Effect of the Lymphocyte Activation Gene 3 Polymorphism rs951818 on Mortality and Disease Progression in Patients with Sepsis—A Prospective Genetic Association Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
- (I)
- Patient under immunosuppressive therapy or cancer-related chemotherapy;
- (II)
- Myocardial infarction within six weeks before study enrolment;
- (III)
- Chronic infection with human immunodeficiency virus (HIV);
- (IV)
- Congestive heart failure New York Heart Association (NYHA) level IV;
- (V)
- End-stage incurable disease with a reduced probability of surviving the following 28 days;
- (VI)
- Pregnancy or breastfeeding;
- (VII)
- Patient aged below 18 years;
- (VIII)
- “Do Not Resuscitate” (DNR) or “Do Not Treat” (DNT) order;
- (IX)
- Patient in persistent vegetative stage (apallic syndrome);
- (X)
- Patient participation in interventional studies;
- (XI)
- Familial relationship to a member of the study team.
2.2. Data Collection
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Allele Distribution
3.2. Baseline Characteristics
3.3. Kaplan–Meier Survival Analysis
3.4. Disease Severity
3.5. Multivariate Cox Regression Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin converting enzyme |
ALT | Alanine transaminase |
APACHE II | Acute Physiology and Chronic Health Evaluation II |
APC | Antigen-presenting cell |
AST | Aspartate transaminase |
BMI | Body mass index |
CD223 | Cluster of differentiation 223 |
CI | Confidence interval |
CLP | Cecal ligation puncture |
CNS | Central nervous system |
COPD | Chronic obstructive pulmonary disease |
COVID-19 | Coronavirus 2019 |
CRP | C-reactive protein |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
GCS | Glasgow Coma Score |
ICU | Intensive care unit |
IDDM | Insulin-dependent Diabetes mellitus |
IQR | Interquartile range |
LAG-3 | Lymphocyte-activation gene 3 |
MHCII | Major histocompatibility class II |
MS | Multiple sclerosis |
NIDDM | Non-insulin-dependent Diabetes mellitus |
NK-cell | Natural killer cells |
NYHA | New York Heart Association |
PCR | Polymerase chain reaction |
PCT | Procalcitonin |
PD | Parkinson’s disease |
PD-1 | Programmed cell death protein 1 |
SD | Standard deviation |
SNP | Single nucleotide polymorphism |
SOFA | Sequential Organ Failure Assessment |
Treg | Regulatory T cell |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Coopersmith, C.M.; Hotchkiss, R.S.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.J.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of Global Incidence and Mortality of Hospital-Treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Fleischmann-Struzek, C.; Mikolajetz, A.; Schwarzkopf, D.; Cohen, J.; Hartog, C.S.; Pletz, M.; Gastmeier, P.; Reinhart, K. Challenges in Assessing the Burden of Sepsis and Understanding the Inequalities of Sepsis Outcomes between National Health Systems: Secular Trends in Sepsis and Infection Incidence and Mortality in Germany. Intensive Care Med. 2018, 44, 1826–1835. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Coopersmith, C.; Backer, D.D.; Deutschman, C.; Ferrer, R.; Lat, I.; Machado, F.; Martin, G.; Martin-Loeches, I.; Nunnally, M.; Antonelli, M.; et al. Surviving Sepsis Campaign: Research Priorities for Sepsis and Septic Shock. Crit. Care Med. 2018, 46, 1334–1356. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Rubenfeld, G.D. Understanding Long-Term Outcomes Following Sepsis: Implications and Challenges. Curr. Infect. Dis. Rep. 2016, 18, 37. [Google Scholar] [CrossRef] [Green Version]
- Stearns-Kurosawa, D.J.; Osuchowski, M.F.; Valentine, C.; Kurosawa, S.; Remick, D.G. The Pathogenesis of Sepsis. Annu. Rev. Pathol. 2011, 6, 19–48. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, G. Gram-Positive and Gram-Negative Bacterial Toxins in Sepsis. Virulence 2014, 5, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Immunosuppression in Sepsis: A Novel Understanding of the Disorder and a New Therapeutic Approach. Lancet Infect. Dis. 2013, 13, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Sheth, M.; Benedum, C.M.; Celi, L.A.; Mark, R.G.; Markuzon, N. The Association between Autoimmune Disease and 30-Day Mortality among Sepsis ICU Patients: A Cohort Study. Crit. Care 2019, 23, 93. [Google Scholar] [CrossRef] [Green Version]
- Mewes, C.; Böhnke, C.; Alexander, T.; Büttner, B.; Hinz, J.; Popov, A.-F.; Ghadimi, M.; Beißbarth, T.; Raddatz, D.; Meissner, K.; et al. Favorable 90-Day Mortality in Obese Caucasian Patients with Septic Shock According to the Sepsis-3 Definition. J. Clin. Med. 2020, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Mewes, C.; Alexander, T.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.-F.; Ghadimi, M.; Beißbarth, T.; Tzvetkov, M.; Grade, M.; et al. TIM-3 Genetic Variants Are Associated with Altered Clinical Outcome and Susceptibility to Gram-Positive Infections in Patients with Sepsis. Int. J. Mol. Sci. 2020, 21, 8318. [Google Scholar] [CrossRef] [PubMed]
- Runzheimer, J.; Mewes, C.; Büttner, B.; Hinz, J.; Popov, A.-F.; Ghadimi, M.; Kristof, K.; Beissbarth, T.; Schamroth, J.; Tzvetkov, M.; et al. Lack of an Association between the Functional Polymorphism TREM-1 Rs2234237 and the Clinical Course of Sepsis among Critically Ill Caucasian Patients-A Monocentric Prospective Genetic Association Study. J. Clin. Med. 2019, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Thair, S.; Mewes, C.; Hinz, J.; Bergmann, I.; Büttner, B.; Sehmisch, S.; Meissner, K.; Quintel, M.; Sweeney, T.E.; Khatri, P.; et al. Gene Expression-Based Diagnosis of Infections in Critically Ill Patients-Prospective Validation of the SepsisMetaScore in a Longitudinal Severe Trauma Cohort. Crit. Care Med. 2021, 49, e751–e760. [Google Scholar] [CrossRef]
- Ahir, S.; Chaudhari, D.; Chavan, V.; Samant-Mavani, P.; Nanavati, R.; Mehta, P.; Mania-Pramanik, J. Polymorphisms in IL-1 Gene Cluster and Its Association with the Risk of Perinatal HIV Transmission, in an Indian Cohort. Immunol. Lett. 2013, 153, 1–8. [Google Scholar] [CrossRef]
- Ballini, A.; Cantore, S.; Dedola, A.; Santacroce, L.; Laino, L.; Cicciù, M.; Mastrangelo, F. IL-1 Haplotype Analysis in Periodontal Disease. J. Biol. Regul. Homeost. Agents 2018, 32, 433–437. [Google Scholar]
- Ovsyannikova, I.G.; Salk, H.M.; Larrabee, B.R.; Pankratz, V.S.; Poland, G.A. Single Nucleotide Polymorphisms/Haplotypes Associated with Multiple Rubella-Specific Immune Response Outcomes Post-MMR Immunization in Healthy Children. Immunogenetics 2015, 67, 547–561. [Google Scholar] [CrossRef] [Green Version]
- Mansur, A.; Hinz, J.; Hillebrecht, B.; Bergmann, I.; Popov, A.F.; Ghadimi, M.; Bauer, M.; Beissbarth, T.; Mihm, S. Ninety-Day Survival Rate of Patients with Sepsis Relates to Programmed Cell Death 1 Genetic Polymorphism Rs11568821. J. Investig. Med. 2014, 62, 638–643. [Google Scholar] [CrossRef]
- Inoue, S.; Bo, L.; Bian, J.; Unsinger, J.; Chang, K.; Hotchkiss, R.S. Dose Dependent Effect of Anti-CTLA-4 on Survival in Sepsis. Shock 2011, 36, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, K.D.; Le Gros, G. The Role of CTLA-4 in the Regulation of T Cell Immune Responses. Immunol. Cell Biol. 1999, 77, 1–10. [Google Scholar] [CrossRef]
- Mewes, C.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.F.; Ghadimi, M.; Beissbarth, T.; Tzvetkov, M.; Shen-Orr, S.; Bergmann, I.; et al. The CTLA-4 Rs231775 GG Genotype Is Associated with Favorable 90-Day Survival in Caucasian Patients with Sepsis. Sci. Rep. 2018, 8, 15140. [Google Scholar] [CrossRef] [Green Version]
- Mewes, C.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.F.; Ghadimi, M.; Beissbarth, T.; Tzvetkov, M.; Jensen, O.; Runzheimer, J.; et al. CTLA-4 Genetic Variants Predict Survival in Patients with Sepsis. J. Clin. Med. 2019, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.M.; Huang, S.J.; McLean, A.S. Genome-Wide Transcription Profiling of Human Sepsis: A Systematic Review. Crit. Care 2010, 14, R237. [Google Scholar] [CrossRef] [Green Version]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Use of Intravenous Immunoglobulins in Sepsis Therapy—A Clinical View. Int. J. Mol. Sci. 2020, 21, 5543. [Google Scholar] [CrossRef]
- Rubio, I.; Osuchowski, M.F.; Shankar-Hari, M.; Skirecki, T.; Winkler, M.S.; Lachmann, G.; La Rosée, P.; Monneret, G.; Venet, F.; Bauer, M.; et al. Current Gaps in Sepsis Immunology: New Opportunities for Translational Research. Lancet Infect. Dis. 2019, 19, e422–e436. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.L. Sepsis and Septic Shock. Nat. Rev. Dis. Primers 2016, 2, 16045. [Google Scholar] [CrossRef] [Green Version]
- Patil, N.K.; Guo, Y.; Luan, L.; Sherwood, E.R. Targeting Immune Cell Checkpoints during Sepsis. Int. J. Mol. Sci. 2017, 18, 2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delano, M.J.; Ward, P.A. Sepsis-Induced Immune Dysfunction: Can Immune Therapies Reduce Mortality? J. Clin. Investig. 2016, 126, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Coopersmith, C.M.; McDunn, J.E.; Ferguson, T.A. The Sepsis Seesaw: Tilting toward Immunosuppression. Nat. Med. 2009, 15, 496–497. [Google Scholar] [CrossRef] [Green Version]
- Mason, D.; André, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; et al. CD Antigens 2001. J. Leukoc. Biol. 2001, 70, 685–690. [Google Scholar]
- Huard, B.; Gaulard, P.; Faure, F.; Hercend, T.; Triebel, F. Cellular Expression and Tissue Distribution of the Human LAG-3-Encoded Protein, an MHC Class II Ligand. Immunogenetics 1994, 39, 213–217. [Google Scholar] [CrossRef]
- Triebel, F.; Jitsukawa, S.; Baixeras, E.; Roman-Roman, S.; Genevee, C.; Viegas-Pequignot, E.; Hercend, T. LAG-3, a Novel Lymphocyte Activation Gene Closely Related to CD4. J. Exp. Med. 1990, 171, 1393–1405. [Google Scholar] [CrossRef] [Green Version]
- Kisielow, M.; Kisielow, J.; Capoferri-Sollami, G.; Karjalainen, K. Expression of Lymphocyte Activation Gene 3 (LAG-3) on B Cells Is Induced by T Cells. Eur. J. Immunol. 2005, 35, 2081–2088. [Google Scholar] [CrossRef]
- Workman, C.J.; Wang, Y.; El Kasmi, K.C.; Pardoll, D.M.; Murray, P.J.; Drake, C.G.; Vignali, D.A.A. LAG-3 Regulates Plasmacytoid Dendritic Cell Homeostasis. J. Immunol. 2009, 182, 1885–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Workman, C.J.; Cauley, L.S.; Kim, I.-J.; Blackman, M.A.; Woodland, D.L.; Vignali, D.A.A. Lymphocyte Activation Gene-3 (CD223) Regulates the Size of the Expanding T Cell Population Following Antigen Activation in Vivo. J. Immunol. 2004, 172, 5450–5455. [Google Scholar] [CrossRef] [PubMed]
- Workman, C.J.; Vignali, D.A.A. The CD4-Related Molecule, LAG-3 (CD223), Regulates the Expansion of Activated T Cells. Eur. J. Immunol. 2003, 33, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhou, M.; Qiu, J.; Lin, Y.; Chen, X.; Huang, S.; Mo, M.; Liu, H.; Peng, G.; Zhu, X.; et al. Association of LAG3 Genetic Variation with an Increased Risk of PD in Chinese Female Population. J. Neuroinflammation 2019, 16, 270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Duvefelt, K.; Svensson, F.; Masterman, T.; Jonasdottir, G.; Salter, H.; Emahazion, T.; Hellgren, D.; Falk, G.; Olsson, T.; et al. Two Genes Encoding Immune-Regulatory Molecules (LAG3 and IL7R) Confer Susceptibility to Multiple Sclerosis. Genes Immun. 2005, 6, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Lundmark, F.; Harbo, H.F.; Celius, E.G.; Saarela, J.; Datta, P.; Oturai, A.; Lindgren, C.M.; Masterman, T.; Salter, H.; Hillert, J. Association Analysis of the LAG3 and CD4 Genes in Multiple Sclerosis in Two Independent Populations. J. Neuroimmunol. 2006, 180, 193–198. [Google Scholar] [CrossRef]
- Hinz, J.; Büttner, B.; Kriesel, F.; Steinau, M.; Frederik Popov, A.; Ghadimi, M.; Beissbarth, T.; Tzvetkov, M.; Bergmann, I.; Mansur, A. The FER Rs4957796 TT Genotype Is Associated with Unfavorable 90-Day Survival in Caucasian Patients with Severe ARDS Due to Pneumonia. Sci. Rep. 2017, 7, 9887. [Google Scholar] [CrossRef] [Green Version]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.-L.; Ramsay, G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 Update. Intensive Care Med. 2018, 44, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Knaus, W.A.; Draper, E.A.M.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A Severity of Disease Classification System. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Rs951818 RefSNP Report—DbSNP—NCBI. Available online: https://www.ncbi.nlm.nih.gov/snp/rs951818#frequency_tab (accessed on 27 February 2021).
- McBride, M.A.; Patil, T.K.; Bohannon, J.K.; Hernandez, A.; Sherwood, E.R.; Patil, N.K. Immune Checkpoints: Novel Therapeutic Targets to Attenuate Sepsis-Induced Immunosuppression. Front. Immunol. 2021, 11, 3726. [Google Scholar] [CrossRef]
- Lu, H.; Wen, D.; Wang, X.; Gan, L.; Du, J.; Sun, J.; Zeng, L.; Jiang, J.; Zhang, A. Host Genetic Variants in Sepsis Risk: A Field Synopsis and Meta-Analysis. Crit. Care 2019, 23, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, J.; Wang, J.; Fei, M.; Zhang, Y.; Wang, J.; Guo, Y.; Bian, J.; Deng, X. Targeting Lymphocyte Activation Gene 3 to Reverse T-Lymphocyte Dysfunction and Improve Survival in Murine Polymicrobial Sepsis. J. Infect. Dis. 2020, 222, 1051–1061. [Google Scholar] [CrossRef]
- Niu, B.; Zhou, F.; Su, Y.; Wang, L.; Xu, Y.; Yi, Z.; Wu, Y.; Du, H.; Ren, G. Different Expression Characteristics of LAG3 and PD-1 in Sepsis and Their Synergistic Effect on T Cell Exhaustion: A New Strategy for Immune Checkpoint Blockade. Front. Immunol. 2019, 10, 1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | All (n = 707) | AC/CC (n = 430) | AA (n = 277) | p-Value |
---|---|---|---|---|
Basic conditions | ||||
Age (years) | 63 ± 15 | 64 ± 15 | 63 ± 15 | 0.1979 |
Male gender (%) | 65 | 64 | 66 | 0.5844 |
Body Mass Index (BMI) (kg/m²) | 28 ± 7 | 28 ± 7 | 28 ± 6 | 0.8869 |
Severity on Sepsis Onset (Day 1) | ||||
SOFA-score | 10 ± 4 | 10 ± 4 | 10 ± 4 | 0.4833 |
APACHE II-score | 22 ± 7 | 22 ± 7 | 22 ± 7 | 0.5983 |
Procalcitonin (ng/dL) | 1.3 (0.5–4.8) (n = 343) | 1.4 (0.5–4.8) (n = 218) | 1.2 (0.4–5.1) (n = 125) | 0.6158 |
Use of vasopressor (%) | 70 | 72 | 67 | 0.1512 |
Mechanical ventilation (%) | 86 | 85 | 89 | 0.1370 |
Renal replacement therapy (%) | 10 | 9 | 11 | 0.5067 |
Comorbidities (%) | ||||
Arterial hypertension | 54 | 54 | 53 | 0.6560 |
COPD | 15 | 16 | 14 | 0.5299 |
Bronchial asthma | 3 | 3 | 2 | 0.6068 |
Renal dysfunction | 10 | 10 | 10 | 0.7580 |
Non-insulin-dependent diabetes mellitus (NIDDM) | 9 | 8 | 10 | 0.3949 |
Insulin-dependent diabetes mellitus (IDDM) | 10 | 11 | 10 | 0.6852 |
Chronic liver disease | 6 | 6 | 5 | 0.6352 |
History of myocardial infarction | 6 | 6 | 5 | 0.9247 |
History of stroke | 6 | 6 | 5 | 0.3729 |
History of cancer | 14 | 12 | 16 | 0.1508 |
Medication on Sepsis Onset (Day 1) (%) | ||||
Statins | 23 | 23 | 24 | 0.7214 |
Beta-blocker | 37 | 40 | 33 | 0.0631 |
ACE inhibitor | 29 | 30 | 29 | 0.7219 |
Bronchodilator | 10 | 11 | 9 | 0.3149 |
Diuretic | 34 | 35 | 31 | 0.2632 |
Anticoagulation in last 6 months | 26 | 27 | 24 | 0.4479 |
Recent surgical history (%) | ||||
Elective surgery | 27 | 27 | 28 | |
Emergency surgery | 52 | 50 | 54 | 0.2535 |
No surgery | 21 | 23 | 18 | |
Site of infection (%) | ||||
Lung | 63 | 62 | 64 | |
Abdomen | 19 | 19 | 18 | |
Bone or soft tissue | 4 | 4 | 3 | |
Surgical wound | 2 | 2 | 2 | 0.8131 |
Urogenital | 2 | 2 | 3 | |
Primary bacteremia | 6 | 7 | 5 | |
Other | 5 | 4 | 6 |
Characteristics | All (n = 707) | AC/CC (n = 430) | AA (n = 277) | p-Value |
---|---|---|---|---|
Sepsis severity | ||||
SOFA-score | 7.2 ± 3.7 | 7.3 ± 3.6 | 7.1 ± 3.8 | 0.2891 |
Septic shock (%) | 50 | 53 | 46 | 0.0876 |
Days in septic shock | 1 (0–2) | 1 (0–2) | 0 (0–2) | 0.1912 |
Inflammatory values | ||||
Leucocytes (1000/µL) | 13.3 ± 5.1 | 13.5 ± 5.2 | 12.9 ± 4.9 | 0.0991 |
C-reactive protein (mg/L) | 149.9 ± 85.9 | 154.0 ± 91.6 | 143.4 ± 76.0 | 0.5112 |
Procalcitonin (ng/dL) | 1 (0.3–3.4) (n = 628) | 1 (0.4–3.3) (n = 380) | 0.8 (0.3–3.5) (n = 248) | 0.2249 |
Fever (%) | 88 | 86 | 90 | 0.1584 |
Respiratory values | ||||
SOFA respiratory subscore | 2.0 ± 0.8 | 2.0 ± 0.8 | 2.0 ± 0.8 | 0.8359 |
Mechanical ventilation (%) | 94 | 92 | 96 | 0.0466 |
Ventilated days/observation (%) | 68 ± 32 | 68 ± 33 | 68 ± 30 | 0.3147 |
Coagulation | ||||
SOFA coagulation subscore | 0.4 ± 0.6 | 0.4 ± 0.6 | 0.4 ± 0.7 | 0.6427 |
Thrombocytes (1000/µL) | 291 ± 150 | 287 ± 144 | 297 ± 160 | 0.4988 |
Liver values | ||||
SOFA hepatic subscore | 0 (0–0.4) | 0 (0–0.5) | 0 (0–0.4) | 0.9448 |
Bilirubin (mg/dL) | 0.6 (0.4–1.1) | 0.6 (0.4–1.1) | 0.6 (0.4–1.1) | 0.8242 |
AST (GOT) (IU/L) | 57 (35–112) (n = 462) | 58 (35–119) (n = 288) | 54 (32–106) (n = 174) | 0.4947 |
ALT (GPT) (IU/L) | 46 (23–92) (n = 683) | 46 (22–92) (n = 417) | 46 (25–91) (n = 266) | 0.6155 |
Cardiovascular values | ||||
SOFA cardiovascular subscore | 1.6 ± 1.0 | 1.7 ± 1.0 | 1.5 ± 1.0 | 0.0740 |
Vasopressor treatment (%) | 81 | 83 | 78 | 0.1120 |
Vasopressor days/observation (%) | 36 ± 31 | 38 ± 31 | 34 ± 32 | 0.1117 |
Central nervous system | ||||
SOFA CNS subscore | 2.1 ± 1.1 | 2.1 ± 1.1 | 2.0 ± 1.1 | 0.3201 |
Glasgow Coma Score (GCS) | 9.8 ± 3.2 | 9.7 ± 3.3 | 9.9 ± 3.2 | 0.3606 |
Renal values | ||||
SOFA renal subscore | 0.2 (0–1.2) | 0.2 (0–1.1) | 0.2 (0–1.3) | 0.3936 |
Creatinine (mg/dL) | 1.2 ± 0.9 | 1.3 ± 1.0 | 1.2 ± 0.9 | 0.2136 |
Urine output (mL/d) | 2893 ± 1339 | 2872 ± 1333 | 2924 ± 1350 | 0.4172 |
Urine output (mL/kg/d) | 1.5 ± 0.8 | 1.5 ± 0.8 | 1.5 ± 0.8 | 0.6968 |
Renal replacement therapy (%) | 23 | 23 | 21 | 0.4972 |
Dialysis days/observation (%) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.6725 |
Variable | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
28-day mortality | |||
Age | 1.03 | 1.02–1.04 | <0.001 |
Male gender | 1.15 | 0.82–1.63 | 0.4165 |
Body Mass Index | 0.96 | 0.93–0.99 | 0.0157 |
SOFA-score on sepsis onset | 1.09 | 1.04–1.15 | 0.001 |
APACHE II-score | 1.03 | 1–1.06 | 0.0609 |
LAG-3 rs951818 AA-genotype | 0.75 | 0.53–1.06 | 0.0981 |
90-day mortality | |||
Age | 1.03 | 1.02–1.04 | <0.001 |
Male gender | 1.01 | 0.77–1.34 | 0.93 |
Body Mass Index | 0.99 | 0.96–1.01 | 0.1781 |
SOFA-score on sepsis onset | 1.08 | 1.03–1.12 | 0.0006 |
APACHE II-score | 1.03 | 1–1.06 | 0.0273 |
LAG-3 rs951818 AA-genotype | 0.83 | 0.63–1.09 | 0.1755 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mewes, C.; Alexander, T.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.-F.; Beißbarth, T.; Tzvetkov, M.; Grade, M.; Quintel, M.; et al. Effect of the Lymphocyte Activation Gene 3 Polymorphism rs951818 on Mortality and Disease Progression in Patients with Sepsis—A Prospective Genetic Association Study. J. Clin. Med. 2021, 10, 5302. https://doi.org/10.3390/jcm10225302
Mewes C, Alexander T, Büttner B, Hinz J, Alpert A, Popov A-F, Beißbarth T, Tzvetkov M, Grade M, Quintel M, et al. Effect of the Lymphocyte Activation Gene 3 Polymorphism rs951818 on Mortality and Disease Progression in Patients with Sepsis—A Prospective Genetic Association Study. Journal of Clinical Medicine. 2021; 10(22):5302. https://doi.org/10.3390/jcm10225302
Chicago/Turabian StyleMewes, Caspar, Tessa Alexander, Benedikt Büttner, José Hinz, Ayelet Alpert, Aron-F. Popov, Tim Beißbarth, Mladen Tzvetkov, Marian Grade, Michael Quintel, and et al. 2021. "Effect of the Lymphocyte Activation Gene 3 Polymorphism rs951818 on Mortality and Disease Progression in Patients with Sepsis—A Prospective Genetic Association Study" Journal of Clinical Medicine 10, no. 22: 5302. https://doi.org/10.3390/jcm10225302
APA StyleMewes, C., Alexander, T., Büttner, B., Hinz, J., Alpert, A., Popov, A. -F., Beißbarth, T., Tzvetkov, M., Grade, M., Quintel, M., Bergmann, I., & Mansur, A. (2021). Effect of the Lymphocyte Activation Gene 3 Polymorphism rs951818 on Mortality and Disease Progression in Patients with Sepsis—A Prospective Genetic Association Study. Journal of Clinical Medicine, 10(22), 5302. https://doi.org/10.3390/jcm10225302