Artificial Intelligence—A Tool for Risk Assessment of Delayed-Graft Function in Kidney Transplant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Scoring
2.3. Machine Learning Models
3. Results
Study Population Baseline Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siedlecki, A.; Irish, W.; Brennan, D.C. Delayed graft function in the kidney transplant. Am. J. Transplant. 2011, 11, 2279–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nashan, B.; Abbud-Filho, M.; Citterio, F. Prediction, prevention, and management of delayed graft function: Where are we now? Clin. Transpl. 2016, 30, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Helfer, M.S.; Pompeo, J.C.; Costa, O.R.S.; Vicari, A.R.; Ribeiro, A.R.; Manfro, R.C. Long-term effects of delayed graft function duration on function and survival of deceased donor kidney transplants. J. Bras. Nefrol. 2019, 41, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Helanterä, I.; Ibrahim, H.N.; Lempinen, M.; Finne, P. Donor age, cold ischemia time, and delayed graft function. Clin. J. Am. Soc. Nephrol. 2020, 15, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Port, F.K.; Bragg-Gresham, J.L.; Metzger, R.A.; Dykstra, D.M.; Gillespie, B.W.; Young, E.W.; Delmonico, F.L.; Wynn, J.J.; Merion, R.M.; Wolfe, R.A.; et al. Donor characteristics associated with reduced graft survival: An approach to expanding the pool of kidney donors. Transplantation 2002, 74, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Irish, W.D.; Ilsley, J.N.; Schnitzler, M.A.; Feng, S.; Brennan, D.C. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am. J. Transpl. 2010, 10, 2279–2286. [Google Scholar] [CrossRef]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Connor, C.W. Artificial intelligence and machine learning in anesthesiology. Anesthesiology 2019, 131, 1346–1359. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, N.; Cornell, L.D. Donor kidney evaluation. Surg. Pathol. Clin. 2014, 7, 357–365. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; Van Lente, F. Expressing the modification of diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem. 2007, 53, 766–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, P.S.; Schaubel, D.E.; Guidinger, M.K.; Andreoni, K.A.; Wolfe, R.A.; Merion, R.M.; Port, F.K.; Sung, R.S. A comprehensive risk quantification score for deceased donor kidneys: The kidney donor risk index. Transplantation 2009, 88, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Pruett, T.L.; Vece, G.R.; Carrico, R.J.; Klassen, D.K. US deceased kidney transplantation: Estimated GFR, donor age and KDPI association with graft survival. EClinicalMedicine 2021, 37, 100980. [Google Scholar] [CrossRef] [PubMed]
- Zens, T.J.; Danobeitia, J.S.; Leverson, G.; Chlebeck, P.J.; Zitur, L.J.; Redfield, R.R.; D’Alessandro, A.M.; Odorico, S.; Kaufman, D.B.; Fernandez, L.A. The impact of kidney donor profile index on delayed graft function and transplant outcomes: A single-center analysis. Clin. Transpl. 2018, 32, e13190. [Google Scholar] [CrossRef] [PubMed]
- Coca, A.; Arias-Cabrales, C.; Valencia, A.L.; Burballa, C.; Bustamante-Munguira, J.; Redondo-Pachón, D.; Acosta-Ochoa, I.; Crespo, M.; Bustamante, J.; Mendiluce, A.; et al. Validation of a survival benefit estimator tool in a cohort of European kidney transplant recipients. Sci. Rep. 2020, 10, 17109. [Google Scholar] [CrossRef]
- Konieczny, A.; Stojanowski, J.; Krajewska, M.; Kusztal, M. Machine learning in prediction of IgA nephropathy outcome: A comparative approach. J. Pers. Med. 2021, 11, 312. [Google Scholar] [CrossRef] [PubMed]
- Hassine, K.; Erbad, A.; Hamila, R. Important complexity reduction of random forest in multi-classification problem. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 226–231. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Mizutani, E.; Dreyfus, S.E. On complexity analysis of supervised MLP-learning for algorithmic comparisons. In Proceedings of the IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222), Washington, DC, USA, 15–19 July 2001; Volume 341, pp. 347–352. [Google Scholar]
- Metzger, R.A.; Delmonico, F.L.; Feng, S.; Port, F.K.; Wynn, J.J.; Merion, R.M. Expanded criteria donors for kidney transplantation. Am. J. Transpl. 2003, 3, 114–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, S.D.; de Andrade, L.G.M.; Barroso, F.V.C.; Oliveira, C.M.C.d.; Daher, E.D.F.; Fernandes, P.F.C.B.C.; Esmeraldo, R.d.M.; Sandes-Freitas, T.V.d. The impact of deceased donor maintenance on delayed kidney allograft function: A machine learning analysis. PLoS ONE 2020, 15, e0228597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawakita, S.; Beaumont, J.L.; Jucaud, V.; Everly, M.J. Personalized prediction of delayed graft function for recipients of deceased donor kidney transplants with machine learning. Sci. Rep. 2020, 10, 18409. [Google Scholar] [CrossRef]
- Decruyenaere, A.; Decruyenaere, P.; Peeters, P.; Vermassen, F.; Dhaene, T.; Couckuyt, I. Prediction of delayed graft function after kidney transplantation: Comparison between logistic regression and machine learning methods. BMC Med. Inform. Decis. Mak. 2015, 15, 83. [Google Scholar] [CrossRef] [Green Version]
- Jen, K.Y.; Albahra, S.; Yen, F.; Sageshima, J.; Chen, L.X.; Tran, N.; Rashidi, H.H. Automated en masse machine learning model generation shows comparable performance as classic regression models for predicting delayed graft function in renal allografts. Transplantation 2021. [Google Scholar] [CrossRef] [PubMed]
- Hey, T.; Butler, K.; Jackson, S.; Thiyagalingam, J. Machine learning and big scientific data. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debout, A.; Foucher, Y.; Trébern-Launay, K.; Legendre, C.; Kreis, H.; Mourad, G.; Garrigue, V.; Morelon, E.; Buron, F.; Rostaing, L.; et al. Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation. Kidney Int. 2015, 87, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauronen, J.; Peräsaari, J.P.; Saarinen, T.; Jaatinen, T.; Lempinen, M.; Helanterä, I. Shorter cold ischemia time in deceased donor kidney transplantation reduces the incidence of delayed graft function especially among highly sensitized patients and kidneys from older donors. Transpl. Proc. 2020, 52, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Serrano, O.K.; Vock, D.M.; Chinnakotla, S.; Dunn, T.B.; Kandaswamy, R.; Pruett, T.L.; Feldman, R.; Matas, A.J.; Finger, E.B.; Finger, E.B. The relationships between cold ischemia time, kidney transplant length of Stay, and transplant-related costs. Transplantation 2019, 103, 401–411. [Google Scholar] [CrossRef] [PubMed]
Parameter | Population (Mean ± Standard Derivation (SD) and Range from Minimal to Maximal Value) Categorical (If Applicable) Not Included in Program Analysis |
---|---|
donor’s age (years) | 46.38 ± 14.02 (18 ÷ 69) |
donor’s gender (male/female) | 52/36 (59.1%/40.9%) |
donor’s weight (kg) | 77.34 ± 15.8 (41 ÷ 145) |
donor’s height (cm) | 172.82 ± 9.71 (152 ÷ 200) |
donor’s BMI (kg/m2) | 25.81 ± 4.46 (16.02 ÷ 46.81) |
donor’s sCr before procurement (mg/dL) | 1.24 ± 0.61 (0.36 ÷ 3.63) |
donor’s eGFR before procurement (mL/min/1.73 m2) | 78.03 ± 42.91 (18.59 ÷ 214.76) |
donor’s sCr min (mg/dL) | 1.06 ± 0.48 (0.36 ÷ 3) |
donor’s eGFR min (mL/min/1.73 m2) | 89.0 ± 44.23 (23.51 ÷ 214.76) |
donor’s DM (No/Yes) | 83/5 (94.32%/5.68%) |
donor’s HTN (No/Yes) | 65/23 (73.86%/26.14%) |
cause of donor’s death (head trauma/cerebrovascular/anoxia) | 32/38/18 (36.36%/43.18%/20.46%) |
KDPI | 52.8 ± 27.89 (2 ÷ 99) |
KDRI | 1.11 ± 0.37 (0.59 ÷ 2.24) |
catecholamines use (No/Yes) | 9/79 (10.23%/89.77%) |
catecholamines number (0/1/2/3) | 9/62/16/1 (10.23%/70.45%/18.18%/1.14%) |
length of stay in the ICU (days) | 5.43 ± 3.61 (1 ÷ 22) |
recipient’s age (years) | 50.55 ± 13.08 (19 ÷ 72) |
recipient’s gender (Male/Female) | 112/45 (71.3%/28.7%) |
recipient weight (kg) | 75.49 ± 13.45 (47 ÷ 105) |
recipient’s height (cm) | 172.01 ± 9.11 (145 ÷ 196) |
recipient’s BMI (kg/m2) | 25.43 ± 3.61 (18.31 ÷ 33.36) |
recipient’s residual diuresis (mL/24 h) | 778.34 ± 645.13 (0 ÷ 3000) |
recipient’s HTN (No/Yes) | 3/154 (1.9%/98.1%) |
recipient’s DM (No/Yes) | 122/35 (77.7%/22.3%) |
type of RRT (hemodialysis/peritoneal dialysis) | 140/17 (89.2%/10.8%) |
RTT duration (years) | 2.27 ± 1.67 (0 ÷ 7) |
KTx number (1st/2nd) | 141/16 (89.8%/10.2%) |
EPTS (%) | 35.92 ± 27.52 (1 ÷ 97) |
number of HLA mismatches (0/1/2/3/4/5/6) | 4/10/32/49/41/19/2 (2.5%/6.4%/20.4%/31.2%/26.1%/12.1%/1.3%) |
CIT (h) | 20.29 ± 6.63 (1 ÷ 36) |
immunosuppression (cyclosporin/tacrolimus) | 17/140 (10.8%/89.2%) |
basiliximab in induction therapy (No/Yes) | 131/26 (83.4%/16.6%) |
DGF duration (days) | 3.55 ± 5.48 (0 ÷ 22) |
LOS (days) | 22.14 ± 10.62 (10 ÷ 69) |
sCr at discharge (mg/dL) | 1.51 ± 0.43 (0.69 ÷ 2.56) |
eGFR at discharge (mL/min/1.73 m2) | 53.46 ± 17.33 (24.89 ÷ 102.73) |
DGF (No/Yes) | 97/60 (61.8%/38.2%) |
Patients’ Parameters (N) | Study Cohort (Training Set) n = 125 | Test Cohort (Testing Set) n = 32 |
---|---|---|
donor’s age (years) | 46.35 ± 13.68 | 45.56 ± 15.18 |
donor’s gender (male/female) | 73/52 | 21/11 |
donor’s weight (kg) | 77.28 ± 16.41 | 79.34 ± 14.5 |
donor’s height (cm) | 172.36 ± 9.9 | 175.31 ± 9.32 |
donor’s BMI (kg/m2) | 25.92 ± 4.66 | 25.75 ± 3.94 |
donor’s sCr before procurement (mg/dL) | 1.25 ± 0.63 | 1.24 ± 0.54 |
donor’s eGFR before procurement (mL/min/1.73 m2) | 78.22 ± 43.32 | 77.49 ± 40.62 |
donor’s sCr min (mg/dL) | 1.05 ± 0.47 | 1.08 ± 0.49 |
donor’s eGFR min (mL/min/1.73 m2) | 90.64 ± 45.74 | 87.01 ± 38.58 |
donor’s DM (No/Yes) | 119/6 | 31/1 |
donor’s HTN (No/Yes) | 92/33 | 25/7 |
KDPI | 52.83 ± 27.21 | 50.38 ± 28.76 |
KDRI | 1.1 ± 0.36 | 1.07 ± 0.35 |
cause of donor’s death (head trauma/cerebrovascular/anoxia) | 44/52/29 | 14/13/5 |
catecholamines use (No/Yes) | 13/112 | 4/28 |
catecholamines number (0/1/2/3) | 13/87/23/2 | 4/22/6/0 |
length of stay in the ICU (days) | 5.35 ± 3.51 | 5.81 ± 4.37 |
EPTS (%) | 35.98 ± 27.03 | 35.66 ± 29.81 |
recipient’s age (years) | 51.26 ± 12.74 | 47.81 ± 14.24 |
recipient’s gender (male/female) | 89/36 | 23/9 |
number of HLA mismatches | 3.14 | 3.13 |
CIT (h) | 20.34 ± 6.83 | 20.06 ± 5.87 |
immunosuppression (cyclosporine/tacrolimus) | 14/111 | 3/29 |
basiliximab in induction therapy (No/Yes) | 103/22 | 28/4 |
recipient’s height (cm) | 171.46 ± 8.92 | 174.16 ± 9.66 |
recipient weight (kg) | 74.55 ± 13.03 | 79.16 ± 14.65 |
recipient’s BMI (kg/m2) | 25.28 ± 3.55 | 26.01 ± 3.83 |
recipient’s residual diuresis (mL/24 h) | 772.8 ± 634.67 | 800 ± 694.68 |
recipient’s HTN (No/Yes) | 2/123 | 1/31 |
recipient’s DM (No/Yes) | 100/25 | 22/10 |
type of RRT (hemodialysis/peritoneal dialysis) | 109/16 | 31/1 |
RTT duration (years) | 2.27 | 2.34 |
KTx number (1st/2nd) | 113/12 | 28/4 |
DGF (No/Yes) | 79/46 | 18/14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konieczny, A.; Stojanowski, J.; Rydzyńska, K.; Kusztal, M.; Krajewska, M. Artificial Intelligence—A Tool for Risk Assessment of Delayed-Graft Function in Kidney Transplant. J. Clin. Med. 2021, 10, 5244. https://doi.org/10.3390/jcm10225244
Konieczny A, Stojanowski J, Rydzyńska K, Kusztal M, Krajewska M. Artificial Intelligence—A Tool for Risk Assessment of Delayed-Graft Function in Kidney Transplant. Journal of Clinical Medicine. 2021; 10(22):5244. https://doi.org/10.3390/jcm10225244
Chicago/Turabian StyleKonieczny, Andrzej, Jakub Stojanowski, Klaudia Rydzyńska, Mariusz Kusztal, and Magdalena Krajewska. 2021. "Artificial Intelligence—A Tool for Risk Assessment of Delayed-Graft Function in Kidney Transplant" Journal of Clinical Medicine 10, no. 22: 5244. https://doi.org/10.3390/jcm10225244
APA StyleKonieczny, A., Stojanowski, J., Rydzyńska, K., Kusztal, M., & Krajewska, M. (2021). Artificial Intelligence—A Tool for Risk Assessment of Delayed-Graft Function in Kidney Transplant. Journal of Clinical Medicine, 10(22), 5244. https://doi.org/10.3390/jcm10225244