Evaluation of Radiographic Contrast-Induced Nephropathy by Functional Diffusion Weighted Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Collective
2.2. MRI Protocol
2.3. Post-Processing
2.4. Clinical Parameters
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. MRI Parameters
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1–138. [CrossRef] [Green Version]
- Tsai, T.T.; Patel, U.D.; Chang, T.I.; Kennedy, K.F.; Masoudi, F.A.; Matheny, M.E.; Kosiborod, M.; Amin, A.P.; Weintraub, W.S.; Curtis, J.P.; et al. Validated Contemporary Risk Model of Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Interventions: Insights from the National Cardiovascular Data Registry Cath-PCI Registry. J. Am. Heart Assoc. 2014, 3, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehran, R.; Nikolsky, E. Contrast-Induced Nephropathy: Definition, Epidemiology, and Patients at Risk. Kidney Int. 2006, 69, S11–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KDIGO CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Managment of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A Simple Risk Score for Prediction of Contrast-Induced Nephropathy after Percutaneous Coronary Intervention: Development and Initial Validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, B.A.; Harjai, K.J.; Dukkipati, S.; Boura, J.A.; Yerkey, M.W.; Glazier, S.; Grines, C.L.; O’Neill, W.W. Impact of Nephropathy after Percutaneous Coronary Intervention and a Method for Risk Stratification. Am. J. Cardiol. 2004, 93, 1515–1519. [Google Scholar] [CrossRef]
- Gurm, H.S.; Seth, M.; Kooiman, J.; Share, D. A Novel Tool for Reliable and Accurate Prediction of Renal Complications in Patients Undergoing Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2013, 61, 2242–2248. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.R.; DeVries, J.T.; Piper, W.D.; Robb, J.F.; Hearne, M.J.; Ver Lee, P.M.; Kellet, M.A.; Watkins, M.W.; Ryan, T.J.; Silver, M.T.; et al. Serious Renal Dysfunction after Percutaneous Coronary Interventions Can Be Predicted. Am. Heart J. 2008, 155, 260–266. [Google Scholar] [CrossRef]
- Laskey, W.K.; Jenkins, C.; Selzer, F.; Marroquin, O.C.; Wilensky, R.L.; Glaser, R.; Cohen, H.A.; Holmes, D.R. Volume-to-Creatinine Clearance Ratio. A Pharmacokinetically Based Risk Factor for Prediction of Early Creatinine Increase After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2007, 50, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Chertow, G.M.; Normand, S.L.T.; McNeil, B.J. “Renalism”: Inappropriately Low Rates of Coronary Angiography in Elderly Individuals with Renal Insufficiency. J. Am. Soc. Nephrol. 2004, 15, 2462–2468. [Google Scholar] [CrossRef] [Green Version]
- Fähling, M.; Seeliger, E.; Patzak, A.; Persson, P.B. Understanding and Preventing Contrast-Induced Acute Kidney Injury. Nat. Rev. Nephrol. 2017 133 2017, 13, 169–180. [Google Scholar] [CrossRef]
- McCullough, P.A.; Capasso, P. Patient Discomfort Associated with the Use of Intra-Arterial Iodinated Contrast Media: A Meta-Analysis of Comparative Randomized Controlled Trials. BMC Med. Imaging 2011, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.Z.; Viegas, V.U.; Perlewitz, A.; Lai, E.Y.; Persson, P.B.; Patzak, A.; Sendeski, M.M. Iodinated Contrast Media Differentially Affect Afferent and Efferent Arteriolar Tone and Reactivity in Mice: A Possible Explanation for Reduced Glomerular Filtration Rate. Radiology 2012, 265, 762–771. [Google Scholar] [CrossRef] [PubMed]
- ESUR Guidelines. Available online: https://www.esur.org/esur-guidelines/ (accessed on 3 August 2021).
- Nijssen, E.C.; Rennenberg, R.J.; Nelemans, P.J.; Essers, B.A.; Janssen, M.M.; Vermeeren, M.A.; van Ommen, V.; Wildberger, J.E. Prophylactic Hydration to Protect Renal Function from Intravascular Iodinated Contrast Material in Patients at High Risk of Contrast-Induced Nephropathy (AMACING): A Prospective, Randomised, Phase 3, Controlled, Open-Label, Non-Inferiority Trial. Lancet 2017, 389, 1312–1322. [Google Scholar] [CrossRef]
- Rodeheaver, D.P.; Schnellmann, R.G. Extracellular Acidosis Ameliorates Metabolic-Inhibitor-Induced and Potentiates Oxidant-Induced Cell Death in Renal Proximal Tubules. J. Pharmacol. Exp. Ther. 1993, 265, 1355–1360. [Google Scholar] [PubMed]
- Wiora, J.; Westenfeld, R. Kontrastmittelinduziertes Nierenversagen: Sinnvolle Schutzmaßnahmen Vor Kontrastmittelgabe. Internist 2019, 60, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Vanmassenhove, J.; Kielstein, J.; Jörres, A.; Biesen, W. Van. Management of Patients at Risk of Acute Kidney Injury. Lancet 2017, 389, 2139–2151. [Google Scholar] [CrossRef]
- Bahrainwala, J.Z.; Leonberg-Yoo, A.K.; Rudnick, M.R. Use of Radiocontrast Agents in CKD and ESRD. Semin. Dial. 2017, 30, 290–304. [Google Scholar] [CrossRef]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Ruff, S.M.; Zahedi, K.; Shao, M.; Bean, J.; et al. Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Biomarker for Acute Renal Injury after Cardiac Surgery. Lancet 2005, 365, 1231–1238. [Google Scholar] [CrossRef]
- Zewinger, S.; Rauen, T.; Rudnicki, M.; Federico, G.; Wagner, M.; Triem, S.; Schunk, S.J.; Petrakis, I.; Schmit, D.; Wagenpfeil, S.; et al. Dickkopf-3 (DKK3) in Urine Identifies Patients with Short-Term Risk of EGFR Loss. J. Am. Soc. Nephrol. 2018, 29, 2722–2733. [Google Scholar] [CrossRef] [Green Version]
- Schunk, S.J.; Zarbock, A.; Meersch, M.; Küllmar, M.; Kellum, J.A.; Schmit, D.; Wagner, M.; Triem, S.; Wagenpfeil, S.; Gröne, H.J.; et al. Association between Urinary Dickkopf-3, Acute Kidney Injury, and Subsequent Loss of Kidney Function in Patients Undergoing Cardiac Surgery: An Observational Cohort Study. Lancet 2019, 394, 488–496. [Google Scholar] [CrossRef]
- Yin, C.; Wang, N. Kidney Injury Molecule-1 in Kidney Disease. Ren. Fail. 2016, 38, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.; Al-Malki, B.; George, T.P.; Nawaz, S.S.; Rubeaan, K.A. Urinary N-Acetyl-Beta-d-Glucosaminidase (NAG) with Neutrophil Gelatinase-Associated Lipocalin (NGAL) Improves the Diagnostic Value for Proximal Tubule Damage in Diabetic Kidney Disease. 3 Biotech 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mendichovszky, I.; Pullens, P.; Dekkers, I.; Nery, F.; Bane, O.; Pohlmann, A.; de Boer, A.; Ljimani, A.; Odudu, A.; Buchanan, C.; et al. Technical Recommendations for Clinical Translation of Renal MRI: A Consensus Project of the Cooperation in Science and Technology Action PARENCHIMA. Magn. Reson. Mater. Physics, Biol. Med. 2020, 33, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hueper, K.; Rong, S.; Gutberlet, M.; Hartung, D.; Mengel, M.; Lu, X.; Haller, H.; Wacker, F.; Meier, M.; Gueler, F. T2 Relaxation Time and Apparent Diffusion Coefficient for Noninvasive Assessment of Renal Pathology after Acute Kidney Injury in Mice: Comparison with Histopathology. Invest. Radiol. 2013, 48, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Caroli, A.; Schneider, M.; Friedli, I.; Ljimani, A.; De Seigneux, S.; Boor, P.; Gullapudi, L.; Kazmi, I.; Mendichovszky, I.A.; Notohamiprodjo, M.; et al. Diffusion-Weighted Magnetic Resonance Imaging to Assess Diffuse Renal Pathology: A Systematic Review and Statement Paper. Nephrol. Dial. Transplant 2018, 33, ii29–ii40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, R. The Role of Osmolality in the Incidence of Contrast-Induced Nephropathy: A Systematic Review of Angiographic Contrast Media in High Risk Patients. Kidney Int. 2005, 68, 2256–2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehran, R.; Dangas, G.D.; Weisbord, S.D. Contrast-Associated Acute Kidney Injury. N. Engl. J. Med. 2019, 380, 2146–2155. [Google Scholar] [CrossRef]
- Kontrastmittel. Available online: https://www.gehealthcare.de/Products/Contrast%20Media/Contrast%20media%20DE (accessed on 5 August 2021).
- Bane, O.; Wagner, M.; Zhang, J.L.; Dyvorne, H.A.; Orton, M.; Rusinek, H.; Taouli, B. Assessment of Renal Function Using Intravoxel Incoherent Motion Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced MRI. J. Magn. Reson. Imaging 2016, 44, 317–326. [Google Scholar] [CrossRef]
- Odudu, A.; Nery, F.; Harteveld, A.A.; Evans, R.G.; Pendse, D.; Buchanan, C.E.; Francis, S.T.; Fernández-Seara, M.A. Arterial Spin Labelling MRI to Measure Renal Perfusion: A Systematic Review and Statement Paper. Nephrol. Dial. Transplant 2018, 33, ii15–ii21. [Google Scholar] [CrossRef]
- Nery, F.; Buchanan, C.E.; Harteveld, A.A.; Odudu, A.; Bane, O.; Cox, E.F.; Derlin, K.; Gach, H.M.; Golay, X.; Gutberlet, M.; et al. Consensus-Based Technical Recommendations for Clinical Translation of Renal ASL MRI. Magn. Reson. Mater. Physics, Biol. Med. 2020, 33, 141–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruijm, M.; Milani, B.; Burnier, M. Blood Oxygenation Level-Dependent Mri to Assess Renal Oxygenation in Renal Diseases: Progresses and Challenges. Front. Physiol. 2017, 7, 667. [Google Scholar] [CrossRef] [Green Version]
- Bane, O.; Mendichovszky, I.A.; Milani, B.; Dekkers, I.A.; Deux, J.F.; Eckerbom, P.; Grenier, N.; Hall, M.E.; Inoue, T.; Laustsen, C.; et al. Consensus-Based Technical Recommendations for Clinical Translation of Renal BOLD MRI. Magn. Reson. Mater. Physics, Biol. Med. 2020, 33, 199–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, H.; Lemen, L.; Samaratunga, R.; Nguyen, P.; Tomsick, T. Effects of Iodinated Contrast on Various Magnetic Resonance Imaging Sequences and Field Strength: Implications for Characterization of Hemorrhagic Transformation in Acute Stroke Therapy. World J. Radiol. 2016, 8, 588. [Google Scholar] [CrossRef] [PubMed]
- Ogura, A.; Hayakawa, K.; Miyati, T.; Maeda, F. Effects of Iodinated Contrast Agent on Diffusion Weighted Magnetic Resonance Imaging. Acad. Radiol. 2009, 16, 1196–1200. [Google Scholar] [CrossRef] [Green Version]
- Jost, G.; Lenhard, D.C.; Sieber, M.A.; Lengsfeld, P.; Hütter, J.; Pietsch, H. Changes of Renal Water Diffusion Coefficient after Application of Iodinated Contrast Agents: Effect of Viscosity. Invest. Radiol. 2011, 46, 796–800. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Fassett, R.G.; Venuthurupalli, S.K.; Gobe, G.C.; Coombes, J.S.; Cooper, M.A.; Hoy, W.E. Biomarkers in Chronic Kidney Disease: A Review. Kidney Int. 2011, 80, 806–821. [Google Scholar] [CrossRef] [Green Version]
- Nickolas, T.L.; Barasch, J.; Devarajan, P. Biomarkers in Acute and Chronic Kidney Disease. Curr. Opin. Nephrol. Hypertens. 2008, 17, 127–132. [Google Scholar] [CrossRef]
- Hsu, C.; Xie, D.; Waikar, S.S.; Bonventre, J.V.; Zhang, X.; Sabbisetti, V.; Mifflin, T.E.; Coresh, J.; Diamantidis, C.J.; He, J.; et al. Urine Biomarkers of Tubular Injury Do Not Improve on the Clinical Model Predicting Chronic Kidney Disease Progression. Kidney Int. 2017, 91, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.D.; Yang, W.; Anderson, A.H.; Feldman, H.I.; Demirjian, S.; Hamano, T.; He, J.; Lash, J.; Lustigova, E.; Rosas, S.E.; et al. Urine Neutrophil Gelatinase-Associated Lipocalin Levels Do Not Improve Risk Prediction of Progressive Chronic Kidney Disease. Kidney Int. 2013, 83, 909–914. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.T.; Lv, L.L.; Pan, M.M.; Cao, Y.H.; Liu, H.; Feng, Y.; Ni, H.F.; Liu, B.C. Are Urinary Tubular Injury Markers Useful in Chronic Kidney Disease? A Systematic Review and Meta Analysis. PLoS ONE 2016, 11, e0167334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient. | Gender | Age | XCM | Weight | AKIN Stage of | eGFR | Cystatin C | Creatinine | NGAL | DKK-3 | KIM-1 | TIMP-2 | IGFBP7 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | (mL) | (kg) | CIN | (mL/min) | (mg/L) | (mg/dL) | (ng/mL) | (ng/mL) | (ng/mL) | (ng/mL) | (ng/mL) | |||
1 | M | 77 | 162 | 69 | - | Pre | 64 | 1.66 | 1.11 | - | - | - | - | - |
Post | 50 | 1.99 | 1.35 | - | - | - | - | - | ||||||
2 | F | 77 | 200 | 86 | III | Pre | 26 | 2.22 | 1.84 | - | - | - | - | - |
Post | 0 | 3.18 | 4.57 | - | - | - | - | - | ||||||
3 | F | 80 | 80 | 50 | - | Pre | 68 | 1.18 | 0.82 | 7.911 | 0.930 | 0.215 | 0.531 | 0.125 |
Post | 77 | 1.19 | 0.74 | 23.730 | 1.096 | 0.897 | 1.260 | 0.212 | ||||||
4 | M | 83 | 135 | 82 | I | Pre | 41 | 1.84 | 1.55 | 10.002 | 0.000 | 0.063 | 0.016 | 0.026 |
Post | 29 | 1.89 | 2.07 | 55.970 | 0.148 | 0.268 | 0.551 | 0.096 | ||||||
5 | F | 79 | 160 | 62 | - | Pre | 51 | 1.31 | 1.08 | 26.253 | 0.040 | 0.236 | 0.300 | 0.191 |
Post | 59 | 1.17 | 0.88 | 164.211 | 0.269 | 1.629 | 0.799 | 0.794 | ||||||
6 | M | 71 | 130 | 143 | - | Pre | 50 | 1.85 | 1.41 | 10.699 | 0.523 | 1.102 | 1.035 | 0.200 |
Post | 52 | 1.77 | 1.38 | 50.213 | 1.321 | 3.547 | 1.260 | 0.794 | ||||||
7 | M | 78 | 190 | 82 | - | Pre | 53 | 1.57 | 1.28 | 30.174 | 0.005 | 0.000 | 0.027 | 0.000 |
Post | 54 | 1.55 | 1.26 | 150.336 | 4.197 | 0.933 | 1.260 | 0.228 | ||||||
8 | M | 60 | 69 | 115 | - | Pre | 39 | 1.76 | 1.82 | 27.594 | 0.202 | 0.308 | 0.489 | 0.051 |
Post | 41 | 1.68 | 1.76 | 53.215 | 0.358 | 1.204 | 0.729 | 0.432 | ||||||
9 | M | 76 | 140 | 80 | - | Pre | 82 | 1.26 | 0.91 | 3.757 | 0.036 | 0.000 | 0.000 | 0.000 |
Post | 83 | 1.27 | 0.88 | 35.355 | 0.624 | 0.630 | 0.831 | 0.018 | ||||||
10 | F | 77 | 144 | 70 | I | Pre | 63 | 1.60 | 0.89 | 23.612 | 0.000 | 0.000 | 0.025 | 0.000 |
Post | 42 | 2.04 | 1.23 | 184.652 | 1.783 | 0.154 | 1.260 | 0.277 | ||||||
11 | M | 54 | 290 | 100 | - | Pre | 27 | 2.50 | 2.57 | - | 0.000 | - | 0.000 | 0.511 |
Post | 33 | 2.03 | 2.18 | - | 0.535 | - | 0.982 | 0.799 | ||||||
12 | M | 81 | 90 | 79 | I | Pre | 30 | 3.46 | 2.00 | - | 0.000 | - | 0.557 | 0.639 |
Post | 22 | 4.52 | 2.59 | - | 0.879 | - | 1.013 | 0.989 | ||||||
13 | M | 84 | 160 | 72 | I | Pre | 71 | 1.37 | 0.97 | - | 0.000 | - | 0.492 | 0.991 |
Post | 49 | 1.93 | 1.33 | - | 2.471 | - | 1.109 | 2.156 | ||||||
14 | M | 81 | 145 | 96 | - | Pre | 62 | 1.37 | 1.11 | - | - | - | - | - |
Post | 69 | 1.31 | 1.02 | - | - | - | - | - | ||||||
15 | F | 80 | 227 | 58 | - | Pre | 42 | 1.22 | 1.16 | - | - | - | - | - |
Post | 46 | 1.49 | 1.14 | - | - | - | - | - |
ADC (×10−3 mm2/s) | FA (a.u.) | ||||
---|---|---|---|---|---|
Cortex | Medulla | Cortex | Medulla | ||
non-CIN (n = 10) | pre | 1795.7 ± 114.8 | 1859.2 ± 204.7 | 0.27 ± 0.06 | 0.29 ± 0.08 |
post | 1753.2 ± 176.0 | 1793.6 ± 165.2 | 0.26 ± 0.06 | 0.27 ± 0.06 | |
CIN (n = 5) | pre | 1868.2 ± 38.4 | 1880.6 ± 51.2 | 0.26 ± 0.10 | 0.28 ± 0.07 |
post | 1706.2 ± 72.4 | 1703.2 ± 90.7 | 0.21 ± 0.12 | 0.21 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiel, T.A.; Schweitzer, J.; Xia, T.; Bechler, E.; Valentin, B.; Steuwe, A.; Boege, F.; Westenfeld, R.; Wittsack, H.-J.; Ljimani, A. Evaluation of Radiographic Contrast-Induced Nephropathy by Functional Diffusion Weighted Imaging. J. Clin. Med. 2021, 10, 4573. https://doi.org/10.3390/jcm10194573
Thiel TA, Schweitzer J, Xia T, Bechler E, Valentin B, Steuwe A, Boege F, Westenfeld R, Wittsack H-J, Ljimani A. Evaluation of Radiographic Contrast-Induced Nephropathy by Functional Diffusion Weighted Imaging. Journal of Clinical Medicine. 2021; 10(19):4573. https://doi.org/10.3390/jcm10194573
Chicago/Turabian StyleThiel, Thomas Andreas, Julian Schweitzer, Taogetu Xia, Eric Bechler, Birte Valentin, Andrea Steuwe, Friedrich Boege, Ralf Westenfeld, Hans-Jörg Wittsack, and Alexandra Ljimani. 2021. "Evaluation of Radiographic Contrast-Induced Nephropathy by Functional Diffusion Weighted Imaging" Journal of Clinical Medicine 10, no. 19: 4573. https://doi.org/10.3390/jcm10194573
APA StyleThiel, T. A., Schweitzer, J., Xia, T., Bechler, E., Valentin, B., Steuwe, A., Boege, F., Westenfeld, R., Wittsack, H. -J., & Ljimani, A. (2021). Evaluation of Radiographic Contrast-Induced Nephropathy by Functional Diffusion Weighted Imaging. Journal of Clinical Medicine, 10(19), 4573. https://doi.org/10.3390/jcm10194573