Robot-Assisted Training for Upper Limb in Stroke (ROBOTAS): An Observational, Multicenter Study to Identify Determinants of Efficacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Rehabilitation Paradigm
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Primary Outcome Measure
3.2. Secondary Outcome Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dobkin, B.H. Strategies for stroke rehabilitation. Lancet Neurol. 2004, 3, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Morone, G.; Cocchi, I.; Paolucci, S.; Iosa, M. Robot-assisted therapy for arm recovery for stroke patients: State of the art and clinical implication. Expert Rev. Med. Devices 2020, 17, 223–233. [Google Scholar] [CrossRef]
- Morone, G.; Ghanbari Ghooshchy, S.; Palomba, A.; Baricich, A.; Santamato, A.; Ciritella, C.; Ciancarelli, I.; Molteni, F.; Gimigliano, F.; Iolascon, G.; et al. Differentiation among bio- and augmented- feedback in technologically assisted rehabilitation. Expert Rev. Med. Devices 2021, 17, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Morone, G.; Palomba, A.; Cinnera, A.M.; Agostini, M.; Aprile, I.; Arienti, C.; Paci, M.; Casanova, E.; Marino, D.; La Rosa, G.; et al. “CICERONE” Italian Consensus Conference on Robotic in Neurorehabilitation. Systematic review of guidelines to identify recommendations for upper limb robotic rehabilitation after stroke. Eur. J. Phys. Rehabil. Med. 2021, 57, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2018, 9, CD006876. [Google Scholar] [CrossRef] [PubMed]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Pollock, A.; Pohl, M.; Kugler, J.; Elsner, B. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. J. Neuroeng. Rehabil. 2020, 17, 83. [Google Scholar] [CrossRef]
- Rodgers, H.; Bosomworth, H.; Krebs, H.I.; van Wijck, F.; Howel, D.; Wilson, N.; Aird, L.; Alvarado, N.; Andole, S.; Cohen, D.L.; et al. Robot assisted training for the upper limb after stroke (RATULS): A multicentrerandomised controlled trial. Lancet 2019, 394, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Milot, M.H.; Spencer, S.J.; Chan, V.; Allington, J.P.; Klein, J.; Chou, C.; Pearson-Fuhrhop, K.; Bobrow, J.E.; Reinkensmeyer, D.J.; Cramer, S.C. Corticospinal excitability as a predictor of functional gains at the affected upper limb following robotic training in chronic stroke survivors. Neurorehabil. Neural Repair 2014, 28, 819–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benvenuti Nel Portale Linee Guida ISO-SPREAD. Available online: http://www.iso-spread.it/ (accessed on 6 June 2021).
- Arya, K.N.; Verma, R.; Garg, R.K. Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients. Top. Stroke Rehabil. 2011, 18, 599–610. [Google Scholar]
- Page, S.J.; Fulk, G.D.; Boyne, P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 2012, 92, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Woodbury, M.L.; Velozo, C.A.; Richards, L.G.; Duncan, P.W. Rasch analysis staging methodology to classify upper extremity movement impairment after stroke. Arch. Phys. Med. Rehabil. 2013, 94, 1527–1533. [Google Scholar] [CrossRef]
- Duret, C.; Grosmaire, A.G.; Krebs, H.I. Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach. Front. Neurol. 2019, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, R.S.; Sorrentino, G.; Cassio, A.; Mazzoli, D.; Andrenelli, E.; Bizzarini, E.; Campanini, I.; Carmignano, S.M.; Cerulli, S.; Chisari, C.; et al. Robotic-assisted gait rehabilitation following stroke: A systematic review of current guidelines and practical clinical recommendations. Eur. J. Phys. Rehabil. Med. 2021, 57, 460–471. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, H.; Zhang, J.; Yang, S.; Cai, S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A Systematic Review and Meta-Analysis. Phys. Ther. 2021, 101, pzab010. [Google Scholar] [CrossRef] [PubMed]
- Duret, C.; Hutin, E.; Lehenaff, L.; Gracies, J.M. Do all sub acute stroke patients benefit from robot-assisted therapy? A retrospective study. Restor. Neurol. Neurosci. 2015, 33, 57–65. [Google Scholar] [CrossRef]
- Aprile, I.; Germanotta, M.; Cruciani, A.; Loreti, S.; Pecchioli, C.; Cecchi, F.; Montesano, A.; Galeri, S.; Diverio, M.; Falsini, C.; et al. Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. J. Neurol. Phys. Ther. 2020, 44, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, M.I.; García-Culebras, A.; Torres-López, C.; Medina, V.; Fraga, E.; Vázquez-Reyes, S.; Jareño-Flores, T.; Juan MSegura, G.; Lizasoain, I.; Moro, M.Á. Post-stroke Neurogenesis: Friend or Foe? Front. Cell Dev. Biol. 2021, 9, 657846. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, M.; Maggio, M.G.; De Cola, M.C.; Carmela, C.; Porcari, B.; la Rosa, G.; De Luca, R.; Naro, A.; Calabrò, R.S. Beyond motor recovery after stroke: The role of hand robotic rehabilitation plus virtual reality in improving cognitive function. J. Clin. Neurosci. 2021, 92, 11–16. [Google Scholar] [CrossRef]
- Isaacs-Itua, A.; Wong, S. Stroke rehabilitation and recovery. Br. J. Hosp. Med. 2021, 82, 1–7. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Russo, M.; Bramanti, P.; Carioti, L.; Balletta, T.; Buda, A.; Manuli, A.; Filoni, S.; Bramanti, A. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial. J. Neuroeng. Rehabil. 2018, 15, 35. [Google Scholar] [CrossRef]
- Volz, L.J.; Sarfeld, A.S.; Diekhoff, S.; Rethme, A.K.; Pool, E.-M.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Motor cortex excitability and connectivity in chronic stroke: A multimodal model of functional reorganization. Brain Struct. Funct. 2015, 220, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Oujamaa, L.; Relave, I.; Froger, J.; Mottet, D.; Pelissier, J.Y. Rehabilitation of arm function after stroke. Literature review. Ann. Phys. Rehabil. Med. 2009, 52, 269–293. [Google Scholar] [CrossRef] [PubMed]
- Doussoulin, A.; Arancibia, M.; Saiz, J.; Silva, A.; Luengo, M.; Salazar, A.P. Recovering functional independence after a stroke through Modified Constraint-Induced Therapy. NeuroRehabilitation 2017, 40, 243–249. [Google Scholar] [CrossRef] [PubMed]
Exoskeleton | Armeo Power (Hocoma AG, Switzerland) | The device has been specifically designed for arm and hand therapy in an early stage of rehabilitation. It enables even patients with severe movement impairments to perform exercises with high repetitions (high intensity), which is paramount for relearning motor function. It uses sensors and intelligent algorithms to recognize when the patient cannot carry out movement in a 3D space and assists the patient’s arm as much as needed to successfully reach the goal of the exercise in a 2D exergaming. |
Armeo Spring (Hocoma AG, Switzerland) | By providing arm weight support, the Armeo Spring enables patients to use any remaining motor functions and encourages them to achieve a higher number of reach and grasp movements based on specific therapy goals in a 3D space working environment. All activity during the training is based on the patient’s movements. An extensive library of game-like augmented performance feedback exercises have been designed to train core movement patterns commonly used in daily living activities. | |
End-effector | InMotion 2.0 (Bionik Laboratories, Watertown, MA, USA) | This new generation InMotion ARM® is an evidence-based neurorehabilitation technology that provides patients with real-time Assistance-as-Needed™. The system is used for intensive motor therapy, consisting of two robots that work together to train to reach and grasp and release movements at the same time. The device quietly monitors the patient’s movements during therapy while it gently assists where needed to help them complete various motor therapy activities. |
ARMOTION (Reha Technology AG, Switzerland) | Armotion is a robotic solution in the treatment of severe and moderate neuromuscular dysfunction of the upper extremity. It maximizes the patient’s capability to undertake personal self-care and domestic tasks by rebuilding functional ability and the required skills for independence in daily life. It allows engaging and repeatable exercises with video feedback/videofeedback in a 2D workspace, data collection, and reporting and accurate patient performance assessment. | |
MOTORE (Humanware, Pisa, Italy) | MOTORE “Mobile robot for upper limb neurOrtho Rehabilitation” is designed to provide rehabilitation exercises and to measure the person’s progress and performance. It is equipped with motors that actively assist movement to obtain the best rehabilitation: the system supports or opposes movement according to patients’ needs. | |
ReoGo™ (Motorika, NJ, USA) | REOGO is a motorized and ergonomic robotic arm, which combines personalized, patient-specific exercises and engaging games. Motorika’s ReoGo™ enables two-or three-dimensional movements, allowing patients who have suffered a stroke or other neurological injuries to essentially retrain the brain through measured repetitive motion and video feedback. |
Gender/n | Age (Years)/n | Time Since Stroke/n | FMA-UE | MI | B&B | FAT | MAS | NRS | BI | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shoulder | Elbow | Wrist | ||||||||||
Exoskeleton (n = 65) | M/37 | <50: 12 | early-subacute: 17 | 21 ± 5 | 41 ± 10 | 56 ± 13 | 1.3 ± 0.3 | 0.6 ± 0.2 | 1.1 ± 0.3 | 0.6 ± 0.2 | 1.6 ± 0.4 | 22 ± 5 |
50–70: 32 | late-subacute: 26 | 17 ± 3 | 38 ± 7 | 47 ± 09 | 2 ± 0.4 | 0.6 ± 0.1 | 0.9 ± 0.2 | 1 ± 0.2 | 3.3 ± 0.6 | 34 ± 7 | ||
F/28 | >70: 21 | chronic: 22 | 19 ± 4 | 45 ± 9 | 55 ± 12 | 1.5 ± 0.3 | 0.7 ± 0.1 | 1.2 ± 0.2 | 0.8 ± 0.2 | 3.6 ± 0.8 | 52 ± 11 | |
End-effector (n = 40) | M/22 | <50: 6 | early-subacute: 26 | 19 ± 4 | 48 ± 9 | 55 ± 11 | 1.5 ± 0.3 | 0.7 ± 0.1 | 1.1 ± 0.2 | 0.8 ± 0.2 | 3.7 ± 0.7 | 53 ± 10 |
50–70: 19 | late-subacute: 7 | 35 ± 13 | 58 ± 22 | 94 ± 36 | 1.9 ± 0.7 | 1.5 ± 0.6 | 1.5 ± 0.6 | 1.2 ± 0.4 | 1.1 ± 0.4 | 44 ± 17 | ||
F/18 | >70: 15 | chronic: 7 | 29 ± 11 | 37 ± 14 | 52 ± 2 | 1 ± 0.4 | 1 ± 0.4 | 1.3 ± 0.5 | 1.5 ± 0.5 | 2.6 ± 1 | 51 ± 19 |
T0 | T1 | T1–T0 p-Value | T2 | T2–T0 p-Value | ||
---|---|---|---|---|---|---|
Exoskeleton | FMA-UE | 19 ± 2 | 30 ± 4.5 | <0.0001 | 39 ± 5 | <0.0001 |
MI | 41 ± 5 | 61 ± 8 | <0.0001 | 60 ± 7 | <0.0001 | |
B&B | 53 ± 7 | 65 ± 8 | <0.0001 | 75 ± 9 | <0.0001 | |
FAT | 1.6 ± 0.2 | 2.9 ± 1.1 | <0.0001 | 3.5 ± 2 | <0.0001 | |
MAS shoulder | 0.6 ± 0.1 | 2 ± 0.4 | <0.0001 | 1.4 ± 0.5 | <0.0001 | |
MAS elbow | 0.7 ± 0.4 | 1 ± 0.1 | <0.0001 | 1 ± 0.1 | <0.0001 | |
MAS wrist | 0.7 ± 0.3 | 0.8 ± 0.1 | 0.01 | 1 ± 0.1 | <0.0001 | |
NRS | 2.8 ± 0.4 | 2 ± 0.5 | <0.0001 | 1 ± 0.1 | <0.0001 | |
BI | 36 ± 5 | 45 ± 6 | <0.0001 | 48 ± 7 | <0.0001 | |
End-effector | FMA-UE | 28 ± 5 | 34 ± 7 | <0.0001 | 47 ± 7.5 | <0.0001 |
MI | 48 ± 7.5 | 71 ± 11 | <0.0001 | 75 ± 12 | <0.0001 | |
B&B | 67 ± 11 | 62 ± 4 | 0.0008 | 72 ± 4 | 0.0008 | |
FAT | 1.5 ± 0.2 | 2.6 ± 1.5 | <0.0001 | 3.6 ± 1.2 | <0.0001 | |
MAS shoulder | 0.9 ± 0.2 | 2 ± 0.6 | <0.0001 | 1.5 ± 0.8 | <0.0001 | |
MAS elbow | 1.3 ± 0.2 | 1 ± 0.1 | <0.0001 | 1 ± 0.1 | <0.0001 | |
MAS wrist | 1.2 ± 0.2 | 1 ± 0.1 | <0.0001 | 1 ± 0.1 | <0.0001 | |
NRS | 2.5 ± 0.4 | 2 ± 0.4 | <0.0001 | 1.5 ± 0.5 | <0.0001 | |
BI | 49 ± 8 | 59 ± 9 | <0.0001 | 62 ± 10 | <0.0001 |
Time Effect (F, p) | T1–T0 | T2–T0 | ||
---|---|---|---|---|
Exoskeleton n = 65 | Armeo Power n = 42 | 83, <0.0001 | <0.0001 | <0.0001 |
Armeo Spring n = 23 | 76, <0.0001 | 0.001 | 0.001 | |
End-effector n = 40 | InMotion® 2.0 n = 9 | 85, <0.0001 | <0.0001 | <0.0001 |
ARMOTION n = 6 | 75, <0.0001 | 0.002 | <0.0001 | |
MOTORE n = 17 | 26, <0.0001 | 0.003 | <0.0001 | |
REOGO n = 8 | 15, <0.0001 | 0.015 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabrò, R.S.; Morone, G.; Naro, A.; Gandolfi, M.; Liotti, V.; D’aurizio, C.; Straudi, S.; Focacci, A.; Pournajaf, S.; Aprile, I.; et al. Robot-Assisted Training for Upper Limb in Stroke (ROBOTAS): An Observational, Multicenter Study to Identify Determinants of Efficacy. J. Clin. Med. 2021, 10, 5245. https://doi.org/10.3390/jcm10225245
Calabrò RS, Morone G, Naro A, Gandolfi M, Liotti V, D’aurizio C, Straudi S, Focacci A, Pournajaf S, Aprile I, et al. Robot-Assisted Training for Upper Limb in Stroke (ROBOTAS): An Observational, Multicenter Study to Identify Determinants of Efficacy. Journal of Clinical Medicine. 2021; 10(22):5245. https://doi.org/10.3390/jcm10225245
Chicago/Turabian StyleCalabrò, Rocco Salvatore, Giovanni Morone, Antonino Naro, Marialuisa Gandolfi, Vitalma Liotti, Carlo D’aurizio, Sofia Straudi, Antonella Focacci, Sanaz Pournajaf, Irene Aprile, and et al. 2021. "Robot-Assisted Training for Upper Limb in Stroke (ROBOTAS): An Observational, Multicenter Study to Identify Determinants of Efficacy" Journal of Clinical Medicine 10, no. 22: 5245. https://doi.org/10.3390/jcm10225245
APA StyleCalabrò, R. S., Morone, G., Naro, A., Gandolfi, M., Liotti, V., D’aurizio, C., Straudi, S., Focacci, A., Pournajaf, S., Aprile, I., Filoni, S., Zanetti, C., Leo, M. R., Tedesco, L., Spina, V., Chisari, C., Taveggia, G., Mazzoleni, S., Smania, N., ... Bonaiuti, D. (2021). Robot-Assisted Training for Upper Limb in Stroke (ROBOTAS): An Observational, Multicenter Study to Identify Determinants of Efficacy. Journal of Clinical Medicine, 10(22), 5245. https://doi.org/10.3390/jcm10225245