Potential Risk Factors for Isolated Hypothyroxinemia in Women of Childbearing Age—Results from Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
- patients with isolated hypothyroxinemia (IH; decreased FT4 and normal TSH and FT3), n = 8.
- patients with normal thyroid tests (TSH, FT3 and FT4 in reference ranges; comprising also patients on L-thyroxine treatment), n = 280.
- patients with normal thyroid tests after excluding individuals on L-thyroxine treatment (normal thyroid function without any treatment), n = 240.
- the whole group of 466 patients minus patients with IH, n = 458.
- the whole group of 466 patients minus patients with IH after excluding individuals on L-thyroxine treatment, n = 352.
- patients with normal TSH (comprising patients with IH and with normal thyroid tests), n = 288.
- patients with normal TSH after excluding individuals on L-thyroxine treatment, n = 248.
- the whole group of 466 patients.
- the whole group of 466 patients after excluding individuals on L-thyroxine treatment, n = 360.
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [Green Version]
- Dosiou, C.; Medici, M. Management of endocrine disease: Isolated maternal hypothyroxinemia during pregnancy: Knowns and unknowns. Eur. J. Endocrinol. 2017, 176, R21–R38. [Google Scholar] [CrossRef]
- Knight, B.A.; Shields, B.M.; Hattersley, A.T.; Vaidya, B. Maternal hypothyroxinaemia in pregnancy is associated with obesity and adverse maternal metabolic parameters. Eur. J. Endocrinol. 2016, 174, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etemadi, A.; Amouzegar, A.; Mehran, L.; Tohidi, M.; Azizi, F.; Moradi, K.; Delshad, H. Isolated Hypothyroxinemia in Iranian Pregnant Women, the Role of Iodine Deficiency: A Population-Based Cross-Sectional Study. Thyroid 2020, 30, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.C.; Stagnaro-Green, A. Differences in Diagnostic Criteria Mask the True Prevalence of Thyroid Disease in Pregnancy: A Systematic Review and Meta-Analysis. Thyroid 2019, 29, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Korevaar, T.; Schalekamp-Timmermans, S.; De Rijke, Y.; Visser, W.E.; Keizer-Schrama, S.D.M.; Hofman, A.; Ross, H.; Hooijkaas, H.; Tiemeier, H.; Bongers-Schokking, J.J.; et al. Hypothyroxinemia and TPO-Antibody Positivity Are Risk Factors for Premature Delivery: The Generation R Study. J. Clin. Endocrinol. Metab. 2013, 98, 4382–4390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Consortium on Thyroid and Pregnancy—Study Group on Preterm Birth; Korevaar, T.I.M.; Derakhshan, A.; Taylor, P.; Meima, M.; Chen, L.; Bliddal, S.; Carty, D.M.; Meems, M.; Vaidya, B.; et al. Association of Thyroid Function Test Abnormalities and Thyroid Autoimmunity with Preterm Birth. JAMA 2019, 322, 632–641. [Google Scholar] [CrossRef]
- Yang, X.; Yu, M.Y.; Zhang, C.; Zhang, Y.; Chen, M.Z.; Dubois, L.; Huang, H.-F.; Fraser, W.D.; Fan, J. The Association between Isolated Maternal Hypothyroxinemia in Early Pregnancy and Preterm Birth. Thyroid 2020, 30, 1724–1731. [Google Scholar] [CrossRef]
- Nazarpour, S.; Tehrani, F.R.; Rahmati, M.; Amiri, M.; Azizi, F. Effects of isolated maternal hypothyroxinemia on adverse pregnancy outcomes. Arch. Gynecol. Obstet. 2021, 1–9. [Google Scholar] [CrossRef]
- Su, P.-Y.; Huang, K.; Hao, J.-H.; Xu, Y.-Q.; Yan, S.-Q.; Li, T.; Xu, Y.-H.; Tao, F.-B. Maternal Thyroid Function in the First Twenty Weeks of Pregnancy and Subsequent Fetal and Infant Development: A Prospective Population-Based Cohort Study in China. J. Clin. Endocrinol. Metab. 2011, 96, 3234–3241. [Google Scholar] [CrossRef]
- Luo, J.; Wang, X.; Yuan, L.; Guo, L. Association of thyroid disorders with gestational diabetes mellitus: A meta-analysis. Endocrine 2021, 73, 550–560. [Google Scholar] [CrossRef]
- Su, X.; Zhao, Y.; Cao, Z.; Yang, Y.; Duan, T.; Hua, J. Association between isolated hypothyroxinaemia in early pregnancy and perinatal outcomes. Endocr. Connect. 2019, 8, 435–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Gong, X.-H.; Peng, T.; Wu, J.-N. Association of Thyroid Function during Pregnancy with the Risk of Pre-eclampsia and Gestational Diabetes Mellitus. Endocr. Pract. 2021, 27, 819–825. [Google Scholar] [CrossRef]
- Derakhshan, A.; Peeters, R.P.; Taylor, P.N.; Bliddal, S.; Carty, D.M.; Meems, M.; Vaidya, B.; Chen, L.; Knight, B.A.; Ghafoor, F.; et al. Association of maternal thyroid function with birthweight: A systematic review and individual-participant data meta-analysis. Lancet Diabetes Endocrinol. 2020, 8, 501–510. [Google Scholar] [CrossRef]
- Furnica, R.M.; Gruson, D.; Lazarus, J.H.; Maiter, D.; Bernard, P.; Daumerie, C. First trimester isolated maternal hypothyroxinaemia: Adverse maternal metabolic profile and impact on the obstetrical outcome. Clin. Endocrinol. 2017, 86, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.; Taylor, P. Hypothyroxinaemia and Brain Development. Acta Endocrinol. 2016, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Oguz, A.; Tuzun, D.; Sahin, M.; Usluogullari, A.C.; Usluogullari, B.; Celik, A.; Gul, K. Frequency of isolated maternal hypothyroxinemia in women with gestational diabetes mellitus in a moderately iodine-deficient area. Gynecol. Endocrinol. 2015, 31, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Velasco, I.; Sánchez-Gila, M.; Manzanares, S.; Taylor, P.; García-Fuentes, E. Iodine Status, Thyroid Function, and Birthweight: A Complex Relationship in High-Risk Pregnancies. J. Clin. Med. 2020, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Tehrani, F.R.; Nazarpour, S.; Behboudi-Gandevani, S. Isolated maternal hypothyroxinemia and adverse pregnancy outcomes: A systematic review. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102057. [Google Scholar] [CrossRef]
- Chen, L.; Yang, H.; Ye, E.; Lin, Z.; Peng, M.; Lin, H.; Yu, L.; Cai, Z.; Lu, X. Insignificant Effect of Isolated Hypothyroxinemia on Pregnancy Outcomes During the First and Second Trimester of Pregnancy. Front. Endocrinol. 2020, 11, 528146. [Google Scholar] [CrossRef]
- Okosieme, O.E.; Khan, I.; Taylor, P.N. Preconception management of thyroid dysfunction. Clin. Endocrinol. 2018, 89, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Negro, R. Outcomes in Pregnant Patients with Subclinical Hypothyroidism and Thyroid Autoimmunity: A Critical Appraisal of Recent Randomized Controlled Trials. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Muller, I.; Nana, M.; Velasco, I.; Lazarus, J.H. Indications for treatment of subclinical hypothyroidism and isolated hypothyroxinaemia in pregnancy. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101436. [Google Scholar] [CrossRef]
- Lee, S.Y.; Pearce, E.N. Testing, Monitoring, and Treatment of Thyroid Dysfunction in Pregnancy. J. Clin. Endocrinol. Metab. 2020, 106, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Karbownik-Lewińska, M.; Stępniak, J.; Żurawska, A.; Lewiński, A. Less Favorable Lipid Profile and Higher Prevalence of Thyroid Antibodies in Women of Reproductive Age with High-Normal TSH—Retrospective Study. Int. J. Environ. Res. Public Health 2020, 17, 2122. [Google Scholar] [CrossRef] [Green Version]
- Belfiore, F.; Iannello, S.; Volpicelli, G. Insulin Sensitivity Indices Calculated from Basal and OGTT-Induced Insulin, Glucose, and FFA Levels. Mol. Genet. Metab. 1998, 63, 134–141. [Google Scholar] [CrossRef]
- Vanderver, G.B.; Engel, A.; Lamm, S. Cigarette Smoking and Iodine as Hypothyroxinemic Stressors in U.S. Women of Childbearing Age: A NHANES III Analysis. Thyroid 2007, 17, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Kim, D. The Role of Vitamin D in Thyroid Diseases. Int. J. Mol. Sci. 2017, 18, 1949. [Google Scholar] [CrossRef] [Green Version]
- Cvek, M.; Kaličanin, D.; Barić, A.; Vuletić, M.; Gunjača, I.; Lovrić, V.T.; Škrabić, V.; Punda, A.; Perica, V.B. Vitamin D and Hashimoto’s Thyroiditis: Observations from CROHT Biobank. Nutrients 2021, 13, 2793. [Google Scholar] [CrossRef]
- Turashvili, N.; Javashvili, L.; Giorgadze, E. Vitamin D Deficiency Is More Common in Women with Autoimmune Thyroiditis: A Retrospective Study. Int. J. Endocrinol. 2021, 2021, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, W.; Ma, C.; Zhao, Y.; Xiong, R.; Wang, H.; Chen, W.; Zheng, S.G. Immunomodulatory Function of Vitamin D and Its Role in Autoimmune Thyroid Disease. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Tirabassi, G.; Bizzaro, G.; Orio, F.; Paschou, S.; Vryonidou, A.; Balercia, G.; Shoenfeld, Y.; Colao, A. Vitamin D and thyroid disease: To D or not to D? Eur. J. Clin. Nutr. 2014, 69, 291–296. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Altieri, B.; de Angelis, C.; Palomba, S.; Pivonello, R.; Colao, A.; Orio, F. Shedding new light on female fertility: The role of vitamin D. Rev. Endocr. Metab. Disord. 2017, 18, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Hynes, C.; Jesurasa, A.; Evans, P.; Mitchell, C. Vitamin D supplementation for women before and during pregnancy: An update of the guidelines, evidence, and role of GPs and practice nurses. Br. J. Gen. Pr. 2017, 67, 423–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Yang, J.; Gong, Y.; Ma, Y.; Yan, S.; Huang, Y.; Wang, Y.; Peng, Y. Lower free thyroid hormone levels are associated with high blood glucose and insulin resistance; these normalize with metabolic improvement of type 2 diabetes. J. Diabetes 2020, 13, 318–329. [Google Scholar] [CrossRef]
- Hua, X.; Cao, X.-Y.; Wang, X.-L.; Sun, P.; Chen, L. Exposure of Pregnant Mice to Triclosan Causes Insulin Resistance via Thyroxine Reduction. Toxicol. Sci. 2017, 160, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cena, H.; Chiovato, L.; Nappi, R.E. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J. Clin. Endocrinol. Metab. 2020, 105, e2695–e2709. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Hadi, A.; Pierson, R.A.; Lujan, M.E.; Zello, G.A.; Chilibeck, P.D. Effects of Dietary Glycemic Index and Glycemic Load on Cardiometabolic and Reproductive Profiles in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 12, 161–178. [Google Scholar] [CrossRef]
- Tian, L.; Shen, H.; Lu, Q.; Norman, R.; Wang, J. Insulin Resistance Increases the Risk of Spontaneous Abortion after Assisted Reproduction Technology Treatment. J. Clin. Endocrinol. Metab. 2007, 92, 1430–1433. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-F.; Zhang, J.; Xu, Y.-M.; Cao, Z.-Y.; Wang, Y.-Z.; Hao, G.-M.; Gao, B.-L. High BMI and Insulin Resistance Are Risk Factors for Spontaneous Abortion in Patients with Polycystic Ovary Syndrome Undergoing Assisted Reproductive Treatment: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 946. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, F.; Zhou, Y.; Yang, X.; Zhang, Y.; Fan, J. The Interactive Effect of Prepregnancy Overweight/Obesity and Isolated Maternal Hypothyroxinemia on Macrosomia. J. Clin. Endocrinol. Metab. 2021, 106, e2639–e2646. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Neal-Perry, G. Long-term consequences of obesity on female fertility and the health of the offspring. Curr. Opin. Obstet. Gynecol. 2017, 29, 180–187. [Google Scholar] [CrossRef]
- Catalano, P.M.; Shankar, K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef]
- Karbownik-Lewinska, M.; Marcinkowska, M.; Stepniak, J.; Lewinski, A. TSH ≥ 2.5 mIU/L is Associated with the Increased Oxidative Damage to Membrane Lipids in Women of Childbearing Age with Normal Thyroid Tests. Horm. Metab. Res. 2017, 49, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Karbownik-Lewinska, M.; Stepniak, J.; Marcinkowska, M.; Krygier, A.; Lewinski, A. High normal TSH is associated with lower mannan-binding lectin in women of childbearing age. BMC Endocr. Disord. 2020, 20, 1. [Google Scholar] [CrossRef] [Green Version]
- Szybinski, Z.; Delange, F.; Lewinski, A.; Podoba, J.; Rybakowa, M.; Wasik, R.; Szewczyk, L.; Huszno, B.; Gołkowski, F.; Przybylik-Mazurek, E.; et al. A programme of iodine supplementation using only iodised household salt is efficient—The case of Poland. Eur. J. Endocrinol. 2001, 144, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Trofimiuk-Müldner, M.; Konopka, J.; Sokołowski, G.; Dubiel, A.; Kieć-Klimczak, M.; Kluczyński, Ł.; Motyka, M.; Rzepka, E.; Walczyk, J.; Sokołowska, M.; et al. Current iodine nutrition status in Poland (2017): Is the Polish model of obligatory iodine prophylaxis able to eliminate iodine deficiency in the population? Public Health Nutr. 2020, 23, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.-R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2020, 397, 233–248. [Google Scholar] [CrossRef]
- Yu, X.; Shan, Z.; Li, C.; Mao, J.; Wang, W.; Xie, X.; Liu, A.; Teng, X.; Zhou, W.; Xu, B.; et al. Iron Deficiency, An Independent Risk Factor for Isolated Hypothyroxinemia in Pregnant and Nonpregnant Women of Childbearing Age in China. J. Clin. Endocrinol. Metab. 2015, 100, 1594–1601. [Google Scholar] [CrossRef]
- Teng, X.; Shan, Z.; Li, C.; Yu, X.; Mao, J.; Wang, W.; Xie, X.; Du, J.; Zhang, S.; Gao, Z.; et al. Iron Deficiency May Predict Greater Risk for Hypothyroxinemia: A Retrospective Cohort Study of Pregnant Women in China. Thyroid 2018, 28, 968–975. [Google Scholar] [CrossRef]
- Moreno-Reyes, R.; Corvilain, B.; Daelemans, C.; Wolff, F.; Peña, C.F.; Vandevijvere, S. Iron Deficiency Is a Risk Factor for Thyroid Dysfunction During Pregnancy: A Population-Based Study in Belgium. Thyroid 2021. [Google Scholar] [CrossRef] [PubMed]
- Skoracka, K.; Ratajczak, A.E.; Rychter, A.M.; Dobrowolska, A.; Krela-Kaźmierczak, I. Female Fertility and the Nutritional Approach: The Most Essential Aspects. Adv. Nutr. 2021, nmab068. [Google Scholar] [CrossRef] [PubMed]
No. | Age [years] | BMI [kg/m2] | Hgb [g/dL] | TSH [mIU/L] | FT4 [ng/dL] | FT3 [pg/mL] | TgAb [IU/mL] | TPOAb [IU/mL] | TSHRAb [IU/L] | Vit. D [ng/mL] | IRI | Main Diagnoses |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15 | 27.4 | 12.3 | 1.69 | 0.84 | 2.91 | 11.22 | 10.46 | 0 | 22.8 | 1.52 | hyperandrogenism overweight |
2 | 19 | 19.9 | 11.6 | 1.59 | 0.92 | 2.95 | 64.31 | 8.26 | 1.14 | 17.3 | 1.59 | oligomenorrhoea |
3 | 17 | 23 | 13.5 | 1.78 | 0.8 | 3.08 | 13.05 | 8.28 | 0.41 | 9.3 | 0.99 | secondary amenorrhoea |
4 | 16 | 37.1 | 13.6 | 2.13 | 0.86 | 2.87 | 0 | 0 | 0.35 | 15.8 | 1.63 | oligomenorrhoea, polycystic ovary syndrome, obesity |
5 | 23 | 30.04 | 14.2 | 0.72 | 0.91 | 2.95 | 38.41 | 13.69 | 0 | 7.7 | 1.49 | oligomenorrhoea, glucose intolerance, obesity |
6 | 30 | nr | 13.6 | 1.7 | 0.87 | 3.28 | 0 | 13.34 | 0 | nr | nr | oligomenorrhoea |
7 | 36 | 28.7 | 14 | 2.8 | 0.89 | 2.64 | nr | nr | nr | 10 | 1.26 | infertility, miscarriage (1), overweight |
8 | 44 | 23 | 12.3 | 2 | 0.89 | 2.71 | nr | nr | nr | nr | nr | depression |
IH (n = 8) | Normal Thyroid Tests (n = 280) | Normal Thyroid Tests without LT4 Treatment (n = 240) | The Whole Group Minus IH Patients (n = 458) | The Whole Group Minus IH Patients without LT4 Treatment (n = 352) | |
---|---|---|---|---|---|
Age [years] | 25.00 ± 3.71 n = 8 | 29.03 ± 0.51 n = 280 p = 0.193 | 28.83 ± 0.55 n = 240 p = 0.215 | 29.39 ± 0.43 n = 458 p = 0.184 | 28.71 + 0.47 n = 352 p = 0.246 |
Body mass [kg] | 72.01 ± 6.04 n = 8 | 71.60 ± 1.60 n = 199 p = 0.962 | 71.23 ± 1.12 n = 171 p = 0.9327 | 70.61 ± 1.21 n = 324 p = 0.867 | 69.04 + 1.37 n = 251 p = 0.720 |
Height [m] | 163.14 ± 1.84 n = 8 | 165.8 ± 0.63 n = 198 p = 0.437 | 165.579 ± 0.71 n = 170 p = 0.454 | 165.69 ± 0.46 n = 325 p = 0.425 | 165.63 + 0.56 n = 252 p = 0.465 |
BMI [kg/m2] | 27.02 ± 2.16 n = 7 | 25.94 ± 0.53 n = 208 p = 0.711 | 25.74 ± 0.56 n = 178 p = 0.653 | 25.58 ± 0.40 n = 334 p = 0.613 | 24.94 + 0.45 n = 257 p = 0.446 |
RBC [1012/L] | 4.42 ± 0.11 n = 8 | 4.50 ± 0.02 n = 279 p = 0.576 | 4.51 ± 0.023 n = 239 p = 0.512 | 4.45 ± 0.02 n = 457 p = 0.843 | 4.46 + 0.02 n = 351 p = 0.794 |
Hgb [g/dL] | 13.14 ± 0.33 n = 8 | 13.12 ± 0.05 n = 279 p = 0.965 | 13.15 ± 0.06 n = 239 p = 0.960 | 12.98 ± 0.04 n = 457 p = 0.658 | 13.01 + 0.05 n = 351 p = 0.726 |
WBC [109/L] | 7.95 ± 1.23 n = 8 | 7.09 ± 0.12 n = 278 p = 0.238 | 7.08 ± 0.13 n = 238 p = 0.232 | 6.92 ± 0.09 n = 456 p = 0.148 | 6.89 + 0.1 n = 350 p = 0.137 |
Neutrophils [109/L] | 4.57 ± 1.01 n = 8 | 3.76 ± 0.10 n = 278 p = 0.203 | 3.76 ± 0.11 n = 238 p = 0.204 | 3.67 ± 0.07 n = 456 p = 0.136 | 3.68 + 0.09 n = 350 p = 0.145 |
Lymphocytes [109/L] | 2.39 ± 0.22 n = 8 | 2.54 ± 0.04 n = 278 p = 0.551 | 2.53 ± 0.04 n = 238 p = 0.577 | 2.47 ± 0.03 n = 456 p = 0.754 | 2.45 + 0.04 n = 350 p = 0.815 |
Platelets [109/L] | 256.1 ± 15.27 n = 8 | 256.57 ± 3.40 n = 266 p = 0.997 | 256.65 ± 3.71 n = 228 p = 0.994 | 253.6 ± 2.88 n = 437 p = 0.893 | 252.56 + 3.18 n = 337 p = 0.850 |
FT4 [ng/dL] | 0.87 ± 0.04 n = 8 | 1.22 ± 0.01 n = 280 p < 0.001 | 1.20 ± 0.01 n = 240 p < 0.001 | 1.29 ± 0.03 n = 437 p = 0.091 | 1.29 + 0.04 n = 351 p = 0.104 |
FT3 [pg/mL] | 2.92 ± 0.07 n = 8 | 3.09 ± 0.02 n = 260 p = 0.155 | 3.12 ± 0.02 n = 222 p = 0.112 | 3.33 ± 0.14 n = 432 p = 0.689 | 3.39 + 0.16 n = 331 p = 0.657 |
TSH [mIU/L] | 1.80 ± 0.21 n = 8 | 1.91 ± 0.05 n = 280 p = 0.738 | 1.90 ± 0.05 n = 240 p = 0.758 | 2.53 ± 0.31 n = 438 p = 0.757 | 2.05 + 0.14 n = 352 p = 0.788 |
TPOAb [IU/mL] | 9.00 ± 2.04 n = 8 | 39.01 ± 5.68 n = 248 p = 0.413 | 30.74 ± 5.28 n = 211 p = 0.489 | 57.01 ± 5.95 n = 399 p = 0.329 | 37.74 + 5.09 n = 307 p = 0.432 |
TgAb [IU/mL] | 21.16 ± 10.36 n = 6 | 57.73 ± 11.13 n = 241 p = 0.606 | 51.29 ± 12.48 n = 202 p = 0.679 | 93.15 ± 10.66 n = 391 p = 0.407 | 77.58 + 12.14 n = 295 p = 0.509 |
TSHRAb [IU/L] | 0.32 ± 0.18 n = 6 | 0.28 ± 0.02 n = 234 p = 0.806 | 0.32 ± 0.03 n = 196 p = 0.760 | 1.09 ± 0.24 n = 379 p = 0.690 | 0.75 + 0.21 n = 287 p = 0.766 |
Cholesterol [mg/dL] | 164.75 ± 7.78 n = 8 | 169.76 ± 1.87 n = 265 p = 0.645 | 168.96 ± 2.03 n = 227 p = 0.701 | 171.2 ± 1.68 n = 429 p = 0.605 | 169.28 + 1.88 n = 330 p = 0.710 |
HDLC [mg/dL] | 51.62 ± 9.79 n = 8 | 54.77 ± 0.91 n = 265 p = 0.567 | 54.50 ± 0.95 n = 227 p = 0.591 | 55.59 ± 0.80 n = 429 p = 0.514 | 55.88 + 0.87 n = 330 p = 0.463 |
LDLC [mg/dL] | 94.25.1 ± 9.23 n = 8 | 93.07 ± 1.75 n = 265 p = 0.908 | 92.99 ± 1.89 n = 227 p = 0.902 | 92.57 ± 1.44 n = 427 p = 0.875 | 91.14 + 1.59 n = 329 p = 0.763 |
HDLC/Cholesterol | 0.31 ± 0.04 n = 8 | 0.33 ± 0.009 n = 264 p = 0.556 | 0.33 ± 0.006 n = 226 p = 0.547 | 0.33 ± 0.004 n = 427 p = 0.522 | 0.34 + 0.005 n = 328 p = 0.409 |
TGs [mg/dL] | 107.5 ± 12.42 n = 8 | 98.55 ± 3.76 n = 264 p = 0.681 | 99.04 ± 4.28 n = 226 p = 0.712 | 98.5 ± 2.87 n = 427 p = 0.672 | 95.42 + 3.37 n = 329 p = 0.579 |
Glucose [mg/dL] | 84.85 ± 2.55 n = 7 | 83.55 ± 0.64 n = 258 p = 0.740 | 83.21 ± 0.60 n = 220 p = 0.630 | 84.68 ± 1.06 n = 418 p = 0.983 | 84.54 + 1.32 n = 323 p = 0.972 |
CRP | 0.66 ± 0.40 n = 4 | 0.34 ± 0.07 n = 92 p = 0.366 | 0.33 ± 0.08 n = 80 p = 0.371 | 0.69 ± 0.13 n = 186 p = 0.970 | 0.77 ± 0.187 n = 132 p = 0.916 |
Vit D [ng/mL] | 13.82 ± 2.37 n = 6 | 20.83 ± 0.56 n = 223 p = 0.044 | 20.61 ± 0.60 n = 175 p = 0.044 | 21.57 ± 0.51 n = 375 p = 0.057 | 21.50 + 0.59 n = 276 p = 0.059 |
IRI | 1.41 ± 0.01 n = 6 | 1.10 ± 0.02 n = 150 p = 0.033 | 1.12 ± 0.03 n = 132 p = 0.043 | 1.1 ± 0.02 n = 222 p = 0.036 | 1.09 + 0.02 n = 183 p = 0.037 |
IH (n = 8) | Normal Thyroid Tests (n = 265) | Normal Thyroid Tests without LT4 Treatment (n = 227) | The Whole Group Minus IH Patients (n = 429) | The Whole Group Minus IH Patients without LT4 Treatment (n = 330) | |
---|---|---|---|---|---|
Cholesterol ≥200 mg/dL | n = 0 0% | n = 39 15% p = 0.237 | n = 32 14% p = 0.253 | n = 82 19% p = 0.172 | n = 56 17% p = 0.202 |
HDLC <40 mg/dL | n = 2 25% | n = 36 14% p = 0.382 | n = 30 13% p = 0.328 | n = 65 15% p = 0.435 | n = 43 13% p = 0.323 |
LDLC >100 mg/dL | n = 2 25% | n = 98 37% p = 0.488 | n = 84 37% p = 0.487 | n = 156 36% p = 0.521 | n = 117 35% p = 0.557 |
TGs >150 mg/dL | n = 1 12% | n = 25 9% p = 0.771 | n = 23 10% p = 0.853 | n = 54 13% p = 0.934 | n = 32 10% p = 0.853 |
HDLC/cholesterol <0.2 | n = 1 12% | n = 20 8% p = 0.683 | n = 15 7% p = 0.590 | n = 35 8% p = 0.681 | n = 21 6% p = 0.485 |
IH n = 6 | Normal Thyroid Tests n = 228 | Normal Thyroid Tests without LT4 Treatment n = 183 | The Whole Group Minus IH Patients n = 403 | The Whole Group Minus IH Patients without LT4 Treatment (n = 307) | |
---|---|---|---|---|---|
TPOAb ≥34 IU/mL | n = 0 0% | n = 32 14% p = 0.325 | n = 21 11% p = 0.391 | n = 83 21% p = 0.208 | n = 43 14% p = 0.324 |
TgAb ≥115 IU/mL | n = 0 0% | n = 27 11% p = 0.391 | n = 18 10% p = 0.416 | n = 76 19% p = 0.237 | n = 44 14% p = 0.324 |
TSHRAb ≥1.75 IU/mL | n = 0 0% | n = 1 0.4% p = 0.877 | n = 1 0.5% p = 0.575 | n = 18 4% p = 0.671 | n = 9 3% p = 0.667 |
IH | Normal Thyroid Tests | Normal Thyroid Tests without LT4 Treatment | The Whole Group Minus IH Patients | The Whole Group Minus IH Patients without LT4 Treatment | |
---|---|---|---|---|---|
BMI > 25 [kg/m2] | n = 4 out of 7 57% | n = 83 out of 208 40% p = 0.369 | n = 67 out of 171 39% p = 0.341 | n = 129 out of 341 38% p = 0.307 | n = 89 out of 257 35% p = 0.231 |
Hgb <12/>15 [g/dL] | n = 1 out of 8 12% | n = 37 out of 279 13% p = 0.276 | n = 32 out of 227 14% p = 0.256 | n = 81 out of 465 17% p = 0.708 | n = 63 out of 351 18% p = 0.662 |
RBC <3.8/>5.8 [1012/L] | n = 0 out of 8 0% | n = 7 out of 279 2% p = 0.689 | n = 5 out of 227 2% p = 0.517 | n = 22 out of 465 5% p = 0.571 | n = 16 out of 351 5% p = 0.517 |
Platelets <150/>400 [109/L] | n = 0 out of 8 0% | n = 6 out of 265 2% p = 0.687 | n = 4 out of 227 2% p = 0.686 | n = 20 out of 465 4% p = 0.564 | n = 14 out of 351 4% p = 0.564 |
Vit D < 30 [ng/mL] | n = 6 out of 6 100% | n = 192 out of 223 86% p = 0.312 | n = 152 out of 175 87% p = 0.385 | n = 310 out of 375 83% p = 0.298 | n = 230 out of 276 83% p = 0.299 |
Vit D < 20 [ng/mL] | n = 5 out of 6 83% | n = 101 out of 223 45% p = 0.053 | n = 83 out of 175 47% p = 0.084 | n = 163 out of 375 43% p = 0.051 | n = 123 out of 276 44% p = 0.054 |
IRI > 1.25 | n = 4 out of 6 67% | n = 54 out of 150 36% p = 0.125 | n = 49 out of 129 38% p = 0.157 | n = 79 out of 222 36% p = 0.128 | n = 67 out of 183 37% p = 0.137 |
A | FT4 | p | |
Vit. D < 20 [ng/mL] | Vit. D > 20 [ng/mL] | ||
Group of 288 patients with normal TSH | 1.193 ± 0.018 n = 106 | 1.240 ± 0.014 n = 123 | 0.042 |
Group of 288 patients with normal TSH without LT4 treatment | 1.176 ± 0.018 n = 92 | 1.215 ± 0.015 n = 99 | 0.101 |
B | FT4 | p | |
IRI >1.25 | IRI <1.25 | ||
Group of 288 patients with normal TSH | 1.153 ± 0.022 n = 59 | 1.225 ± 0.017 n = 97 | 0.009 |
Group of 288 patients with normal TSH without LT4 treatment | 1.131 ± 0.019 n = 55 | 1.221 ± 0.018 n = 83 | 0.001 |
FT4 Concentration | ||||
---|---|---|---|---|
Group of 288 Patients with Normal TSH | Group of 288 Patients with Normal TSH without LT4 Treatment | The Whole Group of 466 Patients | The Whole Group of Patients without LT4 Treatment | |
Age [years] | r = 0.069 p = 0.244 n = 288 | r = 0.029 p = 0.644 n = 248 | r = 0.094 p = 0.043 n = 465 | r = 0.106 p = 0.044 n = 359 |
Body mass [kg] | r = −0.081 p = 0.248 n = 206 | r = −0.149 p = 0.046 n = 178 | r = −0.033 p = 0.553 n = 331 | r = −0.065 p = 0.301 n = 257 |
Height [m] | r = −0.170 p = 0.01 n = 205 | r = −0.158 p = 0.036 n = 177 | r = −0.016 p = 0.770 n = 332 | r = −0.014 p = 0.855 n = 258 |
BMI [kg/m2] | r = −0.110 p = 0.107 n = 215 | r = −0.206 p = 0.004 n = 185 | r = −0.041 p = 0.448 n = 340 | r = −0.087 p = 0.158 n = 263 |
RBC [1012/L] | r = 0.058 p = 0.322 n = 287 | r = 0.036 p = 0.576 n = 247 | r = 0.044 p = 0.347 n = 464 | r = 0.006 p = 0.904 n = 358 |
Hgb [g/dL] | r = 0.084 p = 0.154 n = 287 | r = 0.049 p = 0.441 n = 247 | r = −0.073 p = 0.116 n = 464 | r = −0.099 p = 0.061 n = 358 |
WBC [109/L] | r = −0.007 p = 0.904 n = 286 | r = −0.070 p = 0.273 n = 246 | r = 0.011 p = 0.818 n = 463 | r = 0.034 p = 0.517 n = 357 |
Neutrophils [109/L] | r = 0.018 p = 0.758 n = 286 | r = −0.028 p = 0.660 n = 246 | r = 0.067 p = 0.148 n = 463 | r = 0.092 p = 0.080 n = 357 |
Lymphocytes [109/L] | r = −0.048 p = 0.414 n = 286 | r = −0.098 p = 0.123 n = 246 | r = −0.140 p = 0.002 n = 463 | r = −0.128 p = 0.015 n = 357 |
Platelets [109/L] | r = −0.006 p = 0.920 n = 273 | r = −0.037 p = 0.574 n = 236 | r = 0.133 p = 0.005 n = 444 | r = 0.143 p = 0.008 n = 344 |
TSH [mIU/L] | r = −0.141 p = 0.017 n = 288 | r = −0.155 p = 0.014 n = 248 | r = −0.176 p < 0.001 n = 465 | r = −0.187 p < 0.001 n = 359 |
FT3 [pg/mL] | r = 0.296 p = 0.000 n = 268 | r = 0.431 p < 0.001 n = 230 | r = 0.922 p < 0.001 n = 439 | r = 0.928 p < 0.001 n = 338 |
TPOAb [IU/mL] | r = 0.111 p = 0.077 n = 254 | r = 0.056 p = 0.408 n = 217 | r = 0.118 p = 0.017 n = 406 | r = 0.173 p = 0.002 n = 312 |
TgAb [IU/mL] | r = 0.037 p = 0.560 n = 246 | r = −0.007 p = 0.918 n = 208 | r = 0.082 p = 0.104 n = 396 | r = 0.138 p = 0.017 n = 300 |
TSHRAb [IU/L] | r = 0.083 p = 0.199 n = 238 | r = 0.055 p = 0.434 n = 202 | r = 0.592 p < 0.001 n = 385 | r = 0.863 p < 0.001 n = 293 |
Cholesterol [mg/dL] | r = −0.013 p = 0.832 n = 273 | r = −0.063 p = 0.332 n = 235 | r = −0.261 p < 0.001 n = 436 | r = −0.261 p < 0.001 n = 337 |
HDLC [mg/dL] | r = 0.113 p = 0.063 n = 411 | r = 0.132 p = 0.043 n = 235 | r = −0.084 p = 0.077 n = 436 | r = −0.095 p = 0.082 n = 337 |
LDLC [mg/dL] | r = −0.223 p = 0.062 n = 273 | r = −0.103 p = 0.117 n = 235 | r = −0.221 p < 0.001 n = 434 | r = −0.226 p < 0.001 n = 336 |
HDLC/Cholesterol | r = 0.133 p = 0.028 n = 272 | r = 0.178 p = 0.006 n = 234 | r = 0.117 p = 0.014 n = 434 | r = 0.136 p = 0.013 n = 335 |
TGs [mg/dL] | r = −0.102 p = 0.093 n = 272 | r = −0.142 p = 0.03 n = 234 | r = −0.083 p = 0.085 n = 434 | r = −0.092 p = 0.093 n = 336 |
Glucose [mg/dL] | r = 0.058 p = 0.348 n = 265 | r = −0.073 p = 0.269 n = 227 | r = 0.103 p = 0.034 n = 424 | r = 0.098 p = 0.074 n = 329 |
Fe [µg/dL] | r = 0.392 p = 0.016 n = 37 | r = 0.239 p = 0.196 n = 31 | r = −0.162 p = 0.173 n = 70 | r = −0.160 p = 0.279 n = 54 |
Vit D [ng/mL] | r = 0.154 p = 0.020 n = 229 | r = 0.153 p = 0.035 n = 191 | r = 0.007 p = 0.882 n = 380 | r = −0.001 p = 0.982 n = 281 |
IRI | r = −0.178 p = 0.026 n = 156 | r = −0.241 p = 0.004 n = 138 | r = −0.036 p = 0.584 n = 227 | r = −0.093 p = 0.202 n = 188 |
Chosen Group | Univariate Regression | ||
---|---|---|---|
OR | 95%Cl | p | |
Group of 288 patients with normal TSH | 25.57 | 0.06–6.42 | 0.046 |
Group of 288 patients with normal TSH without LT4 treatment | 3.79 | −1.58–4.25 | 0.369 |
The whole group of 466 patients | 19.12 | 0.082–5.82 | 0.044 |
The whole group of patients without LT4 treatment | 30.51 | 0.521–6.31 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbownik-Lewińska, M.; Stępniak, J.; Lewiński, A. Potential Risk Factors for Isolated Hypothyroxinemia in Women of Childbearing Age—Results from Retrospective Analysis. J. Clin. Med. 2021, 10, 5384. https://doi.org/10.3390/jcm10225384
Karbownik-Lewińska M, Stępniak J, Lewiński A. Potential Risk Factors for Isolated Hypothyroxinemia in Women of Childbearing Age—Results from Retrospective Analysis. Journal of Clinical Medicine. 2021; 10(22):5384. https://doi.org/10.3390/jcm10225384
Chicago/Turabian StyleKarbownik-Lewińska, Małgorzata, Jan Stępniak, and Andrzej Lewiński. 2021. "Potential Risk Factors for Isolated Hypothyroxinemia in Women of Childbearing Age—Results from Retrospective Analysis" Journal of Clinical Medicine 10, no. 22: 5384. https://doi.org/10.3390/jcm10225384
APA StyleKarbownik-Lewińska, M., Stępniak, J., & Lewiński, A. (2021). Potential Risk Factors for Isolated Hypothyroxinemia in Women of Childbearing Age—Results from Retrospective Analysis. Journal of Clinical Medicine, 10(22), 5384. https://doi.org/10.3390/jcm10225384