Stress Echocardiography Protocol for Deciding Type of Surgery in Ischemic Mitral Regurgitation: Predictors of Mitral Regurgitation Recurrence following CABG Alone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Surgery
2.3. Echocardiography
2.4. Stress Echocardiography
2.5. Clinical End Points
- functional status (NYHA, CCS—Canadian Cardiovascular Society).
- dynamics of selected LV parameters changes (EF, WMSI).
- analysis of the recurrence of moderate or severe IMR.
- midterm (12 months) mortality; and
- hospitalization due to exacerbation of HF symptoms.
2.6. Data Collection
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. In-Hospital Outcomes
3.3. Echocardiographic Results/Recurrence Mitral Regurgitation
3.4. Clinical Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamas, G.A.; Mitchell, G.F.; Flaker, G.C.; Smith, S.C.; Gersh, B.J.; Basta, L.; Moye, L.; Braunwald, E.; Pfeffer, M.A. Clinical significance of mitral regurgitation after acute myocardial infarction. Surviv. Ventricular Enlarg. Investig. Circ. 1997, 96, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Grigioni, F.; Enriquez-Sarano, M.; Zehr, K.; Bailey, K.; Tajik, A. Ischemic mitral regurgitation. Long-term outcome and prognostic implications with quantitative Doppler assessment. ACC Curr. J. Rev. 2001, 10, 33. [Google Scholar] [CrossRef]
- Grigioni, F.; Detaint, D.; Avierinos, J.-F.; Scott, C.; Tajik, J.; Enriquez-Sarano, M. Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J. Am. Coll. Cardiol. 2005, 45, 260–267. [Google Scholar] [CrossRef]
- Kwan, J.; Shiota, T.; Agler, D.A.; Popović, Z.B.; Qin, J.X.; Gillinov, M.A.; Stewart, W.J.; Cosgrove, D.M.; McCarthy, P.M.; Thomas, J.D. Geo-metric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: Real-time three-dimensional echocardiography study. Circulation 2003, 107, 1135–1140. [Google Scholar] [CrossRef]
- Zhu, F.; Otsuji, Y.; Yotsumoto, G.; Yuasa, T.; Ueno, T.; Yu, B.; Koriyama, C.; Hamasaki, S.; Biro, S.; Kisanuki, A.; et al. Mechanism of persistent ischemic mitral regurgitation after annuloplasty: Importance of augmented posterior mitral leaflet tethering. Circulation 2005, 30, I396–I401. [Google Scholar]
- Agricola, E.; Oppizzi, M.; Maisano, F.; De Bonis, M.; Schinkel, A.F.; Torracca, L.; Margonato, A.; Melisurgo, G.; Alfieri, O. Echocardiographic classification of chronic ischemic mitral regurgitation caused by restricted motion according to tethering pattern. Eur. J. Echocardiogr. 2004, 5, 326–334. [Google Scholar] [CrossRef]
- Watanabe, N.; Ogasawara, Y.; Yamaura, Y.; Yamamoto, K.; Wada, N.; Kawamoto, T.; Toyota, E.; Akasaka, T.; Yoshida, K. Geometric Differences of the Mitral Valve Tenting Between Anterior and Inferior Myocardial Infarction with Significant Ischemic Mitral Regurgitation: Quantitation by Novel Software System with Transthoracic Real-time Three-dimensional Echocardiography. J. Am. Soc. Echocardiogr. 2006, 19, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Srichai, M.B.; Grimm, R.A.; Stillman, A.E.; Gillinov, A.M.; Rodriguez, L.L.; Lieber, M.L.; Lara, A.; Weaver, J.A.; McCarthy, P.M.; White, R.D. Ischemic mitral regurgitation: Impact of LV and MV in patients with left ventricular systolic dysfunction. Ann. Thorac. Surg. 2005, 80, 170–178. [Google Scholar] [CrossRef]
- Mihaljevic, T.; Lam, B.-K.; Rajeswaran, J.; Takagaki, M.; Lauer, M.; Gillinov, A.M.; Blackstone, E.H.; Lytle, B.W. Impact of Mitral Valve Annuloplasty Combined with Revascularization in Patients With Functional Ischemic Mitral Regurgitation. J. Am. Coll. Cardiol. 2007, 49, 2191–2201. [Google Scholar] [CrossRef] [Green Version]
- Diodato, M.D.; Moon, M.R.; Pasque, M.K.; Barner, H.B.; Moazami, N.; Lawton, J.S.; Bailey, M.S.; Guthrie, T.J.; Meyers, B.F.; Damiano, R.J. Repair of ischemic mitral regurgitation does not increase mortality or improve long-term survival in patients undergoing coronary artery revascularization: A propensity analysis. Ann. Thorac. Surg. 2004, 78, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Troisfontaines, P.; Toussaint, A.C.; Pierard, L.A. Prognostic importance of exercise-induced changes in mitral regur-gitation in patients with chronic ischemic left ventricular dysfunction. Circulation 2003, 108, 1713–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancellotti, P.; Gerard, P.L.; Pierard, L.A. Long-term outcome of patients with heart failure and dynamic functional mitral regur-gitation. Eur. Heart J. 2005, 26, 1528–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roshanali, F.; Mandegar, M.H.; Yousefnia, M.A.; Alaeddini, F.; Wann, S. Low-Dose Dobutamine Stress Echocardiography to Predict Reversibility of Mitral Regurgitation with CABG. Echocardiography 2006, 23, 31–37. [Google Scholar] [CrossRef]
- Peteiro, J.; Bendayan, I.; Mariñas, J.; Campos, R.; Bouzas, B.; Castro-Beiras, A. Prognostic value of mitral regurgitation assessment during exercise echocardiography in patients with left ventricular dysfunction: A follow-up study of 1.7 ± 1.5 years? Eur. J. Echocardiogr. 2007, 9, 18–25. [Google Scholar] [CrossRef] [Green Version]
- HHillis, L.D.; Smith, P.K.; Bittl, J.A.; Bridges, C.R.; Byrne, J.G.; Cigarroa, J.E.; DiSesa, V.J.; Hiratzka, L.F.; Hutter, A.M.; Jessen, M.E.; et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery a report of the American College of Cardi-ology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2001, 124, e652–e735. [Google Scholar]
- Braun, J.; Voigt, P.G.; Holman, E.R.; Bax, J.J.; Versteegh, M.I.; Klautz, R.J.; Boersma, E.; Dion, R.A. Preoperative left ventricular dimensions predict reverse remodeling following restrictive mitral annuloplasty in ischemic mitral regurgitation? Eur. J. Cardio-Thorac. Surg. 2005, 27, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Spoor, M.T.; Geltz, A.; Bolling, S.F. Flexible Versus Nonflexible Mitral Valve Rings for Congestive Heart Failure: Differential Durability of Repair. Circulation 2006, 114, I67. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef]
- Piérard, L.A.; Carabello, B.A. Ischaemic mitral regurgitation: Pathophysiology, outcomes, and the conundrum of treatment. Eur. Hear. J. 2010, 31, 2996–3005. [Google Scholar] [CrossRef] [Green Version]
- Lancellotti, P.; Marwick, T.A.; Pierard, L. How to manage ischaemic mitral regurgitation. Heart 2008, 94, 1497–1502. [Google Scholar] [CrossRef] [Green Version]
- Enriquez-Sarano, M.; Bailey, K.R.; Seward, J.B.; Tajik, A.J.; Krohn, M.J.; Mays, J.M. Quantitative Doppler assessment of valvular regurgitation. Circulation 1993, 87, 841–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahanian, A.; Baumgartner, H.; Bax, J.; Butchart, E.; Dion, R.; Filippatos, G.; Flachskampf, F.; Hall, R.; Iung, B.; Kasprzak, J.; et al. Guidelines on the management of valvular heart disease: The Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur. Hear. J. 2006, 28, 230–268. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 2002, 105, 539–542. [Google Scholar] [PubMed] [Green Version]
- Yiu, S.F.; Enriquez-Sarano, M.; Tribouilloy, C.; Seward, J.B.; Tajik, A.J. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: A quantitative clinical study. Circulation 2000, 102, 1400–1406. [Google Scholar] [CrossRef] [Green Version]
- Bax, J.J.; Poldermans, D.; Elhendy, A.; Cornel, J.H.; Boersma, E.; Rambaldi, R.; Roelandt, J.R.; Fioretti, P.M. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J. Am. Coll. Cardiol. 1999, 34, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Pellikka, P.A.; Nagueh, S.F.; Elhendy, A.A.; Kuehl, C.A.; Sawada, S.G. American Society of Echocardiography Recommendations for Performance, Interpretation, and Application of Stress Echocardiography. J. Am. Soc. Echocardiogr. 2007, 20, 1021–1041. [Google Scholar] [CrossRef]
- Mallidi, H.R.; Pelletier, M.P.; Lamb, J.; Desai, N.; Sever, J.; Christakis, G.T.; Cohen, G.; Goldman, B.S.E.; Fremes, S. Late outcomes in patients with uncorrected mild to moderate mitral regurgitation at the time of isolated coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2004, 127, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.H.; Kim, M.J.; Kang, S.J.; Song, J.M.; Song, H.; Hong, M.K.; Choi, K.J.; Song, J.K.; Lee, J.W. Mitral valve repair versus revascularization alone in the treatment of ischemic mitral re-gurgitation. Circulation 2006, 114, I-499–I-503. [Google Scholar] [CrossRef] [Green Version]
- Rydén, T.; Bech-Hanssen, O.; Brandrup-Wognsen, G.; Nilsson, F.; Svensson, S.; Jeppsson, A. The importance of grade 2 ischemic mitral regurgitation in coronary artery bypass grafting. Eur. J. Cardio-Thorac. Surg. 2001, 20, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Penicka, M.; Linkova, H.; Lang, O.; Fojt, R.; Kočka, V.; Vanderheyden, M.; Bartunek, J. Predictors of Improvement of Unrepaired Moderate Ischemic Mitral Regurgitation in Patients Undergoing Elective Isolated Coronary Artery Bypass Graft Surgery. Circulation 2009, 120, 1474–1481. [Google Scholar] [CrossRef] [Green Version]
- Hung, J.; Papakostas, L.; Tahta, S.A.; Hardy, B.G.; Bollen, B.A.; Duran, C.M.; Levine, R.A. Mechanism of recurrent ischemic mitral re-gurgitation after annuloplasty: Continued lv remodeling as a moving target. Circulation 2004, 110, II85–II90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michler, R.E.; Smith, P.K.; Parides, M.K.; Ailawadi, G.; Thourani, V.; Moskowitz, A.J.; Acker, M.A.; Hung, J.W.; Chang, H.L.; Perrault, L.P.; et al. Two-Year Outcomes of Surgical Treatment of Moderate Ischemic Mitral Regurgitation. N. Engl. J. Med. 2016, 374, 1932–1941. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Imai, T.; Ohue, K.; Otsuka, R.; Komatsu, R.; Otsuka, M.; Sakanoue, Y.; Naruko, T.; Itoh, A.; Yoshiyama, M.; et al. Relation between reduction in ischaemic mitral regurgitation and improvement in regional left ventricular contractility during low dose dobutamine stress echocardiography. Heart. 2005, 91, 1092–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.K.; Puskas, J.D.; Ascheim, D.D.; Voisine, P.; Gelijns, A.C.; Moskowitz, A.J. Cardiothoracic Surgical Trials Network In-vestigators. Surgical treatment of moderate ischemic mitral regurgitation. N. Engl. J. Med. 2014, 371, 2178–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahhab, Z.; Lim, D.S.; Little, S.H.; Taramasso, M.; Kuwata, S.; Saccocci, M.; Tamburino, C.; Grasso, C.; Frerker, C.; Wißt, T.; et al. MitraClip After Failed Surgical Mitral Valve Repair-An International Multicenter Study. J. Am. Heart. Assoc. 2021, 10, e019236. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, ehab395. [Google Scholar] [CrossRef]
CABGa | CABGmp | CABGmr (Not Included in Analysis) | |
---|---|---|---|
ERO exe | <20 mm2 or ≥20 mm2 | ≥20 mm2 | ≥20 mm2 |
CH dbx | ≤6 mm | 6 mm < CH ≤ 10 mm | CH > 10 mm |
TA dbx | ≤1.2 cm2 | 1.2 cm2 < TA ≤ 2.5 cm2 | TA > 2.5 cm2 |
ERO dbx | <10 mm2 | - * | - * |
CABGa n = 90 | CABGmp n = 55 | p Value | |
---|---|---|---|
Male sex, n (%) | 50 (55.6%) | 31 (56.4%) | 1.0000 |
BMI (kg/m2) | 26.9 (17.6–37.5) | 26.4 (17.8–35.6) | 0.4302 |
Hypertension, n (%) | 58 (64.4%) | 39 (70.9%) | 0.4703 |
Diabetes, n (%) | 27 (30%) | 22 (40%) | 0.2777 |
Hyperlipidemia, n (%) | 58 (64.4%) | 26 (47.3%) | 0.0563 |
Smoking, n (%) | 61 (68%) | 37 (67.3%) | 0.8558 |
Family history of CAD, n (%) | 44 (48.9%) | 24 (43.6%) | 0.6081 |
Chronic kidney disease, n (%) | 10 (11.1%) | 14 (25.5%) | 0.0368 |
Atrial fibrillation, n (%) | 15 (16.7%) | 16 (29.1%) | 0.0956 |
COPD, n (%) | 8 (8.9%) | 7 (12.7%) | 0.5758 |
NYHA | 1.9 (0–4) | 2.4 (0–4) | 0.0032 |
One vessel CAD, n (%) | 2 (2.2%) | 10 (10.9%) | 0.0535 |
Two vessels CAD, n (%) | 22 (24.4%) | 14 (25.5%) | 1.0000 |
Three vessels CAD, n (%) | 66 (73%) | 35 (63.6%) | 0.2664 |
Affected vessel treated by CABG, n (%) LMCA LAD Cx RCA | 21 (23.3%) 89 (98.9%) 70 (77.8%) 78 (86.7%) | 14 (25.5%) 47 (85.5%) 39 (70.9%) 47 (85.5%) | 0.8423 0.0019 0.4288 1.0000 |
CABGa n = 90 | CABGmp n = 55 | p Value | |
---|---|---|---|
Rest echocardiography | |||
EF (%) | 43.6 (18–65) | 39.7 (20–60) | 0.0184 |
WMSI | 1.6 (1.1–2.7) | 1.7 (1.2–2.5) | 0.0024 |
LVDD (mm) | 53.6 (43 –69) | 56.4 (44–72) | 0.0130 |
LVDS (mm) | 40.1 (26–58) | 43.8 (30–64) | 0.0079 |
EDV (mL) | 125.6 (47–283) | 144 (66–252) | 0.0265 |
ESV (mL) | 75.1 (18–213) | 89.8 (27–174) | 0.0363 |
LA (mm) | 41.6 (30–58) | 44.3 (34–54) | 0.0022 |
RV (LAX) (mm) | 25 (19–36) | 26.8 (20–38) | 0.0018 |
SIs | 0.38 (0.17–0.58) | 0.41 (0.16–0.9) | 0.1120 |
SId | 0.49 (0.23–0.77) | 0.52 (0.25–0.94) | 0.1993 |
VC (mm) | 5.2 (4–8) | 6.8 (1–13) | <0.0001 |
PISA (mm) | 6.2 (4–8) | 7.5 (5–11) | <0.0001 |
ERO (mm2) | 15.6 (11–30) | 23.3 (11–49) | <0.0001 |
MR vol (mL) | 23.9 (12–43) | 35.9 (17–72) | <0.0001 |
Coaptation height (mm) | 7 (4–14) | 10 (6–14) | <0.0001 |
Tenting area (cm2) | 1.9 (1.2–3.8) | 2.7 (1.5–5.7) | <0.0001 |
SMA (cm2) | 9.8 (7.1–13.1) | 10.7 (7.2–14.8) | 0.0008 |
Dobutamine echocardiography, n (%) | 90 (100%) | 55 (100%) | |
EF (%) | 51.3 (25–77) | 45.4 (24–64) | 0.0010 |
WMSI | 1.3 (1–2.1) | 1.5 (1–2.3) | 0.0004 |
TRPG (mmHg) | 23.4 (0–44) | 31.5 (12–54) | <0.0001 |
PISA (mm) | 3.9 (2–7) | 6.8 (2–10) | <0.0001 |
ERO (mm2) | 8 (3–16) | 19.8 (0.06–43) | <0.0001 |
MR vol (mL) | 13.2 (4–33) | 29.7 (2–60) | <0.0001 |
Tenting area (cm2) | 1.2 (0.6–3.3) | 2.4 (1.3–4.8) | <0.0001 |
SMA | 8.6 (5.8–12) | 9.6 (6.7–13.9) | 0.0003 |
Exercise echocardiography, n (%) | 90 (100%) | 55 (100%) | |
Workload (Watts) | 63.5 (25–100) | 60.9 (25–100) | p = 0.434 |
EF (%) | 45.5 (19–65) | 38.3 (18–64) | <0.0001 |
TRPG (mmHg) | 30.0 (8–69) | 48.2 (25–81) | <0.0001 |
PISA (mm) | 5.9 (2–9) | 8.9 (7–12) | <0.0001 |
ERO (mm2) | 15 (4–33) | 32.7 (19–79) | <0.0001 |
MR vol (mL) | 22.9 (5–56) | 46.8 (25–119) | <0.0001 |
CABGa n = 90 | CABGmp n = 55 | p Value | |
---|---|---|---|
Length of hospitalization (days) | 20.5 (4–80) | 29.9 (2–114) | 0.0069 |
Atrial fibrillation, n (%) | 27 (30.3%) | 28 (51.9%) | 0.0132 |
Ventricular tachycardia/Ventricular fibrillation, n (%) | 2 (2.3%) | 0 (0%) | 0.5266 |
TIA/stroke, n (%) | 0 (0%) | 2 (3.7%) | 0.1409 |
Infection, n (%) | 22 (24.7%) | 19 (35.2%) | 0.1881 |
Acute kidney disease on dialysis, n (%) | 4 (4.5%) | 14 (25.9%) | 0.0004 |
Respiratory failure, n (%) | 1 (1.1%) | 11 (20.4%) | <0.0001 |
IABP, n (%) | 11 (12.4%) | 29 (52.7%) | <0.0001 |
Cardiogenic shock, n (%) | 4 (4.5%) | 11 (20.4%) | 0.0041 |
Need of antiarrhythmic medication use, n (%) | 23 (25.8%) | 24 (44.4%) | 0.0277 |
Bleeding, n (%) | 1 (1.1%) | 4 (7.4%) | 0.0674 |
Death, n (%) | 5 (5.6%) | 9 (16.4%) | 0.0443 |
CABGa n = 90 | CABGmp n = 55 | p Value | |
---|---|---|---|
Recurrence of IMR (ERO > 10 cm) n, (% patients) | 28 (25%) | 9 (17%) | p < 0.01 |
Hospitalization for cardiovascular reasons, n (%) | 5 (5.9%) | 5 (8.5%) | 0.72 |
Death, n (%) | 1 (1.2%) | 0 (0%) | 1.0000 |
Death/hospitalization/stroke, n (%) | 6 (7%) | 5 (8.5%) | 0.742 |
PISA–difference from baseline (mm) | −2.3 (−6.0–+2.0) | −4.9 (−9.0–+1.0) | <0.0001 |
ERO–difference from baseline (mm2) | −6.7 (−25–+12) | −16.8 (−45–+5) | <0.0001 |
MRvol–difference from baseline (mL) | −9.4 (−37–+28) | −25.9 (−57–−3) | <0.0001 |
ERO ≤ 10 mm2 n = 62 (75%) | ERO > 10 mm2 n = 28 (25%) | p Value | |
---|---|---|---|
Male sex, n (%) | 35 (56.5%) | 16 (57.1%) | 1.0000 |
BMI (kg/m2) | 27.1 (17.6–37.5) | 25.9 (18–31.6) | 0.2356 |
Current smoking, n (%) | 6 (9.7%) | 9 (33.3%) | 0.0163 |
Hypertension, n (%) | 41 (66.1%) | 17 (61.9%) | 0.7936 |
Diabetes, n (%) | 43 (69.4%) | 8 (28.6%) | 1.0000 |
Hyperlipidemia, n (%) | 43 (69.4%) | 13 (47.6%) | 0.1136 |
Atrial fibrillation, n (%) | 10 (16.1%) | 5 (19.1%) | 0.7444 |
COPD, n (%) | 4 (6.5%) | 4 (14.3%) | 0.3618 |
NYHA class | 1.2 (0–3) | 1.5 (1–3) | 0.0336 |
CCS class | 1.0 (1–2) | 1.1 (1–2) | 0.0201 |
Medications, n (%): Beta-adrenolytics ACE-I CC blockers Loop diuretics Statins ASA | 59 (95.2%) 51 (82.3%) 12 (19.4%) 50 (80.7%) 59 (95.2%) 61 ((98.4%) | 27 (95.2%) 24 (85.7%) 1 (4.8%) 24 (85.7%) 25 (90.5%) 8 (90.5%) | 1.0000 1.0000 0.1683 0.7500 0.5965 0.1562 |
LVDD (mm) | 50.5 (41–62) | 54.5 (39–68) | 0.0342 |
LVDS (mm) | 35.9 (22–51) | 41.2 (26–58) | 0.0062 |
EDV (mL) | 105.8 (61–220) | 132.5 (48–244) | 0.0634 |
ESV (mL) | 56.1 (21–150) | 83.5 (20–188) | 0.0223 |
LA (mm) | 40.3 (30–54) | 45.7 (35–65) | 0.0042 |
EF (%) | 52.2 (28–70) | 42.6 (25–60) | 0.0005 |
WMSI | 1.3 (1–1.94) | 1.6 (1.1–2.5) | 0.0109 |
Workload (Watts) | 92.7 (25–125) | 76.1 (25–125) | 0.0109 |
Variable | Univariate Analysis | ||
---|---|---|---|
OR | 95% CI | p Value | |
Female sex | 1.029 | 0.379–2.794 | 0.9560 |
BMI | 920 | 0.802–1.055 | 0.2349 |
Smoking | 4.667 | 1.354–16.090 | 0.0147 |
Hypertension | 0.832 | 0.298–2.322 | 0.7258 |
Diabetes | 0.840 | 0.283–2.489 | 0.7531 |
Hyperlipidemia | 0.402 | 0.146–1.105 | 0.0774 |
Chronic kidney disease | 0.711 | 0.139–3.646 | 0.6822 |
Atrial fibrillation | 1.224 | 0.339–4.411 | 0.7578 |
COPD | 2.417 | 0.494–11.822 | 0.2760 |
One vessel disease | 3.050 | 0.182–51.039 | 0.4379 |
Two vessels disease | 0.441 | 0.115–1.691 | 0.2326 |
Three vessels disease | 0.889 | 0.294–2.685 | 0.8346 |
Beta-adrenolytic at discharge | 1.017 | 0.100–10.340 | 0.9887 |
ACEI at discharge | 1.294 | 0.324–5.170 | 0.7153 |
CC blockers at discharge | 0.208 | 0.025–1.710 | 0.1441 |
Loop diuretics at discharge | 1.440 | 0.364–5.695 | 0.6034 |
Statins at discharge | 0.483 | 0.075–3.110 | 0.4438 |
ASA at discharge | 0.156 | 0.013–1.814 | 0.1377 |
Rest TTE before surgery | |||
EF | 0.960 | 0.960–1.014 | 0.1468 |
WMSI | 2.330 | 0.504–10.774 | 0.2790 |
LVDD | 1.039 | 0.961–1.123 | 0.3351 |
LVDS | 1.027 | 0.963–1.095 | 0.4200 |
EDV | 1.006 | 0.996–1.015 | 0.2315 |
ESV | 1.007 | 0.996–1.018 | 0.2310 |
LA | 1.107 | 1.001–1.225 | 0.0475 |
TRPG | 1.057 | 0.992–1.126 | 0.0855 |
VC | 0.700 | 0.337–1.451 | 0.3372 |
PISA | 1.297 | 0.804–2.093 | 0.2871 |
ERO | 1.33 | 0.008–18.45 | 0.1876 |
MR volume | 1.077 | 0.998–1.163 | 0.0573 |
SIs | 30.790 | 0.172–68.23 | 0.1952 |
SId | 4.253 | 0.051–351.768 | 0.547 |
Coaptation height | 6.262 | 0.436–89.843 | 0.1770 |
Tenting area | 2.955 | 0.958–9.113 | 0.0593 |
Dobutamine TTE before surgery | |||
EF | 0.961 | 0.913–1.012 | 0.1337 |
WMSI | 4.384 | 0.727–26.455 | 0.1070 |
PISA | 1.561 | 1.010–2.414 | 0.0450 |
ERO | 1.23 | 0.039–23.1 | 0.1115 |
MR volume | 1.103 | 0.993–1.225 | 0.0669 |
Coaptation height (CHdbx) | 5.52 | 1.037–92.7 | 0.0480 |
Tenting area (TAdbx) | 6.307 | 1.190–33.424 | 0.0304 |
Exercise echocardiography before surgery | |||
EF | 0.958 | 0.908–1.011 | 0.1184 |
TRPG | 1.040 | 0.996–1.086 | 0.0757 |
PISA | 1.243 | 0.938–1.647 | 0.1306 |
MR volume | 1.044 | 0.985–1.106 | 0.1447 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piatkowski, R.; Kochanowski, J.; Budnik, M.; Peller, M.; Grabowski, M.; Opolski, G. Stress Echocardiography Protocol for Deciding Type of Surgery in Ischemic Mitral Regurgitation: Predictors of Mitral Regurgitation Recurrence following CABG Alone. J. Clin. Med. 2021, 10, 4816. https://doi.org/10.3390/jcm10214816
Piatkowski R, Kochanowski J, Budnik M, Peller M, Grabowski M, Opolski G. Stress Echocardiography Protocol for Deciding Type of Surgery in Ischemic Mitral Regurgitation: Predictors of Mitral Regurgitation Recurrence following CABG Alone. Journal of Clinical Medicine. 2021; 10(21):4816. https://doi.org/10.3390/jcm10214816
Chicago/Turabian StylePiatkowski, Radoslaw, Janusz Kochanowski, Monika Budnik, Michal Peller, Marcin Grabowski, and Grzegorz Opolski. 2021. "Stress Echocardiography Protocol for Deciding Type of Surgery in Ischemic Mitral Regurgitation: Predictors of Mitral Regurgitation Recurrence following CABG Alone" Journal of Clinical Medicine 10, no. 21: 4816. https://doi.org/10.3390/jcm10214816
APA StylePiatkowski, R., Kochanowski, J., Budnik, M., Peller, M., Grabowski, M., & Opolski, G. (2021). Stress Echocardiography Protocol for Deciding Type of Surgery in Ischemic Mitral Regurgitation: Predictors of Mitral Regurgitation Recurrence following CABG Alone. Journal of Clinical Medicine, 10(21), 4816. https://doi.org/10.3390/jcm10214816