Non-Invasive Evaluation of Patients Undergoing Percutaneous Coronary Intervention for Chronic Total Occlusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Echocardiography
2.3. Myocardial Strain Assessment
2.4. Cardiovascular MRI Protocol
2.5. Angioplasty Procedure
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Transmural Extent of LGE MRI
3.3. Myocardial Perfusion Reserve
3.4. Changes in Echocardiographic Parameters
3.5. Improvement in Segmental LV Function Stratified by LGE MRI and MPR
3.6. ROC Curves of Echocardiographic Parameters to Identify Segments with LGE > 50%
3.7. Multiple Linear Regression Analyses
3.8. Reproducibility of Strain Measurements
4. Discussion
4.1. Strain Parameters as a Surrogate for Viability to Aid the Appropriate Patient Selection for CTO-PCI
4.2. Strain Parameters for the Detection of Left Ventricular Functional Improvement by CTO-PCI
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, J.H.; Chang, S.A.; Choi, J.O.; Song, Y.B.; Hahn, J.Y.; Choi, S.H.; Lee, S.C.; Lee, S.H.; Oh, J.K.; Choe, Y.; et al. Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation 2013, 127, 703–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchikane, E.; Yamane, M.; Mutoh, M.; Matsubara, T.; Fujita, T.; Nakamura, S.; Muramatsu, T.; Okamura, A.; Igarashi, Y.; Oida, A. Retrograde Summit Investigators. Japanese multicenter registry evaluating the retrograde approach for chronic coronary total occlusion. Catheter. Cardiovasc. Interv. 2013, 82, E654–E661. [Google Scholar] [CrossRef] [PubMed]
- Sumitsuji, S.; Inoue, K.; Ochiai, M.; Tsuchikane, E.; Ikeno, F. Fundamental wire technique and current standard strategy of percutaneous intervention for chronic total occlusion with histopathological insights. JACC Cardiovasc. Interv. 2011, 4, 941–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopoulos, G.; Karmpaliotis, D.; Alaswad, K.; Lombardi, W.L.; Grantham, J.A.; Rangan, B.V.; Kotsia, A.P.; Lembo, N.; Kandzari, D.E.; Lee, J.; et al. The efficacy of “hybrid” percutaneous coronary intervention in chronic total occlusions caused by in-stent restenosis: Insights from a US multicenter registry. Catheter. Cardiovasc. Interv. 2014, 84, 646–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, S.A.; Wu, E.B.; Lo, S.; Lim, S.T.; Ge, L.; Chen, J.Y.; Quan, J.; Lee, S.W.; Kao, H.L.; Tsuchikane, E. A new algorithm for crossing chronic total occlusions from the Asia Pacific Chronic Total Occlusion Club. JACC Cardiovasc. Interv. 2017, 10, 2135–2143. [Google Scholar] [CrossRef]
- Morino, Y.; Abe, M.; Morimoto, T.; Kimura, T.; Hayashi, Y.; Muramatsu, T.; Ochiai, M.; Noguchi, Y.; Kato, K.; Shibata, Y.; et al. Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: The J-CTO (Multicenter CTO Registry in Japan) score as a difficulty grading and time assessment tool. JACC Cardiovasc. Interv. 2011, 4, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Christopoulos, G.; Kandzari, D.E.; Yeh, R.W.; Jaffer, F.A.; Karmpaliotis, D.; Wyman, M.R.; Alaswad, K.; Lombardi, W.; Grantham, J.A.; Moses, J.; et al. Development and validation of a novel scoring system for predicting technical success of chronic total occlusion percutaneous coronary interventions: The PROGRESS CTO (Prospective Global Registry for the Study of Chronic Total Occlusion Intervention) Score. JACC Cardiovasc. Interv. 2016, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alessandrino, G.; Chevalier, B.; Lefèvre, T.; Sanguineti, F.; Garot, P.; Unterseeh, T.; Hovasse, T.; Morice, M.C.; Louvard, Y. A clinical and angiographic scoring system to predict the probability of successful first-attempt percutaneous coronary intervention in patients with total chronic coronary occlusion. JACC Cardiovasc. Interv. 2015, 8, 1540–1548. [Google Scholar] [CrossRef] [Green Version]
- Karatasakis, A.; Danek, B.A.; Karmpaliotis, D.; Alaswad, K.; Jaffer, F.A.; Yeh, R.W.; Patel, M.; Bahadorani, J.N.; Lombardi, W.L.; Wyman, R.M.; et al. Comparison of various scores for predicting success of chronic total occlusion percutaneous coronary intervention. Int. J. Cardiol. 2016, 224, 50–56. [Google Scholar] [CrossRef]
- Kurita, T.; Sakuma, H.; Onishi, K.; Ishida, M.; Kitagawa, K.; Yamanaka, T.; Tanigawa, T.; Kitamura, T.; Takeda, K.; Ito, M. Regional myocardial perfusion reserve determined using myocardial perfusion magnetic resonance imaging showed a direct correlation with coronary flow velocity reserve by Doppler flow wire. Eur. Heart J. 2009, 30, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.J.; Wu, E.; Rafael, A.; Chen, E.L.; Parker, M.A.; Simonetti, O.; Klocke, F.J.; Bonow, R.O.; Judd, R.M. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 2000, 343, 1445–1453. [Google Scholar] [CrossRef]
- Kitagawa, K.; Sakuma, H.; Hirano, T.; Okamoto, S.; Makino, K.; Takeda, K. Acute myocardial infarction: Myocardial viability assessment in patients early thereafter comparison of contrast-enhanced MR imaging with resting (201) Tl SPECT. Single photon emission computed tomography. Radiology 2003, 226, 138–144. [Google Scholar] [CrossRef]
- Kaandorp, T.A.; Lamb, H.J.; van der Wall, E.E.; de Roos, A.; Bax, J.J. Cardiovascular MR to access myocardial viability in chronic ischaemic LV dysfunction. Heart 2005, 91, 1359–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanton, T.; Leano, R.; Marwick, T.H. Prediction of all-cause mortality from global longitudinal speckle strain: Comparison with ejection fraction and wall motion scoring. Circ. Cardiovasc. Imaging 2009, 2, 356–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, M.; Ocklenburg, C.; Altiok, E.; Füting, A.; Balzer, J.; Krombach, G.; Lysyansky, M.; Kühl, H.; Krings, R.; Kelm, M.; et al. Impact of infarct transmurality on layer-specific impairment of myocardial function: A myocardial deformation imaging study. Eur. Heart J. 2009, 30, 1467–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Kansal, M.M.; Panse, P.M.; Abe, H.; Caracciolo, G.; Wilansky, S.; Tajik, A.J.; Khandheria, B.K.; Sengupta, P.P. Relationship of contrast-enhanced magnetic resonance imaging-derived intramural scar distribution and speckle tracking echocardiography-derived left ventricular two-dimensional strains. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Rost, C.; Rost, M.C.; Breithardt, O.A.; Schmid, M.; Klinghammer, L.; Stumpf, C.; Daniel, W.G.; Flachskampf, F.A. Relation of functional echocardiographic parameters to infarct scar transmurality by magnetic resonance imaging. J. Am. Soc. Echocardiogr. 2014, 27, 767–774. [Google Scholar] [CrossRef]
- Carasso, S.; Agmon, Y.; Roguin, A.; Keidar, Z.; Israel, O.; Hammerman, H.; Lessick, J. Left ventricular function and functional recovery early and late after myocardial infarction: A prospective pilot study comparing two-dimensional strain, conventional echocardiography, and radionuclide myocardial perfusion imaging. J. Am. Soc. Echocardiogr. 2013, 26, 1235–1244. [Google Scholar] [CrossRef]
- Yang, B.; Daimon, M.; Ishii, K.; Kawata, T.; Miyazaki, S.; Hirose, K.; Ichikawa, R.; Chiang, S.J.; Suzuki, H.; Miyauchi, K.; et al. Prediction of coronary artery stenosis at rest in patients with normal left ventricular wall motion. Segmental analyses using strain imaging diastolic index. Int. Heart J. 2013, 54, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Dattilo, G.; Imbalzano, E.; Lamari, A.; Casale, M.; Paunovic, N.; Busacca, P.; Di Bella, G. Ischemic heart disease and early diagnosis. Study on the predictive value of 2D strain. Int. J. Cardiol. 2016, 215, 150–156. [Google Scholar]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Cohen, V.; Gosavi, S.; Carver, J.R.; Wiegers, S.E.; Martin, R.P.; et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am. J. Cardiol. 2011, 107, 1375–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, D.; Collier, P.; Thavendiranathan, P.; Popović, Z.B.; Hanna, M.; Plana, J.C.; Marwick, T.H.; Thomas, J.D. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012, 98, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Esposito, R.; Santoro, C.; Mandoli, G.E.; Cuomo, V.; Sorrentino, R.; La Mura, L.; Pastore, M.C.; Bandera, F.; D’Ascenzi, F.; Malagoli, A.; et al. Cardiac Imaging in Anderson-Fabry Disease: Past, Present and Future. J. Clin. Med. 2021, 10, 1994. [Google Scholar] [CrossRef] [PubMed]
- Amzulescu, M.S.; De Craene, M.; Langet, H.; Pasquet, A.; Vancraeynest, D.; Pouleur, A.C.; Vanoverschelde, J.L.; Gerber, B.L. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 605–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fefer, P.; Knudtson, M.L.; Cheema, A.N.; Galbraith, P.D.; Osherov, A.B.; Yalonetsky, S.; Gannot, S.; Samuel, M.; Weisbrod, M.; Bierstone, D.; et al. Current perspectives on coronary chronic total occlusions: The Canadian Multicenter Chronic Total Occlusions Registry. J. Am. Coll. Cardiol. 2012, 59, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Nakachi, T.; Kato, S.; Kirigaya, H.; Iinuma, N.; Fukui, K.; Saito, N.; Iwasawa, T.; Kosuge, M.; Kimura, K.; Tamura, K. Prediction of functional recovery after percutaneous coronary revascularization for chronic total occlusion using late gadolinium enhanced magnetic resonance imaging. J. Cardiol. 2017, 69, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Kirtane, A.J.; Doshi, D.; Leon, M.B.; Lasala, J.M.; Ohman, E.M.; O’Neill, W.W.; Shroff, A.; Cohen, M.G.; Palacios, I.F.; Beohar, N.; et al. Treatment of Higher-Risk Patients With an Indication for Revascularization: Evolution Within the Field of Contemporary Percutaneous Coronary Intervention. Circulation 2016, 134, 422–431. [Google Scholar] [CrossRef]
- Wu, E.B.; Brilakis, E.S.; Mashayekhi, K.; Tsuchikane, E.; Alaswad, K.; Araya, M.; Avran, A.; Azzalini, L.; Babunashvili, A.M.; Bayani, B.; et al. Global Chronic Total Occlusion Crossing Algorithm: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 840–853. [Google Scholar] [CrossRef]
- Valenti, R.; Vergara, R.; Migliorini, A.; Parodi, G.; Carrabba, N.; Cerisano, G.; Dovellini, E.V.; Antoniucci, D. Predictors of reocclusion after successful drug-eluting stent-supported percutaneous coronary intervention of chronic total occlusion. J. Am. Coll. Cardiol. 2013, 61, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Cwajg, J.M.; Cwajg, E.; Nagueh, S.F.; He, Z.X.; Qureshi, U.; Olmos, L.I.; Quinones, M.A.; Verani, M.S.; Winters, W.L.; Zoghbi, W.A. End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: Relation to rest-redistribution T1-201 tomography and dobutamine stress echocardiography. J. Am. Coll. Cardiol. 2000, 35, 1152–1161. [Google Scholar] [CrossRef] [Green Version]
- Schelbert, E.B.; Messroghli, D.R. State of the Art: Clinical Applications of Cardiac T1 Mapping. Radiology 2016, 278, 658–676. [Google Scholar] [CrossRef] [PubMed]
- Hamada, S.; Schroeder, J.; Hoffmann, R.; Altiok, E.; Keszei, A.; Almalla, M.; Napp, A.; Marx, N.; Becker, M. Prediction of Outcomes in Patients with Chronic Ischemic Cardiomyopathy by Layer-Specific Strain Echocardiography: A Proof of Concept. J. Am. Soc. Echocardiogr. 2016, 29, 412–420. [Google Scholar]
Patients (n = 55) | |
---|---|
Age, years | 69 ± 10 |
Male gender | 45 (82%) |
Dyslipidemia | 45 (82%) |
Diabetes mellitus | 19 (35%) |
Hypertension | 45 (73%) |
Past smoking | 36 (65%) |
History of previous myocardial infarction | 25 (45%) |
History of coronary artery bypass grafting | 4 (7%) |
NYHA I | 41 (75%) |
II | 10 (18%) |
III | 4 (7%) |
IV | 0 (0%) |
CCS 0 | 7 (12%) |
I | 13 (22%) |
II | 19 (32%) |
III | 13 (22%) |
IV | 3 (5%) |
Chronic obstructive pulmonary disease | 11 (19%) |
eGFR, mL/min/1.73 m2 | 69.3 ± 15.3 |
Medical treatments | |
Antiplatelet drugs | 55 (100%) |
β-blockers | 44 (80%) |
ACE-inhibitors/ARB | 44 (80%) |
Statins | 55 (100%) |
Patients (n = 55) | |
---|---|
CTO vessel | |
Left anterior descending | 11 (20%) |
Left circumflex | 11 (20%) |
Right | 33 (60%) |
J-CTO score | 1.56 ± 1.27 |
Entry shape—blunt | 20 (36%) |
Calcification | 16 (30%) |
Bending > 45° | 26 (47%) |
Occlusion length ≥ 20 mm | 21 (38%) |
Reattempted lesion | 5 (9%) |
Reference diameter, mm | 2.8 ± 0.8 |
Occlusion length, mm | 25 ± 21 |
Collateral connection grade | |
CC0 | 9 (16%) |
CC1 | 29 (53%) |
CC2 | 17 (31%) |
Antegrade approach only | 25 (45%) |
Retrograde approach | 30 (55%) |
Antegrade wiring techniques | |
Parallel wire technique | 21 (38%) |
IVUS-guided wiring technique | 4 (7%) |
Successfully crossed collateral channel in retrograde approach | |
Septal channel | 22 (73%) |
Epicardial channel | 5 (17%) |
Bypass graft | 3 (10%) |
Successful CTO crossing strategy in retrograde approach | |
Reverse CART | 15 (50%) |
Retrograde wire cross | 10 (33%) |
Kissing wire cross | 4 (13%) |
CART | 1 (3%) |
Baseline | Follow-Up | p-Value * | |
---|---|---|---|
LVEF, % | 54.3 ± 12.2 | 58.2 ± 9.1 | 0.004 |
GLS, % | −16.60 ± 3.79 | −18.61 ± 3.29 | <0.001 |
GCS, % | −15.92 ± 3.44 | −18.04 ± 3.69 | <0.001 |
WMSI | 1.35 ± 0.52 | 1.24 ± 0.36 | 0.006 |
β | SE | 95% CI for β | p-Value | |
---|---|---|---|---|
%LGE at baseline | 0.033 | 0.011 | 0.012 to 0.054 | 0.002 |
Changes in MPR from baseline to follow-up | −1.103 | 0.257 | −1.608 to −0.597 | <0.001 |
β | SE | 95% CI for β | p-Value | |
---|---|---|---|---|
%LGE at baseline | 0.047 | 0.019 | 0.009 to 0.085 | 0.017 |
Changes in MPR from baseline to follow-up | 0.426 | 0.467 | −0.492 to 1.345 | 0.362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakachi, T.; Kato, S.; Saito, N.; Fukui, K.; Iwasawa, T.; Endo, T.; Kosuge, M.; Utsunomiya, D.; Kimura, K.; Tamura, K. Non-Invasive Evaluation of Patients Undergoing Percutaneous Coronary Intervention for Chronic Total Occlusion. J. Clin. Med. 2021, 10, 4712. https://doi.org/10.3390/jcm10204712
Nakachi T, Kato S, Saito N, Fukui K, Iwasawa T, Endo T, Kosuge M, Utsunomiya D, Kimura K, Tamura K. Non-Invasive Evaluation of Patients Undergoing Percutaneous Coronary Intervention for Chronic Total Occlusion. Journal of Clinical Medicine. 2021; 10(20):4712. https://doi.org/10.3390/jcm10204712
Chicago/Turabian StyleNakachi, Tatsuya, Shingo Kato, Naka Saito, Kazuki Fukui, Tae Iwasawa, Tsutomu Endo, Masami Kosuge, Daisuke Utsunomiya, Kazuo Kimura, and Kouichi Tamura. 2021. "Non-Invasive Evaluation of Patients Undergoing Percutaneous Coronary Intervention for Chronic Total Occlusion" Journal of Clinical Medicine 10, no. 20: 4712. https://doi.org/10.3390/jcm10204712
APA StyleNakachi, T., Kato, S., Saito, N., Fukui, K., Iwasawa, T., Endo, T., Kosuge, M., Utsunomiya, D., Kimura, K., & Tamura, K. (2021). Non-Invasive Evaluation of Patients Undergoing Percutaneous Coronary Intervention for Chronic Total Occlusion. Journal of Clinical Medicine, 10(20), 4712. https://doi.org/10.3390/jcm10204712