In Vitro Activity and Clinical Outcomes of Clofazimine for Nontuberculous Mycobacteria Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. NTM Identification
2.3. In Vitro Activity against Clofazimine
2.4. Sequence Analysis for Acquired Clarithromycin and Amikacin Resistance Mutations
2.5. Treatment and Clinical Outcomes
2.6. Statistical Analysis
3. Results
3.1. In Vitro Activity of Clofazimine in NTM without Drug Resistance
3.2. In Vitro Activity of Clofazimine in NTM with Drug Resistance
3.3. Characteristics of Patients Treated with Clofazimine-Containing Regimens
3.4. Treatment Outcome at 12 Months after Clofazimine-Containing Regimens
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | pulmonary disease |
NTM | nontuberculous mycobacteria |
MAC | mycobacterium avium complex |
DST | drug susceptibility testing |
CLSI | Clinical and Laboratory Standards Institute |
RGM | rapidly growing mycobacteria |
SGM | slowly growing mycobacteria |
MIC | minimum inhibitory concentration |
MBC | minimum bactericidal concentration |
References
- Prevots, D.R.; Marras, T.K. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin. Chest Med. 2015, 36, 13–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Myung, W.; Koh, W.J.; Moon, S.M.; Jhun, B.W. Epidemiology of nontuberculous mycobacterial infection, South Korea, 2007–2016. Emerg. Infect. Dis. 2019, 25, 569–572. [Google Scholar] [CrossRef]
- Hoefsloot, W.; van Ingen, J.; Andrejak, C.; Angeby, K.; Bauriaud, R.; Bemer, P.; Beylis, N.; Boeree, M.J.; Cacho, J.; Chihota, V.; et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur. Respir. J. 2013, 42, 1604–1613. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An Official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin. Infect. Dis. 2020, 71, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017, 72, ii1–ii64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, N.; Park, J.; Kim, E.; Lee, C.H.; Han, S.K.; Yim, J.J. Treatment outcomes of Mycobacterium avium complex lung disease: A systematic review and meta-analysis. Clin. Infect. Dis. 2017, 65, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Kwak, N.; Dalcolmo, M.P.; Daley, C.L.; Eather, G.; Gayoso, R.; Hasegawa, N.; Jhun, B.W.; Koh, W.J.; Namkoong, H.; Park, J.; et al. Mycobacterium abscessus pulmonary disease: Individual patient data meta-analysis. Eur. Respir. J. 2019, 54, 1801991. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, C.K.; Bae, I.K.; Jeong, S.H.; Yim, J.J.; Jung, J.Y.; Park, M.S.; Kim, Y.S.; Kim, S.K.; Chang, J.; et al. The drug susceptibility profile and inducible resistance to macrolides of Mycobacterium abscessus and Mycobacterium massiliense in Korea. Diagn. Microbiol. Infect. Dis. 2015, 81, 107–111. [Google Scholar] [CrossRef]
- Martiniano, S.L.; Wagner, B.D.; Levin, A.; Nick, J.A.; Sagel, S.D.; Daley, C.L. Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial Infection. Chest 2017, 152, 800–809. [Google Scholar] [CrossRef]
- Jarand, J.; Davis, J.P.; Cowie, R.L.; Field, S.K.; Fisher, D.A. Long-term follow-up of Mycobacterium avium complex lung disease in patients treated with regimens including clofazimine and/or rifampin. Chest 2016, 149, 1285–1293. [Google Scholar] [CrossRef]
- Field, S.K.; Cowie, R.L. Treatment of Mycobacterium avium-intracellulare complex lung disease with a macrolide, ethambutol, and clofazimine. Chest 2003, 124, 1482–1486. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.G.; Kim, H.; Kwon, O.J.; Huh, H.J.; Lee, N.Y.; Baek, S.Y.; Sohn, I.; Jhun, B.W. Outcomes of inhaled amikacin and clofazimine-containing regimens for treatment of refractory Mycobacterium avium complex pulmonary disease. J. Clin. Med. 2020, 9, 2968. [Google Scholar] [CrossRef]
- Yang, B.; Jhun, B.W.; Moon, S.M.; Lee, H.; Park, H.Y.; Jeon, K.; Kim, D.H.; Kim, S.Y.; Shin, S.J.; Daley, C.L.; et al. Clofazimine-containing regimen for the treatment of Mycobacterium abscessus lung disease. Antimicrob. Agents Chemother. 2017, 61, e02052-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother. 2012, 67, 290–298. [Google Scholar] [CrossRef]
- Aung, K.J.; van Deun, A.; Declercq, E.; Sarker, M.R.; Das, P.K.; Hossain, M.A.; Rieder, H.L. Successful 9-month Bangladesh regimen’ for multidrug-resistant tuberculosis among over 500 consecutive patients. Int. J. Tuberc. Lung Dis. 2014, 18, 1180–1187. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, Y.; Jing, W.; Liu, Y.; Wang, N.; Yin, H.; Zhang, Q.; Ye, Z.; Zhu, M.; Li, F.; et al. Clofazimine for treatment of extensively drug-resistant pulmonary tuberculosis in China. Antimicrob. Agents Chemother. 2018, 62, e02149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, V.M.; O’Sullivan, J.F.; Gangadharam, P.R. Antimycobacterial activities of riminophenazines. J. Antimicrob. Chemother. 1999, 43, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Van Ingen, J.; Totten, S.E.; Helstrom, N.K.; Heifets, L.B.; Boeree, M.J.; Daley, C.L. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob. Agents Chemother. 2012, 56, 6324–6327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical Laboratory Standards Institute (CLSI). Susceptibility Testing of Mycobacteria, Nocardia spp., and other Aerobic Actinomycetes; Approved Standard, 3rd ed.; CLSI document No. M24; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical Laboratory Standards Institute (CLSI). Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and other Aerobic Actinomycetes; Approved Standard, 1st ed.; CLSI document No. M62; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Nessar, R.; Cambau, E.; Reyrat, J.M.; Murray, A.; Gicquel, B. Mycobacterium abscessus: A new antibiotic nightmare. J. Antimicrob. Chemother. 2012, 67, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Wu, M.F.; Chen, H.C.; Huang, W.C. In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J. Microbiol. Immunol. Infect. 2018, 51, 636–643. [Google Scholar] [CrossRef]
- Singh, S.; Bouzinbi, N.; Chaturvedi, V.; Godreuil, S.; Kremer, L. In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clin. Microbiol. Infect. 2014, 20, O1124–O1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, M.; Fisher, S.; Story-Roller, E.; Lamichhane, G.; Parrish, N. Activities of dual combinations of antibiotics against multidrug-resistant nontuberculous mycobacteria recovered from patients with cystic fibrosis. Microb. Drug Resist. 2018, 24, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yu, X.; Jiang, G.; Fu, Y.; Huo, F.; Ma, Y.; Wang, F.; Shang, Y.; Liang, Q.; Xue, Y.; et al. In vitro activity of clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrob. Agents Chemother. 2018, 62, e00072-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Griffith, D.E.; Brown-Elliott, B.A.; Langsjoen, B.; Zhang, Y.; Pan, X.; Girard, W.; Nelson, K.; Caccitolo, J.; Alvarez, J.; Shepherd, S.; et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 2006, 174, 928–934. [Google Scholar] [CrossRef]
- Moon, S.M.; Park, H.Y.; Kim, S.Y.; Jhun, B.W.; Lee, H.; Jeon, K.; Kim, D.H.; Huh, H.J.; Ki, C.S.; Lee, N.Y.; et al. Clinical characteristics, treatment outcomes, and resistance mutations associated with macrolide-resistant Mycobacterium avium complex lung disease. Antimicrob. Agents Chemother. 2016, 60, 6758–6765. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, K.; Namkoong, H.; Hasegawa, N.; Nakagawa, T.; Morino, E.; Shiraishi, Y.; Ogawa, K.; Izumi, K.; Takasaki, J.; Yoshiyama, T.; et al. Macrolide-resistant Mycobacterium avium complex lung disease: Analysis of 102 consecutive cases. Ann. Am. Thorac. Soc. 2016, 13, 1904–1911. [Google Scholar] [CrossRef]
- Choi, H.; Kim, S.Y.; Kim, D.H.; Huh, H.J.; Ki, C.S.; Lee, N.Y.; Lee, S.H.; Shin, S.; Shin, S.J.; Daley, C.L.; et al. Clinical characteristics and treatment outcomes of patients with acquired macrolide-resistant Mycobacterium abscessus lung disease. Antimicrob. Agents Chemother. 2017, 61, e01146. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.H.; Wu, B.D.; Hu, S.T.; Lin, C.F.; Wu, K.M.; Chen, J.H. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int. J. Antimicrob. Agents 2010, 35, 400–404. [Google Scholar] [CrossRef]
- Lanoix, J.P.; Joseph, C.; Peltier, F.; Castelain, S.; Andréjak, C. Synergistic activity of clofazimine and clarithromycin in an aerosol mouse model of Mycobacterium avium infection. Antimicrob. Agents Chemother. 2020, 64, e02349. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Cui, P.; Shi, W.; Zhang, W.; Zhang, Y. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2015, 70, 2507–2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NTM Species (No.) | Activity | No. (%) of Isolates According to MIC (µg/mL) * | MIC50 (µg/mL) | MIC90 (µg/mL) | MBC50 (µg/mL) | MBC90 (µg/mL) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.062 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | ||||||
M. avium (63) | MIC | 23 (36) | 16 (25) | 18 (29) | 3 (5) | 1 (2) | 2 (3) | 0.125 | 0.25 | |||
MBC | 20 (31) | 15 (24) | 20 (32) | 5 (8) | 1 (2) | 2 (3) | 0.125 | 0.5 | ||||
M. intracellulare (57) | MIC | 5 (8) | 20 (35) | 28 (49) | 2 (4) | 2 (4) | 0.25 | 0.25 | ||||
MBC | 5 (8) | 15 (27) | 32 (56) | 3 (5) | 2 (4) | 0.25 | 0.25 | |||||
M. kansasii (52) | MIC | 45 (86) | 3 (6) | 1 (2) | 1 (2) | 2 (4) | ≤0.062 | 0.125 | ||||
MBC | 39 (75) | 9 (17) | 1 (2) | 1 (2) | 1 (2) | 1 (2) | ≤0.062 | 0.125 | ||||
M. abscessus (64) | MIC | 2 (3) | 20 (31) | 42 (66) | 0.5 | 0.5 | ||||||
MBC | 2 (3) | 58 (91) | 4 (6) | 0.5 | 0.5 | |||||||
M. massiliense (67) | MIC | 2 (3) | 4 (6) | 51 (76) | 10 (15) | 0.25 | 0.5 | |||||
MBC | 1 (2) | 25 (37) | 41 (61) | 0.5 | 0.5 |
NTM Species (No.) | Activity | No. (%) of Isolates According to MIC (µg/mL) * | MIC50 (µg/mL) | MIC90 (µg/mL) | MBC50 (µg/mL) | MBC90 (µg/mL) | ||||
---|---|---|---|---|---|---|---|---|---|---|
≤0.062 | 0.125 | 0.25 | 0.5 | 1 | ||||||
Clarithromycin-resistant | ||||||||||
M. avium (10) | MIC | 4 (40) | 6 (60) | 0.125 | 0.125 | |||||
MBC | 3 (30) | 5 (50) | 2 (20) | 0.125 | 0.25 | |||||
M. intracellulare (17) | MIC | 3 (17) | 8 (47) | 4 (24) | 2 (12) | 0.125 | 0.5 | |||
MBC | 3 (17) | 5 (30) | 5 (30) | 3 (17) | 1 (6) | 0.25 | 0.5 | |||
M. abscessus (13) | MIC | 2 (15) | 6 (46) | 4 (31) | 1 (8) | 0.25 | 0.5 | |||
MBC | 1 (8) | 4 (31) | 7 (53) | 1 (8) | 0.5 | 0.5 | ||||
M. massiliense (17) | MIC | 6 (35) | 8 (47) | 3 (18) | 0.25 | 0.5 | ||||
MBC | 7 (42) | 10 (58) | 0.5 | 0.5 | ||||||
Amikacin-resistant | ||||||||||
M. avium (11) | MIC | 11 (100) | ≤0.062 | ≤0.062 | ||||||
MBC | 11 (100) | ≤0.062 | ≤0.062 | |||||||
M. intracellulare (15) | MIC | 9 (60) | 3 (20) | 2 (13) | 1 (7) | ≤0.062 | 0.25 | |||
MBC | 7 (46) | 4 (27) | 3 (20) | 1 (7) | 0.125 | 0.25 | ||||
M. abscessus (6) | MIC | 5 (83) | 1 (17) | 0.25 | 0.5 | |||||
MBC | 6 (100) | 0.5 | 0.5 | |||||||
M. massiliense (3) | MIC | 2 (67) | 1 (33) | 0.5 | 0.5 | |||||
MBC | 1 (33) | 2 (67) | 0.5 | 0.5 |
Characteristics | Values |
---|---|
Age, years | 61 (55–69) |
Sex, female | 40 (69) |
Body mass index, kg/m2 | 20.9 (18.1–22.2) |
Never-smoker | 43 (74) |
Comorbidity | |
Previous history of pulmonary tuberculosis | 29 (50) |
Chronic pulmonary aspergillosis | 6 (10) |
Obstructive pulmonary disease | 5 (9) |
Diabetes mellitus | 5 (9) |
Chronic heart disease | 4 (7) |
Chronic liver disease | 2 (3) |
Previous lung cancer | 1 (2) |
Other malignancy * | 2 (3) |
Etiologic organism | |
M. abscessus | 35 (60) |
M. massiliense | 15 (26) |
M. avium | 3 (5) |
M. intracellulare | 5 (9) |
Radiologic findings | |
Nodular bronchiectatic form | 37 (64) |
With cavity | 15/37 |
Without cavity | 22/37 |
Fibrocavitary form | 21 (36) |
Laboratory findings | |
Positive sputum acid-fast bacilli smear | 41 (71) |
Erythrocyte sedimentation rate, mm/h | 55.0 (24.3–68.3) |
Clarithromycin or amikacin resistance ¶ | 20 (34) |
M. abscessus or M. massiliense | 14/20 |
M. avium or M. intracellulare | 6/20 |
No Conversion | Conversion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MIC | M. abscessus | M. massiliense | M. avium | M. intracellulare | Total * | M. abscessus | M. massiliense | M. avium | M. intracellulare | Total ¶ | p-Value |
≤0.062 | - | - | - | - | - | - | 1 | - | - | 1 | 0.004 |
0.125 | - | - | 1 | - | 1 | - | - | - | - | - | |
0.25 | 4 | - | - | - | 4 | 3 | 8 | - | 1 | 12 | |
0.5 | 15 | - | - | - | 15 | 5 | - | - | - | 5 | |
MIC | M. abscessus | M. massiliense | M. avium | M. intracellulare | Total * | M. abscessus | M. massiliense | M. avium | M. intracellulare | Total ¶ | p-value |
≤0.25 | 4 | - | 1 | - | 5 | 3 | 9 | - | 1 | 13 | 0.004 |
≥0.5 | 15 | - | - | - | 15 | 5 | - | - | - | 5 |
Variable | Univariable | Multivariable | ||
---|---|---|---|---|
Unadjusted HR (95% CI) | p Value | Adjusted HR (95% CI) | p Value | |
Age < 65 years | 1.500 (0.534–4.214) | 0.442 | 3.099 (0.680–14.129) | 0.144 |
Female | 0.626 (0.206–1.909) | 0.411 | - | - |
Body mass index ≥ 18.5 kg/m2 | 1.496 (0.561–3.990) | 0.421 | 1.452 (0.374–5.631) | 0.590 |
Never smoker | 1.347 (0.442–4.102) | 0.600 | - | - |
No previous pulmonary tuberculosis | 0.825 (0.326–2.092) | 0.686 | 0.953 (0.232–3.906) | 0.947 |
Etiology | ||||
M. abscessus | Reference | Reference | ||
M. massiliense | 9.179 (3.116–27.040) | <0.001 | 51.978 (1.463–1846.164) | 0.030 |
M. avium/M. intracellulare | 1.373 (0.172–10.987) | 0.765 | 0.214 (0.004–11.608) | 0.449 |
Negative sputum acid-fast bacilli smear | 1.738 (0.681–4.431) | 0.247 | 1.521 (0.416–5.564) | 0.526 |
No cavity | 0.877 (0.329–2.339) | 0.793 | 130.124 (4.423–3827.900) | 0.005 |
MIC of clofazimine, µg/mL | ||||
≥0.5 | reference | reference | ||
≤0.25 | 4.382 (1.548–12.408) | 0.005 | 22.458 (1.595–316.251) | 0.021 |
Macrolide resistance | ||||
Inducible resistance | Reference | Reference | ||
Susceptible | 3.452 (1.325–8.995) | 0.011 | 0.274 (0.018–4.105) | 0.349 |
Intravenous amikacin use, days | 0.974 (0.944–1.005) | 0.095 | 0.956 (0.900–1.016) | 0.149 |
Elevated erythrocyte sedimentation rate * | 0.292 (0.039–2.195) | 0.232 | 0.754 (0.067–8.424) | 0.818 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Kim, B.-G.; Kim, S.-Y.; Huh, H.J.; Lee, N.Y.; Koh, W.-J.; Kim, H.; Kwon, O.J.; Jhun, B.W. In Vitro Activity and Clinical Outcomes of Clofazimine for Nontuberculous Mycobacteria Pulmonary Disease. J. Clin. Med. 2021, 10, 4581. https://doi.org/10.3390/jcm10194581
Kim DH, Kim B-G, Kim S-Y, Huh HJ, Lee NY, Koh W-J, Kim H, Kwon OJ, Jhun BW. In Vitro Activity and Clinical Outcomes of Clofazimine for Nontuberculous Mycobacteria Pulmonary Disease. Journal of Clinical Medicine. 2021; 10(19):4581. https://doi.org/10.3390/jcm10194581
Chicago/Turabian StyleKim, Dae Hun, Bo-Guen Kim, Su-Young Kim, Hee Jae Huh, Nam Yong Lee, Won-Jung Koh, Hojoong Kim, O Jung Kwon, and Byung Woo Jhun. 2021. "In Vitro Activity and Clinical Outcomes of Clofazimine for Nontuberculous Mycobacteria Pulmonary Disease" Journal of Clinical Medicine 10, no. 19: 4581. https://doi.org/10.3390/jcm10194581
APA StyleKim, D. H., Kim, B. -G., Kim, S. -Y., Huh, H. J., Lee, N. Y., Koh, W. -J., Kim, H., Kwon, O. J., & Jhun, B. W. (2021). In Vitro Activity and Clinical Outcomes of Clofazimine for Nontuberculous Mycobacteria Pulmonary Disease. Journal of Clinical Medicine, 10(19), 4581. https://doi.org/10.3390/jcm10194581