis From The EPISS Cohort. Shock 2018, 49, 625–630. [Google Scholar] [CrossRef]
- Stilianos, K.; Athina, K.; Dimitrios, T.; Haridimos, M.; Andreas, L.; Konstantinos, S.; Panagiotis, D.; Ioannis, B. Refractory septic shock: Efficacy and safety of very high doses of norepinephrine. Methods Find. Exp. Clin. Pharmacol. 2006, 28, 307–313. [Google Scholar] [CrossRef]
- Geloen, A.; Chapelier, K.; Cividjian, A.; Dantony, E.; Rabilloud, M.; May, C.N.; Quintin, L. Clonidine and Dexmedetomidine Increase the Pressor Response to Norepinephrine in Experimental Sepsis. Crit. Care Med. 2013, 41, e431–e438. [Google Scholar] [CrossRef]
- Jose, A.D. Effect of combined sympathetic and parasympathetic blockade on heart rate and cardiac function in man. Am. J. Cardiol. 1966, 18, 476–478. [Google Scholar] [CrossRef]
- Julien, C.; Oréa, V.; Quintin, L.; Piriou, V.; Barrès, C. Renal sympathetic nerve activity and vascular reactivity to phenylephrine after lipopolysaccharide administration in conscious rats. Physiol. Rep. 2017, 5, e13139. [Google Scholar] [CrossRef] [PubMed]
- Ensinger, H.; Weichel, T.; Lindner, K.H.; Grünert, A.; Ahnefeld, F.W. Effects of norepinephrine, epinephrine, and dopamine infusions on oxygen consumption in volunteers. Crit. Care Med. 1993, 21, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, C.; Radermacher, P.; Wepler, M.; Nußbaum, B. Non-Hemodynamic Effects of Catecholamines. Shock 2017, 48, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Lankadeva, Y.R.; Ma, S.; Iguchi, N.; Evans, R.G.; Hood, S.G.; Farmer, D.; Bailey, S.R.; Bellomo, R.; May, C.N. Dexmedetomidine reduces norepinephrine requirements and preserves renal oxygenation and function in ovine septic acute kidney injury. Kidney Int. 2019, 96, 1150–1161. [Google Scholar] [CrossRef] [PubMed]
- Lillehei, R.C.; Maclean, L.D. The Intestinal Factor in Irreversible Endotoxin Shock. Ann. Surg. 1958, 148, 513–525. [Google Scholar] [CrossRef]
- Eckenhoff, J.E.; Cooperman, L.H. The Clinical Application of Phenoxybenzamine in Shock and Vasoconstric-tive States. Surg. Gynecol. Obstet. 1965, 121, 483–490. [Google Scholar]
- Anderson, R.W.; James, P.M.; Bredenbenc, C.E.; Hahdaway, R.M. Phenoxybenzamine in Septic Shock. Ann. Surg. 1967, 165, 341–350. [Google Scholar] [CrossRef]
- Swedberg, K.; Hjalmarson, A.; Waagstein, F.; Wallentin, I. Prolongation of survival in congestive cardiomyopathy by beta-receptor blockade. Lancet 1979, 313, 1374–1376. [Google Scholar] [CrossRef]
- Campan, L. Un double jubilé: Celui du professuer Huguenard et celui du laboritisme. Urgences 1995, 14, 162–163. [Google Scholar] [CrossRef]
- Berk, J.L.; Hagen, J.F.; Dunn, J.M. The role of beta adrenergic blockade in the treatment of septic shock. Surg. Gynecol. Obstet. 1970, 130, 1025–1034. [Google Scholar]
- Herndon, D.N.; Hart, D.W.; Wolf, S.; Chinkes, D.L.; Wolfe, R.R. Reversal of Catabolism by Beta-Blockade after Severe Burns. N. Engl. J. Med. 2001, 345, 1223–1229. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Norbury, W.B.; Finnerty, C.C.; Branski, L.K.; Herndon, D.N. Propranolol Does Not Increase Inflammation, Sepsis, or Infectious Episodes in Severely Burned Children. J. Trauma Inj. Infect. Crit. Care 2007, 62, 676–681. [Google Scholar] [CrossRef]
- Macchia, A.; Romero, M.; Comignani, P.D.; Mariani, J.; D’Ettorre, A.; Prini, N.; Santopinto, M.; Tognoni, G. Previous prescription of β-blockers is associated with reduced mortality among patients hospitalized in intensive care units for sepsis. Crit. Care Med. 2012, 40, 2768–2772. [Google Scholar] [CrossRef]
- Morelli, A.; Singer, M.; Ranieri, V.M.; D’Egidio, A.; Mascia, L.; Orecchioni, A.; Piscioneri, F.; Guarracino, F.; Greco, E.; Peruzzi, M.; et al. Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: A prospective observational study. Intensiv. Care Med. 2016, 42, 1528–1534. [Google Scholar] [CrossRef] [Green Version]
- Morelli, A.; Ertmer, C.; Westphal, M.; Rehberg, S.; Kampmeier, T.; Ligges, S.; Orecchioni, A.; D’Egidio, A.; D’Ippoliti, F.; Raffone, C.; et al. Effect of Heart Rate Control with Esmolol on Hemodynamic and Clinical Outcomes in Patients with Septic Shock: A randomized clinical trial. JAMA 2013, 310, 1683–1691. [Google Scholar] [CrossRef]
- Fuchs, C.; Wauschkuhn, S.; Scheer, C.; Vollmer, M.; Meissner, K.; Kuhn, S.-O.; Hahnenkamp, K.; Morelli, A.; Gründling, M.; Rehberg, S. Continuing chronic beta-blockade in the acute phase of severe sepsis and septic shock is associated with decreased mortality rates up to 90 days. Br. J. Anaesth. 2017, 119, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Verner, L.; Hartmann, M.; Seitz, W. Clonidine supplemented analgesia and sedation in prevention of postop-erative delirium. Anasth. Intensivther. Notf. 1990, 25, 274–280. [Google Scholar]
- Gregorakos, L.; Kerezoudi, E.; Dimopoulos, G.; Thomaides, T. Management of blood pressure instability in se-vere tetanus: The use of clonidine. Intensiv. Care Med. 1997, 23, 893–895. [Google Scholar] [CrossRef]
- Moritz, R.D.; Machado, F.O.; Pinto, E.P.; Cardoso, G.S.; Nassar, S.M. Evaluate the clonidine use for sedoanalgesia in intensive care unit patients under prolonged mechanical ventilation. Rev. Bras. Ter. Intensiv. 2008, 20, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Pandharipande, P.P.; Sanders, R.D.; Girard, T.D.; McGrane, S.; Thompson, J.L.; Shintani, A.K.; Herr, D.L.; Maze, M.; Ely, E.W. The MENDS Investigators. Effect of dexme-detomidine versus lorazepam on outcome in patients with sepsis: An a priori-designed analysis of the MENDS ran-domized controlled trial. Crit. Care 2010, 14, R38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, F.; Li, Z.; Nguyen, H.; Young, N.; Shi, P.; Fleming, N.; Liu, H. Perioperative Dexmedetomidine Improves Outcomes of Cardiac Surgery. Circulation 2013, 127, 1576–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aso, S.; Matsui, H.; Fushimi, K.; Yasunaga, H. Dexmedetomidine and Mortality From Sepsis Requiring Mechanical Ventilation: A Japanese Nationwide Retrospective Cohort Study. J. Intensiv. Care Med. 2020, 9, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Eker, C.; Asgeirsson, B.; Grande, P.-O.; Schalen, W.; Nordstrom, C.-H. Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit. Care Med. 1998, 26, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Dizdarevic, K.; Hamdan, A.; Omerhodzic, I.; Kominlija-Smajic, E. Modified Lund concept versus cerebral perfusion pressure-targeted therapy: A randomised controlled study in patients with secondary brain ischaemia. Clin. Neurol. Neurosurg. 2012, 114, 142–148. [Google Scholar] [CrossRef]
- Zamani, M.M.; Keshavarz-Fathi, M.; Fakhri-Bafghi, M.S.; Hirbod-Mobarakeh, A.; Rezaei, N.; Bahrami, A.; Nader, N.D. Survival benefits of dexmedetomidine used for sedating septic patients in intensive care setting: A systematic review. J. Crit. Care 2016, 32, 93–100. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, B.; Wang, S.; Lu, F.; Zhen, J.; Chen, W. Dexmedetomidine prevents acute kidney injury after adult cardiac surgery: A meta-analysis of randomized controlled trials. BMC Anesthesiol. 2018, 18, 7. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.A.; Ho, K.M. Use of dexmedetomidine as a sedative and analgesic agent in critically ill adult patients: A meta-analysis. Intensiv. Care Med. 2010, 36, 926–939. [Google Scholar] [CrossRef]
- Singer, K.E.; Collins, C.; Flahive, J.M.; Wyman, A.S.; Ayturk, M.D.; Santry, H.P. Outpatient beta-blockers and survival from sepsis: Results from a national cohort of Medicare beneficiaries. Am. J. Surg. 2017, 214, 577–582. [Google Scholar] [CrossRef]
- Lee, Y.R.; Seth, M.S.; Soney, D.; Dai, H. Benefits of Beta-Blockade in Sepsis and Septic Shock: A Systematic Review. Clin. Drug Investig. 2019, 39, 429–440. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Q.; Tang, Y.; Zhou, Z.; Feng, M. The influence of esmolol on septic shock and sepsis: A meta-analysis of randomized controlled studies. Am. J. Emerg. Med. 2018, 36, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Kimmoun, A.; Louis, H.; Al Kattani, N.; Delemazure, J.; Dessales, N.; Wei, C.; Marie, P.Y.; Issa, K.; Levy, B. β1-Adrenergic Inhibition Improves Cardiac and Vascular Function in Experimental Septic Shock. Crit. Care Med. 2015, 43, e332–e340. [Google Scholar] [CrossRef] [PubMed]
- Morelli, A.; Donati, A.; Ertmer, C.; Rehberg, S.; Kampmeier, T.; Orecchioni, A.; D’Egidio, A.; Cecchini, V.; Landoni, G.; Pietropaoli, P.; et al. Microvascular Effects of Heart Rate Control with Esmolol in Patients with Septic Shock. Crit. Care Med. 2013, 41, 2162–2168. [Google Scholar] [CrossRef] [PubMed]
- Lorez, H.P.; Kiss, D.; Da Prada, M.; Haeusler, G. Effects of clonidine on the rate of noradrenaline turnover in dis-crete areas of the rat central nervous system. Naunyn-Schmiedeberg’s Arch. Pharm. 1983, 323, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Schreihofer, A.M.; Guyenet, P.G. Role of presympathetic C1 neurons in the sympatholytic and hypotensive ef-fects of clonidine in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1753–R1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohyanagi, M.; Faber, J.E.; Nishigaki, K. Differential activation of alpha 1- and alpha 2-adrenoceptors on microvascular smooth muscle during sympathetic nerve stimulation. Circ. Res. 1991, 68, 232–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintin, L.; Gonon, F.; Buda, M.; Ghignone, M.; Hilaire, G.; Pujol, J.F. Clonidine modulates locus coeruleus metabolic hyperactivity induced by stress in behaving rats. Brain Res. 1986, 362, 366–369. [Google Scholar] [CrossRef]
- Wallin, B.G.; Frisk-Holmberg, M. The antihypertensive mechanism of clonidine in man. Evidence against a generalized reduction of sympathetic activity. Hypertension 1981, 3, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Leroy, S.; Aladin, L.; Laplace, C.; Jalem, S.; Rosenthal, J.-M.; Abrial, A.; Quintin, L. Introduction of a centrally anti-hypertensive, clonidine, reduces noradrenaline requirements in septic shock caused by necrotizing enterocolitis. Am. J. Emerg. Med. 2017, 35, 377.e3–377.e5. [Google Scholar] [CrossRef]
- Takayama, K.; Yuhki, K.-I.; Ono, K.; Fujino, T.; Hara, A.; Yamada, T.; Kuriyama, S.; Karibe, H.; Okada, Y.; Takahata, O.; et al. Thromboxane A2 and prostaglandin F2α mediate inflammatory tachycardia. Nat. Med. 2005, 11, 562–566. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, R.S.; Marshall, P. Influence of plasma catecholamines on the lactate threshold during graded exercise. J. Appl. Physiol. 1989, 67, 1319–1322. [Google Scholar] [CrossRef]
- Garcia-Alvarez, M.; Marik, P.; Bellomo, R. Stress hyperlactataemia: Present understanding and controversy. Lancet Diabetes Endocrinol. 2014, 2, 339–347. [Google Scholar] [CrossRef]
- Di Rienzo, M.; Bertinieri, G.; Mancia, G.; Pedotti, A. A new method for evaluating the baroreflex role by a joint pattern analysis of pulse interval and systolic blood pressure series. Med. Biol. Eng. Comput. 1985, 23, 313–314. [Google Scholar]
- Parlow, J.; Viale, J.P.; Annat, G.; Hughson, R.L.; Quintin, L. Spontaneous cardiac baroreflex in humans: Comparison with drug-induced responses. Hypertension 1995, 25, 1058–1068. [Google Scholar] [CrossRef]
- Wesseling, K.H.; Karemaker, J.M.; Castiglioni, P.; Toader, E.; Cividjian, A.; Settels, J.J.; Quintin, L.; Westerhof, B.E. Validity and variability of xBRS: Instantaneous cardiac baroreflex sensitivity. Physiol. Rep. 2017, 5, e13509. [Google Scholar] [CrossRef]
- Carrara, M.; Ferrario, M.; Pinto, B.B.; Herpain, A. The autonomic nervous system in septic shock and its role as a future therapeutic target: A narrative review. Ann. Intensiv. Care 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Castiglioni, P.; Parati, G.; Di Rienzo, M.; Carabalona, R.; Cividjian, A.; Quintin, L. Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J. Physiol. 2011, 589, 355–369. [Google Scholar] [CrossRef]
- Ramchandra, R.; Wan, L.; Hood, S.G.; Frithiof, R.; Bellomo, R.; May, C.N. Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep. Am. J. Physiol. Integr. Comp. Physiol. 2009, 297, R1247–R1253. [Google Scholar] [CrossRef]
- Lankadeva, Y.R.; Booth, L.C.; Kosaka, J.; Evans, R.G.; Quintin, L.; Bellomo, R.; May, C.N. Clonidine Restores Pressor Responsiveness to Phenylephrine and Angiotensin II in Ovine Sepsis. Crit. Care Med. 2015, 43, e221–e229. [Google Scholar] [CrossRef]
- Mohanty, P.K.; Sowers, J.R.; McNamara, C.; Thames, M.D. Reflex vasoconstrictor responses to cardiopulmonary baroreceptor unloading, head-up tilt and cold pressor testing in elderly mild-to moderate hypertensives: Effect of clonidine. J. Cardiovasc. Pharmacol. 1987, 10, S135–S137. [Google Scholar] [CrossRef]
- Dodd-o, J.M.; Breslow, M.J.; Dorman, T.; Rosenfeld, B.A. Preserved sympathetic response to hypotension despite perioperative alpha-2 agonist administration. Anesth. Analg. 1997, 84, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- De Kock, M.; Laterre, P.F.; Van Obbergh, L.; Carlier, M.; Lerut, J. The effects of intraoperative intravenous clonidine on fluid requirements, hemodynamic variables, and support during liver transplantation: A prospective, randomized study. Anesth. Analg. 1998, 86, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Calzavacca, P.; Booth, L.C.; Lankadeva, Y.R.; Bailey, S.R.; Burrell, L.M.; Bailey, M.; Bellomo, R.; May, C.N. Effects of Clonidine on the Cardiovascular, Renal, and Inflammatory Responses to Experimental Bacteremia. Shock 2019, 51, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Pichot, C.; Mathern, P.; Khettab, F.; Ghignone, M.; Geloen, A.; Quintin, L. Increased pressor response to noradrena-line during septic shock following clonidine? Anaesth. Intensiv. Care 2010, 38, 784–785. [Google Scholar]
- Shehabi, Y.; Howe, B.D.; Bellomo, R.; Arabi, Y.; Bailey, M.; Bass, F.E.; Bin Kadiman, S.; McArthur, C.J.; Murray, L.; Reade, M.C.; et al. Early Sedation with Dexmedetomidine in Critically Ill Patients. N. Engl. J. Med. 2019, 380, 2506–2517. [Google Scholar] [CrossRef]
- Guthrie, G.P.; Kotchen, T.A. Effects of oral clonidine on baroreflex function in patients with essential hypertension. Chest 1983, 83, 327–328. [Google Scholar] [CrossRef]
- Nelson, K.M.; Patel, G.P.; Hammond, D.A. Effects From Continuous Infusions of Dexmedetomidine and Propofol on Hemodynamic Stability in Critically Ill Adult Patients with Septic Shock. J. Intensiv. Care Med. 2020, 35, 875–880. [Google Scholar] [CrossRef]
- Persichini, R.; Silva, S.; Teboul, J.-L.; Jozwiak, M.; Chemla, D.; Richard, C.; Monnet, X. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit. Care Med. 2012, 40, 3146–3153. [Google Scholar] [CrossRef]
- Shimamura, K.; Toba, M.; Kimura, S.; Ohashi, A.; Kitamura, K. Clonidine induced endothelium-dependent tonic contraction in circular muscle of the rat hepatic portal vein. J. Smooth Muscle Res. 2006, 42, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Shehabi, Y.; Neto, A.S.; Howe, B.D.; Bellomo, R.; Arabi, Y.M.; Bailey, M.; Bass, F.E.; Bin Kadiman, S.; McArthur, C.J.; Reade, M.C.; et al. Early sedation with dexmedetomidine in ventilated critically ill patients and heterogeneity of treatment effect in the SPICE III randomised controlled trial. Intensiv. Care Med. 2021, 47, 455–466. [Google Scholar] [CrossRef]
- Dargent, A.; Quintin, L.; Quenot, J.P. Septic shock, noradrenaline requirements, and alpha-2 agonists: Fishing in the right pond? Crit. Care 2020, 25, 1–2. [Google Scholar]
- Stähle, H. A historical perspective: Development of clonidine. Best Pr. Res. Clin. Anaesthesiol. 2000, 14, 237–246. [Google Scholar] [CrossRef]
- Onesti, G.; Bock, K.D.; Heimsoth, V.; Kim, K.E.; Merguet, P. Clonidine: A new antihypertensive agent. Am. J. Cardiol. 1971, 28, 74–83. [Google Scholar] [CrossRef]
- Dollery, C.T.; Davies, D.S.; Draffan, G.H.; Dargie, H.J.; Dean, C.R.; Reid, J.L.; Clare, R.A.; Murray, S. Clinical pharmacology and pharmacokinetics of clonidine. Clin. Pharmacol. Ther. 1976, 19, 11–17. [Google Scholar] [CrossRef]
- Colin, P.J.; Hannivoort, L.N.; Eleveld, D.J.; Reyntjens, K.M.E.M.; Absalom, A.; Vereecke, H.; Struys, M.M.R.F. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br. J. Anaesth. 2017, 119, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Korner, P.I.; Oliver, J.R.; Sleight, P.; Chalmers, J.P.; Robinson, J.S. Effect of clonidine on the baroreceptor-heart rate reflex and on sin-gle aortic baroreceptor fibre discharge. Eur. J. Pharmacol. 1974, 28, 189–198. [Google Scholar] [CrossRef]
- Saunier, C.F.; Akaoka, H.; de La Chapelle, B.; Charlety, P.J.; Chergui, K.; Chouvet, G.; Buda, M.; Quintin, L. Activation of brain noradrenergic neu-rons during recovery from halothane anesthesia: Persistence of phasic activation after clonidine. Anesthesiology 1993, 79, 1072–1082. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Cohen, J.D. Adaptative gain and the role of the locus coeruleus-norepinephrine system in optimal perfor-mance. J. Comp. Neurol. 2005, 493, 99–110. [Google Scholar] [CrossRef]
- Arnsten, A.F.; Jin, L.E. Guanfacine for the treatment of cognitive disorders: A century of discoveries at Yale. Yale J. Boil. Med. 2012, 85, 45–58. [Google Scholar]
- Ghignone, M.; Quintin, L.; Duke, P.C.; Kehler, C.H.; Calvillo, O. Effects of Clonidine on Narcotic Requirements and Hemodynamic Response during Induction of Fentanyl Anesthesia and Endotracheal Intubation. Anesthesiology 1986, 64, 36–42. [Google Scholar] [CrossRef]
- Ghignone, M.; Calvillo, O.; Quintin, L. Anesthesia and hypertension: The effect of clonidine on perioperative hemodynamics and isoflurane requirements. Anesthesiology 1987, 67, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Voituron, N.; Hilaire, G.; Quintin, L. Dexmedetomidine and clonidine induce long-lasting activation of the respiratory rhythm generator of neonatal mice: Possible implication for critical care. Respir. Physiol. Neurobiol. 2012, 180, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Udy, A.A.; Venkatesh, B. Comparing apples and oranges: The vasoactive effects of hydrocortisone and studies investi-gating high dose vitamin C combination therapy in septic shock. Crit. Care Resusc. 2019, 21, 152–155. [Google Scholar] [PubMed]
- Dünser, M.W.; Takala, J.; Brunauer, A.; Bakker, J. Re-thinking resuscitation: Leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit. Care 2013, 17, 326–327. [Google Scholar] [CrossRef] [Green Version]
- Hamzaoui, O.; Teboul, J.-L. Importance of diastolic arterial pressure in septic shock: PRO. J. Crit. Care 2019, 51, 238–240. [Google Scholar] [CrossRef]
- Hamzaoui, O.; Teboul, J.-L. Importance of diastolic arterial pressure in septic shock rebuttal to comments of Dr. Magder. J. Crit. Care 2019, 51, 244. [Google Scholar] [CrossRef]
- Gazmuri, R.J.; De Gomez, C.A. From a pressure-guided to a perfusion-centered resuscitation strategy in septic shock: Critical literature review and illustrative case. J. Crit. Care 2020, 56, 294–304. [Google Scholar] [CrossRef]
- Magder, S. Importance of diastolic pressure in septic shock: Con-Response. J. Crit. Care 2019, 51, 245–246. [Google Scholar] [CrossRef]
- Asfar, P.; Meziani, F.; Hamel, J.-F.; Grelon, F.; Mégarbane, B.; Anguel, N.; Mira, J.-P.; Dequin, P.-F.; Gergaud, S.; Weiss, N.; et al. High versus Low Blood-Pressure Target in Patients with Septic Shock. N. Engl. J. Med. 2014, 370, 1583–1593. [Google Scholar] [CrossRef] [Green Version]
- Cannon, W.B. Traumatic Shock; Appleton: New York, NY, USA, 1923. [Google Scholar]
- Meakins, J.C. Present Views on the Etiology and Treatment of Shock. (The 1942 Lecture of the Royal College of Physicians of Canada). Can. Med. Assoc. J. 1943, 49, 21–29. [Google Scholar]
- Webb, W.R. Vasodilators in Shock—When? South. Med. J. 1966, 59, 257–261. [Google Scholar] [CrossRef]
- Weil, M.H. Fundamental differences in circulatory effects of vasoactive drugs in treatment of shock. Calif. Med. 1965, 103, 312. [Google Scholar] [CrossRef]
- Ryan, K.L.; Walter, B. Cannon’s World War I experience: Treatment of traumatic shock then and now. Adv. Physiol. Educ. 2018, 42, 267–276. [Google Scholar] [CrossRef]
- Dhainaut, J.F.; Huyghebaert, M.F.; Monsallier, J.F.; Lefevre, G.; Dall’Ava-Santucci, J.; Brunet, F.; Villemant, D.; Carli, A.; Raichvarg, D. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 1987, 75, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Hamzaoui, O.; Jozwiak, M.; Geffriaud, T.; Sztrymf, B.; Prat, D.; Jacobs, F.; Monnet, X.; Trouiller, P.; Richard, C.; Teboul, J.-L. Norepinephrine exerts an inotropic effect during the early phase of human septic shock. Br. J. Anaesth. 2018, 120, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Weil, M.H.; Sudrann, R.B.; Shubin, H. Treatment of endotoxic shock—The Dilemma of Vasopressor and Vasodilator Therapy. Calif. Med. 1962, 96, 86–88. [Google Scholar]
- De Backer, D.; Ricottilli, F.; Ospina-Tascón, G.A. Septic shock: A microcirculation disease. Curr. Opin. Anaesthesiol. 2021, 34, 85–91. [Google Scholar] [CrossRef]
- Thomas, G.D.; Segal, S. Neural control of muscle blood flow during exercise. J. Appl. Physiol. 2004, 97, 731–738. [Google Scholar] [CrossRef]
- Ellis, C.G.; Bateman, R.M.; Sharpe, M.D.; Sibbald, W.J.; Gill, R. Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis. Am. J. Physiol. Circ. Physiol. 2002, 282, H156–H164. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Makavos, G.; Nikitas, N.; Paraskevaidis, I.; Diamantakis, A.; Kopterides, P.; Theodorakopoulou, M.; Parissis, J.; Lekakis, J.; Armaganidis, A.; et al. Coronary flow reserve is associated with tissue ischemia and is an additive predictor of intensive care unit mortality to traditional risk scores in septic shock. Int. J. Cardiol. 2014, 172, 103–108. [Google Scholar] [CrossRef]
- Elbers, P.W.G.; Ince, C. Bench-to-bedside review: Mechanisms of critical illness—Classifying microcirculatory flow abnormalities in distributive shock. Crit. Care 2006, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Zuurbier, C.J.; Van Iterson, M.; Ince, C. Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc. Res. 1999, 44, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Dobrucki, L.W.; Cabrera, C.L.; Bohr, D.F.; Malinski, T. Central hypotensive action of clonidine requires nitric oxide. Circulation 2001, 104, 1884–1886. [Google Scholar] [CrossRef] [Green Version]
- McAllen, R.M.; McKinley, M.J. Efferent thermoregulatory pathways regulating cutaneous blood flow and sweating. Handb. Clin. Neurol. 2018, 156, 305–316. [Google Scholar] [CrossRef]
- De Backer, D.; Creteur, J.; Preiser, J.C.; Dubois, M.J.; Vincent, J.L. Microvascular blood flow is altered in patients with sepsis. Am. J. Respir. Crit. Care Med. 2002, 166, 98–104. [Google Scholar] [CrossRef]
- Boerma, E.C.; Mathura, K.R.; Van Der Voort, P.H.J.; Spronk, P.E.; Ince, C. Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: A prospective validation study. Crit. Care 2005, 9, R601–R606. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, A.; Koköfer, A.; Bataar, O.; Gradwohl-Matis, I.; Dankl, D.; Bakker, J.; Dünser, M.W. Changes in peripheral perfusion relate to visceral organ perfusion in early septic shock: A pilot study. J. Crit. Care 2016, 35, 105–109. [Google Scholar] [CrossRef]
- Segal, S.S. Regulation of Blood Flow in the Microcirculation. Microcirculation 2005, 12, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.L.; Balarini, M.M.; Bouskela, E. Dexmedetomidine Attenuates the Microcirculatory Derangements Evoked by Experimental Sepsis. Anesthesiology 2015, 122, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Pozo, M.O.; Casabella, A.C.; Pálizas, F.; Murias, G.; Moseinco, M.C.; Edul, V.S.K.; Estenssoro, E.; Ince, C. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: A prospective study. Crit. Care 2009, 13, R92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Backer, D.; Creteur, J.; Dubois, M.-J.; Sakr, Y.; Koch, M.; Verdant, C.; Vincent, J.-L. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit. Care Med. 2006, 34, 403–408. [Google Scholar] [CrossRef]
- Nichol, A.D.; Egi, M.; Pettila, V.; Bellomo, R.; French, C.; Hart, G.; Davies, A.; Stachowski, E.; Reade, M.C.; Bailey, M.; et al. Relative hyperlactatemia and hospital mortality in critically ill patients: A retrospective multi-centre study. Crit. Care 2010, 14, R25. [Google Scholar] [CrossRef] [Green Version]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 2013, 13, 260–268. [Google Scholar] [CrossRef] [Green Version]
- De Backer, D.; Donadello, K.; Sakr, Y.; Ospina-Tascon, G.; Salgado, D.; Scolletta, S.; Vincent, J.-L. Microcirculatory Alterations in Patients with Severe Sepsis: Impact of time of assessment and relationship with outcome. Crit. Care Med. 2013, 41, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, K.; Nakashima, T.; Shima, N.; Kato, S.; Ueda, K.; Kawazoe, Y.; Ohta, Y.; Morimoto, T.; Yamamura, H. Effect of Dexmedetomidine on Lactate Clearance in Patients with Septic Shock: A Subanalysis of a Multicenter Randomized Controlled Trial. Shock 2017, 50, 162–166. [Google Scholar] [CrossRef]
- Kulka, P.J.; Tryba, M.; Reimer, T.; Weisser, H. Clonidine prevents tissue-malperfusion during extracorporal circulation. Anesth. Analg. 1996, 82, S254. [Google Scholar]
- Schmidt, K.; Hernekamp, J.F.; Philipsenburg, C.; Zivkovic, A.; Brenner, T.; Hofer, S. Time-dependent effect of clonidine on microvascular permeability during endotoxemia. Microvasc. Res. 2015, 101, 111–117. [Google Scholar] [CrossRef]
- Martelli, D.; Yao, S.; McKinley, M.J.; McAllen, R.; Jiang, Z.; Yang, J.; Purpura, L.A.; Liu, Y.; Ripps, H.; Shen, W. Reflex control of inflammation by sympathetic nerves, not the vagus. J. Physiol. 2014, 592, 1677–1686. [Google Scholar] [CrossRef]
- Lankadeva, Y.R.; May, C.N.; McKinley, M.J.; Neeland, M.; Ma, S.; Hocking, D.M.; Robins-Browne, R.; Bedoui, S.; Farmer, D.G.S.; Bailey, S.R.; et al. Sympathetic nerves control bacterial clearance. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Couper, K.N.; Blount, D.G.; Riley, E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008, 180, 5771–5777. [Google Scholar] [CrossRef]
- Taniguchi, T.; Kidani, Y.; Kanakura, H.; Takemoto, Y.; Yamamoto, K. Effects of dexmedetomidine on mortality rate and inflama-tory response to endotoxin-induced shock in rats. Crit. Care Med. 2004, 32, 1322–1326. [Google Scholar] [CrossRef]
- Hofer, S.; Steppan, J.; Wagner, T.; Funke, B.; Lichtenstern, C.; Martin, E.; Graf, B.M.; Bierhaus, A.; Weigand, M.A. Central sympatholytics prolong survival in experi-mental sepsis. Crit. Care 2009, 13, R11. [Google Scholar] [CrossRef] [Green Version]
- Von Dossow, V.; Baehr, N.; Moshirzadeh, M.; Von Heymann, C.; Braun, J.P.; Hein, O.V.; Sander, M.; Wernecke, K.-D.; Konertz, W.; Spies, C. Clonidine Attenuated Early Proinflammatory Response in T-Cell Subsets After Cardiac Surgery. Anesth. Analg. 2006, 103, 809–814. [Google Scholar] [CrossRef]
- Xu, B.; Makris, A.; Thornton, C.; Ogle, R.; Horvath, J.S.; Hennessy, A. Antihypertensive drugs clonidine, diazoxide, hydralazine and furosemide regulate the production of cytokines by placentas and peripheral blood mononuclear cells in normal pregnancy. J. Hypertens. 2006, 24, 915–922. [Google Scholar] [CrossRef]
- Ueki, M.; Kawasaki, T.; Habe, K.; Hamada, K.; Sata, T.; Kawasaki, C. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia 2014, 69, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, Y.; Tian, S.; Wang, H.; Wu, H.; Zhang, A.; Gao, C. Anti-inflammatory Effects of Perioperative Dexmedetomidine Administered as an Adjunct to General Anesthesia: A Meta-analysis. Sci. Rep. 2015, 5, 12342. [Google Scholar] [CrossRef] [Green Version]
- Ohta, Y.; Miyamoto, K.; Kawazoe, Y.; Yamamura, H.; Morimoto, T. Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation: A sub-analysis of a multicenter randomized clinical trial. Crit. Care 2020, 24, 1–8. [Google Scholar] [CrossRef]
- Ospina-Tascón, G.A.; Neves, A.P.; Occhipinti, G.; Donadello, K.; Büchele, G.L.; Simion, D.; Chierego, M.-L.; Silva, T.O.; Fonseca, A.; Vincent, J.-L.; et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensiv. Care Med. 2010, 36, 949–955. [Google Scholar] [CrossRef]
- Toader, E.; Cividjian, A.; Quintin, L. Recruitment of cardiac parasympathetic activity: Effects of clonidine on cardiac vagal mo-toneurones, pressure lability and cardiac baroreflex slope in rats. Br. J. Anaesth. 2009, 102, 322–330. [Google Scholar] [CrossRef] [Green Version]
- Kohoutova, M.; Horak, J.; Jarkovska, D.; Martinkova, V.; Tegl, V.; Nalos, L.; Vistejnova, L.; Benes, J.; Sviglerova, J.; Kuncova, J.; et al. Vagus Nerve Stimulation Attenuates Multiple Organ Dysfunction in Resuscitated Porcine Progressive Sepsis. Crit. Care Med. 2019, 47, e461–e469. [Google Scholar] [CrossRef] [PubMed]
- Toader, E.; Cividjian, A.; Rentero, N.; McAllen, R.; Quintin, L. Cardioinhibitory actions of clonidine assessed by cardiac vagal motoneuron recordings. J. Hypertens. 2008, 26, 1169–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cividjian, A.; Toader, E.; Wesseling, K.H.; Karemaker, J.M.; McAllen, R.; Quintin, L. Effect of clonidine on cardiac baroreflex delay in humans and rats. Am. J. Physiol. Integr. Comp. Physiol. 2011, 300, R949–R957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, G.; Bruhn, A.; Ince, C. Microcirculation in sepsis: New perspectives. Curr. Vasc. Pharmacol. 2013, 11, 161–169. [Google Scholar] [PubMed]
- Fujii, T.; Kurata, H.; Takaoka, M.; Muraoka, T.; Fujisawa, Y.; Shokoji, T.; Nishiyama, A.; Abe, Y.; Matsumura, Y. The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure. Eur. J. Pharmacol. 2003, 481, 241–248. [Google Scholar] [CrossRef]
- Persson, P.B.; Ehmke, H.; Nafz, B.; Kirchheim, H.R. Sympathetic modulation of renal autoregulation by carotid occlusion in conscious dogs. Am. J. Physiol. Physiol. 1990, 258, F364–F370. [Google Scholar] [CrossRef]
- Kim, J.; Padanilam, B.J. Renal denervation prevents long-term sequelae of ischemic renal injury. Kidney Int. 2015, 87, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, H.; Sugiura, T.; Hayashi, K.; Ohkita, M.; Takaoka, M.; Yukimura, T.; Matsumura, Y. Moxonidine prevents ischemia/reperfusion-induced renal injury in rats. Eur. J. Pharmacol. 2009, 603, 73–78. [Google Scholar] [CrossRef]
- Calzavacca, P.; Bailey, M.; Velkoska, E.; Burrell, L.M.; Ramchandra, R.; Bellomo, R.; May, C.N. Effects of Renal Denervation on Regional Hemodynamics and Kidney Function in Experimental Hyperdynamic Sepsis. Crit. Care Med. 2014, 42, e401–e409. [Google Scholar] [CrossRef]
- Di Giantomasso, D.; May, C.N.; Bellomo, R. Vital Organ Blood Flow During Hyperdynamic Sepsis. Chest 2003, 124, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Chvojka, J.; Sykora, R.; Krouzecky, A.; Radej, J.; Varnerova, V.; Karvunidis, T.; Hes, O.; Novak, I.; Radermacher, P.; Matejovic, M. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit. Care 2008, 12, R164. [Google Scholar] [CrossRef] [Green Version]
- Rector, F.; Coyal, S.; Rosenberg, I.K.; Lucas, C.E. A Mechanism for Vasodilatation in the Kidney. Ann. Surg. 1973, 178, 222–226. [Google Scholar] [CrossRef]
- Lucas, C.E.; Rector, F.E.; Werner, M.; Rosenberg, I.K. Altered Renal Homeostasis with Acute Sepsis. Arch. Surg. 1973, 106, 444–449. [Google Scholar] [CrossRef]
- Brenner, M.; Schaer, G.L.; Mallory, D.L.; Suffredini, A.F.; Parrillo, J.E. Detection of Renal Blood Flow Abnormalities in Septic and Critically III Patients Using a Newly Designed Indwelling Thermodilution Renal Vein Catheter. Chest 1990, 98, 170–179. [Google Scholar] [CrossRef]
- Langenberg, C.; Wan, L.; Egi, M.; May, C.; Bellomo, R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006, 69, 1996–2002. [Google Scholar] [CrossRef] [Green Version]
- May, C.N.; Calzavacca, P.; Ishikawa, K.; Langenberg, C.; Wan, L.; Ramchandra, R.; Bellomo, R. Novel targets for sepsis-induced kidney injury: The glomerular arterioles and the sympathetic nervous system. Exp. Physiol. 2012, 97, 1168–1177. [Google Scholar] [CrossRef]
- Okazaki, N.; Iguchi, N.; Evans, R.G.; Hood, S.G.; Bellomo, R.; May, C.N.; Lankadeva, Y.R. Beneficial Effects of Vasopressin Compared with Norepinephrine on Renal Perfusion, Oxygenation, and Function in Experimental Septic Acute Kidney Injury. Crit. Care Med. 2020, 48, e951–e958. [Google Scholar] [CrossRef]
- Chrysanthakopoulos, S.G.; Lavender, A.R. Water Diuresis from Clonidine (Catapres). Exp. Biol. Med. 1975, 150, 85–91. [Google Scholar] [CrossRef]
- Olsen, U.B. Clonidine-induced increase of renal prostaglandin activity and water diuresis in conscious dogs. Eur. J. Pharmacol. 1976, 36, 95–101. [Google Scholar] [CrossRef]
- Gellai, M.; Edwards, R.M. Mechanism of alpha 2-adrenoceptor agonist-induced diuresis. Am. J. Physiol. Physiol. 1988, 255, F317–F323. [Google Scholar] [CrossRef]
- Roman, R.J.; Cowley, A.W.; Lechene, C. Water diuretic and natriuretic effect of clonidine in the rat. J. Pharmacol. Exp. Ther. 1979, 211, 385–393. [Google Scholar]
- Hokfelt, B.; Hedeland, H.; Dymling, J.F. Studies on catecholamines, renin and aldosterone following catapresan R (2-(2,6-dichlor-phenylamine)-2-imidazoline hdrochloride) in hypertensive patients. Eur. J. Pharmacol. 1970, 10, 389–397. [Google Scholar] [CrossRef]
- Hsing, C.-H.; Lin, C.-F.; So, E.; Sun, D.-P.; Chen, T.-C.; Li, C.-F.; Yeh, C.-H. α2-Adrenoceptor agonist dexmedetomidine protects septic acute kidney injury through increasing BMP-7 and inhibiting HDAC2 and HDAC5. Am. J. Physiol. Physiol. 2012, 303, F1443–F1453. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Liu, H.-Z.; Wang, H.-B.; Zhong, J.-Y.; Yang, C.-X.; Zhang, B. Dexmedetomidine protects against cisplatin-induced acute kidney injury in mice through regulating apoptosis and inflammation. Inflamm. Res. 2017, 66, 399–411. [Google Scholar] [CrossRef]
- Chen, Y.; Luan, L.; Wang, C.; Song, M.; Zhao, Y.; Yao, Y.; Yang, H.; Ma, B.; Fan, H. Dexmedetomidine protects against lipopolysaccharide-induced early acute kidney injury by inhibiting the iNOS/NO signaling pathway in rats. Nitric Oxide 2019, 85, 1–9. [Google Scholar] [CrossRef]
- Esler, M.; Dudley, F.; Jennings, G.; Debinski, H.; Lambert, G.; Jones, P.; Crotty, B.; Colman, J.; Willett, I. Increased Sympathetic Nervous Activity and the Effects of Its Inhibition with Clonidine in Alcoholic Cirrhosis. Ann. Intern. Med. 1992, 116, 446–456. [Google Scholar] [CrossRef]
- Singhal, S.; Baikati, K.K.; Jabbour, I.I.; Anand, S. Management of Refractory Ascites. Am. J. Ther. 2012, 19, 121–132. [Google Scholar] [CrossRef]
- Lenaerts, A.; Codden, T.; Ligny, G.; Meunier, J.-C.; Henry, J.-P. Effects of clonidine on diuretic response in ascitic patients with cirrhosis and activation of sympathetic nervous system. Hepatology 2006, 44, 844–849. [Google Scholar] [CrossRef]
- Herr, D.L.; Sum-Ping, S.; England, M. ICU sedation after coronary artery bypass graft surgery: Dexmedetomidine-based versus propofol-based sedation regimens. J. Cardiothorac. Vasc. Anesth. 2003, 17, 576–584. [Google Scholar] [CrossRef]
- Sakr, Y.; Birri, P.N.P.R.; Kotfis, K.; Nanchal, R.R.; Shah, B.B.; Kluge, S.S.; Schroeder, M.M.; Marshall, J.C.; Vincent, J.-L. Higher Fluid Balance Increases the Risk of Death From Sepsis. Crit. Care Med. 2017, 45, 386–394. [Google Scholar] [CrossRef]
- Liepert, D.J.; Townsend, G.E. Improved hemodynamic and renal function with clonidine in coronary artery bypass grafting. Anesth. Analg. 1990, 70, S240. [Google Scholar] [CrossRef]
- Kulka, P.J.; Tryba, M.; Zenz, M. Preoperative alpha-2 adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: Results of a randomized, controlled trial. Crit. Care Med. 1996, 24, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Mertes, N.; Goeters, C.; Kuhmann, M.; Zander, J.F. Postoperative alpha 2-adrenergic stimulation attenuates protein catabolism. Anesth. Analg. 1996, 82, 258–263. [Google Scholar] [PubMed]
- Liu, J.; Shi, K.; Hong, J.; Gong, F.; Mo, S.; Chen, M.; Zheng, Y.; Jiang, L.; Xu, L.; Tu, Y.; et al. Dexmedetomidine protects against acute kidney injury in patients with septic shock. Ann. Palliat. Med. 2020, 9, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Li, Z.; Young, J.N.; Yeranossian, A.; Liu, H. Post-Bypass Dexmedetomidine Use and Postoperative Acute Kidney Injury in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. PLoS ONE 2013, 8, e77446. [Google Scholar] [CrossRef] [Green Version]
- Zhai, M.; Kang, F.; Han, M.; Huang, X.; Li, J. The effect of dexmedetomidine on renal function in patients undergoing cardiac valve replacement under cardiopulmonary bypass: A double-blind randomized controlled trial. J. Clin. Anesth. 2017, 40, 33–38. [Google Scholar] [CrossRef]
- Maldonado, J.R.; Wysong, A.; van der Starre, P.J.; Block, T.; Miller, C.; Reitz, B.A. Dexmedetomidine and the reduction of postopera-tive delirium after cardiac surgery. Psychosomatics 2009, 50, 206–217. [Google Scholar] [CrossRef] [Green Version]
- Ruokonen, E.; Parviainen, I.; Jakob, S.M.; Nunes, S.; Kaukonen, M.; Shepherd, S.T.; Sarapohja, T.; Bratty, J.R.; Takala, J. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensiv. Care Med. 2009, 35, 282–290. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, K.; Ni, H.; Zhang, X.; Fan, H. Sedation of mechanically ventilated adults in intensive care unit: A network meta-analysis. Sci. Rep. 2017, 7, 44979. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petitjeans, F.; Geloen, A.; Pichot, C.; Leroy, S.; Ghignone, M.; Quintin, L. Is the Sympathetic System Detrimental in the Setting of Septic Shock, with Antihypertensive Agents as a Counterintuitive Approach? A Clinical Proposition. J. Clin. Med. 2021, 10, 4569. https://doi.org/10.3390/jcm10194569
Petitjeans F, Geloen A, Pichot C, Leroy S, Ghignone M, Quintin L. Is the Sympathetic System Detrimental in the Setting of Septic Shock, with Antihypertensive Agents as a Counterintuitive Approach? A Clinical Proposition. Journal of Clinical Medicine. 2021; 10(19):4569. https://doi.org/10.3390/jcm10194569
Chicago/Turabian StylePetitjeans, Fabrice, Alain Geloen, Cyrille Pichot, Sandrine Leroy, Marco Ghignone, and Luc Quintin. 2021. "Is the Sympathetic System Detrimental in the Setting of Septic Shock, with Antihypertensive Agents as a Counterintuitive Approach? A Clinical Proposition" Journal of Clinical Medicine 10, no. 19: 4569. https://doi.org/10.3390/jcm10194569
APA StylePetitjeans, F., Geloen, A., Pichot, C., Leroy, S., Ghignone, M., & Quintin, L. (2021). Is the Sympathetic System Detrimental in the Setting of Septic Shock, with Antihypertensive Agents as a Counterintuitive Approach? A Clinical Proposition. Journal of Clinical Medicine, 10(19), 4569. https://doi.org/10.3390/jcm10194569