Proteomic Analysis of Aqueous Humor Proteins in Association with Cataract Risks: Diabetes and Smoking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. AH Sample Collection
2.3. n-UPLC-MS/MS
2.4. Protein Identification
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Statistical Analysis
3. Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, G.N.; Khanna, R.; Payal, A. The global burden of cataract. Curr. Opin. Ophthalmol. 2011, 22, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef]
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukesh, B.N.; Le, A.; Dimitrov, P.N.; Ahmed, S.; Taylor, H.R.; McCarty, C.A. Development of cataract and associated risk factors: The Visual Impairment Project. Arch. Ophthalmol. 2006, 124, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, P.J.; Wong, T.Y.; Machin, D.; Johnson, G.J.; Seah, S.K.L. Risk factors for nuclear, cortical and posterior subcapsular cataracts in the Chinese population of Singapore: The Tanjong Pagar Survey. Br. J. Ophthalmol. 2003, 87, 1112–1120. [Google Scholar] [CrossRef]
- Becker, C.; Schneider, C.; Aballéa, S.; Bailey, C.; Bourne, R.; Jick, S.; Meier, C. Cataract in patients with diabetes mellitus-incidence rates in the UK and risk factors. Eye 2018, 32, 1028–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, C.W.; Boey, P.Y.; Cheng, C.Y.; Saw, S.M.; Tay, W.T.; Wang, J.J.; Tan, A.G.; Mitchell, P.; Wong, T.Y. Myopia, axial length, and age-related cataract: The Singapore Malay eye study. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4498–4502. [Google Scholar] [CrossRef] [Green Version]
- Kyselova, Z. Mass spectrometry-based proteomics approaches applied in cataract research. Mass. Spectrom. Rev. 2011, 30, 1173–1184. [Google Scholar] [CrossRef]
- Truscott, R.J.; Friedrich, M.G. Old proteins and the Achilles heel of mass spectrometry. The role of proteomics in the etiology of human cataract. Proteom. Clin. Appl. 2014, 8, 195–203. [Google Scholar] [CrossRef]
- Zhang, B.N.; Wu, X.; Dai, Y.; Qi, B.; Fan, C.; Huang, Y. Proteomic analysis of aqueous humor from cataract patients with retinitis pigmentosa. J. Cell. Physiol. 2021, 236, 2659–2668. [Google Scholar] [CrossRef]
- Bennett, K.L.; Funk, M.; Tschernutter, M.; Breitwieser, F.P.; Planyavsky, M.; Mohien, C.U.; Müller, A.; Trajanoski, Z.; Colinge, J.; Giulio, S.F.; et al. Proteomic analysis of human cataract aqueous humour: Comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ(R)-labelled specimens. J. Proteom. 2011, 74, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Schey, K.L.; Wang, Z.; Friedrich, M.G.; Garland, D.L.; Truscott, R.J.W. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Prog. Retin. Eye Res. 2020, 76, 1008–1902. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Rong, X.; Ye, H.; Zhang, K.; Lu, Y. Proteomic analysis of aqueous humor proteins associated with cataract development. Clin. Biochem. 2015, 48, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Kang, J.W.; Ahn, J.; Lee, E.K.; Cho, K.C.; Han, B.N.R.; Hong, N.Y.; Park, J.; Kim, K.P. Proteomic analysis of the aqueous humor in age-related macular degeneration (AMD) patients. J. Proteome Res. 2012, 11, 4034–4043. [Google Scholar] [CrossRef]
- Heiss, A.; Chesne, A.D.; Denecke, B.; Grötzinger, J.; Yamamoto, K.; Renné, T.; Dechent, W.J. Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 2003, 278, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.C.; Bowman, B.H.; Yang, F.M. Human alpha 2-HS-glycoprotein: The A and B chains with a connecting sequence are encoded by a single mRNA transcript. Proc. Natl. Acad. Sci. USA 1987, 84, 4403–4407. [Google Scholar] [CrossRef] [Green Version]
- Reza Sailani, M.; Jahanbani, F.; Nasiri, J.; Behnam, M.; Salehi, M.; Sedghi, M.; Hoseinzadeh, M.; Takahashi, S.; Zia, A.; Gruber, J.; et al. Association of AHSG with alopecia and mental retardation (APMR) syndrome. Hum. Genet. 2017, 136, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Stastna, M.; Behrens, A.; McDonnell, P.J.; Jennifer, E.V.E. Analysis of protein composition of rabbit aqueous humor following two different cataract surgery incision procedures using 2-DE and LC-MS/MS. Proteome Sci. 2011, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Edward, D.P.; Bouhenni, R. Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis). Trans. Am. Ophthalmol. Soc. 2011, 109, 66–114. [Google Scholar]
- Szweras, M.; Liu, D.; Partridge, E.A.; Pawling, J.; Sukhu, B.; Clokie, C.; Dechent, W.J.; Tenenbaum, H.C.; Swallow, C.J.; Grynpas, M.D.; et al. Alpha 2-HS glycoprotein/fetuin, a transforming growth factor-beta/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J. Biol. Chem. 2002, 277, 19991–19997. [Google Scholar] [CrossRef] [Green Version]
- Wordinger, R.J.; Fleenor, D.L.; Hellberg, P.E.; Pang, I.H.; Tovar, T.O.; Zode, G.S.; Fuller, J.A.; Clark, A.F. Effects of TGF-beta2, BMP-4, and gremlin in the trabecular meshwork: Implications for glaucoma. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Umulis, D.; O’Connor, M.B.; Blair, S.S. The extracellular regulation of bone morphogenetic protein signaling. Development 2009, 136, 3715–3728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaud, P.; Kalabay, L. Alpha2-HS glycoprotein: A protein in search of a function. Diabetes Metab. Res. Rev. 2002, 18, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Davidoff, A.J. Alpha2-Heremans Schmid glycoprotein, a putative inhibitor of tyrosine kinase, prevents glucose toxicity associated with cardiomyocyte dysfunction. Diabetes Metab. Res. Rev. 2002, 18, 305–310. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Mey, J.; Varady, K.A. Fetuin-A: A novel link between obesity and related complications. Int. J. Obes. 2015, 39, 734–741. [Google Scholar] [CrossRef]
- Jung, T.W.; Yoo, H.J.; Choi, K.M. Implication of hepatokines in metabolic disorders and cardiovascular diseases. BBA Clin. 2016, 5, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Dabrowska, A.M.; Stanislaw Tarach, J.S.; Duma, B.W.; Duma, D. Fetuin-A (AHSG) and its usefulness in clinical practice. Review of the literature. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2015, 159, 352–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Sharma, P.K.; Garg, V.K.; Mondal, S.C.; Singh, A.K.; Kumar, N. Role of fetuin-A in atherosclerosis associated with diabetic patients. J. Pharm. Pharmacol. 2012, 64, 1703–1708. [Google Scholar] [CrossRef]
- Rasul, S.; Wagner, L.; Kautzky-Willer, A. Fetuin-A and angiopoietins in obesity and type 2 diabetes mellitus. Endocrine 2012, 42, 496–505. [Google Scholar] [CrossRef]
- Mori, K.; Emoto, M.; Inaba, M. Fetuin-A and the cardiovascular system. Adv. Clin. Chem. 2012, 56, 175–195. [Google Scholar] [PubMed]
- Horshuns’ka, M.; Karachentsev, I.L.; Kravchun, N.O.; Ĭensen, E.; Leshchenko, Z.A.; Hladkykh, O.I.; Krasova, N.S.; Tyzhnenko, T.V.; Opaleĭko, I.A.; Poltorak, V.V. Biological role of fetuin A and its potential importance for prediction of cardiovascular risk in patients with type 2 diabetes mellitus. Ukr. Biokhim. Zh. 2013, 85, 10–21. [Google Scholar]
- Guo, V.Y.; Cao, B.; Cai, C.; Cheng, K.K.Y.; Cheung, B.M.Y. Fetuin-A levels and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Acta Diabetol. 2018, 55, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Roshanzamir, F.; Miraghajani, M.; Rouhani, M.H.; Mansourian, M.; Ghiasvand, R.; Safavi, S.M. The association between circulating fetuin-A levels and type 2 diabetes mellitus risk: Systematic review and meta-analysis of observational studies. J. Endocrinol. Investig. 2018, 41, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Wada, J.; Eguchi, J.; Nakatsuka, A.; Teshigawara, S.; Murakami, K.; Ogawa, D.; Takahiro, T. Urinary fetuin-A is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS ONE 2013, 8, e77118. [Google Scholar] [CrossRef] [Green Version]
- Ou, H.Y.; Yang, Y.C.; Wu, H.T.; Wu, J.S.; Lu, F.H.; Chang, C.J. Serum fetuin-A concentrations are elevated in subjects with impaired glucose tolerance and newly diagnosed type 2 diabetes. Clin. Endocrinol. 2011, 75, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, N.; Takmaz, T.; Turkcu, U.O.; Ergin, M.; Altinkaynak, H.; Bilgihan, A. Serum and Aqueous Humor Levels of Fetuin-A in Pseudoexfoliation Syndrome. Curr. Eye Res. 2017, 42, 1378–1381. [Google Scholar] [CrossRef]
- Wolf, G.T.; Chretien, P.B.; Weiss, J.F.; Edwards, B.K.; Spiegel, H.E. Effects of smoking and age on serum levels of immune reactive proteins. Otolaryngol. Head Neck Surg. 1982, 90, 319–326. [Google Scholar]
- Marechal, C.; Schlieper, G.; Nguyen, P.; Krüger, T.; Coche, E.; Robert, A.; Floege, J.; Goffin, E.; Jadoul, M.; Devuyst, O. Serum fetuin-A levels are associated with vascular calcifications and predict cardiovascular events in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 2011, 6, 974–985. [Google Scholar] [CrossRef] [Green Version]
Cataract Control | Single Risk | Double Risks | p Value # | |
---|---|---|---|---|
Gender | 0.003 | |||
Female | 7 (77.8%) | 3 (30.0%) | 0 (0.0%) | |
Male | 2 (22.2%) | 7 (70.0%) | 8 (100.0%) | |
Protein (μg/μL) | 0.22 ± 0.06 | 0.36 ± 0.21 | 0.34 ± 0.11 | 0.049 |
Age (years) | 74.00 ± 5.72 | 72.30 ± 10.14 | 69.38 ± 9.87 | 0.390 |
VA (logMAR) | 0.41 ± 0.12 | 0.38 ± 0.14 | 0.27 ± 0.20 | 0.360 |
AXL (mm) | 23.48 ± 0.59 | 24.02 ± 1.24 | 23.69 ± 0.95 | 0.552 |
Smoking | 5 | |||
Diabetes mellitus (DM) | 5 | |||
Smoking + DM | 8 |
Q9NQ66 | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 | P0CG04 | Immunoglobulin lambda constant 1 |
Q99460 | 26S proteasome non-ATPase regulatory subunit 1 | P01700 | Immunoglobulin lambda variable 1–47 |
O95996 | Adenomatous polyposis coli protein 2 | P0DOX8 | Immunoglobulin lambda-1 light chain |
P02768 | Albumin | B9A064 | Immunoglobulin lambda-like polypeptide 5 |
P51648 | Aldehyde dehydrogenase family 3 member A2 | P24592 | Insulin-like growth factor-binding protein 6 |
P02763 | Alpha-1-acid glycoprotein 1 | Q16270 | Insulin-like growth factor-binding protein 7 |
P19652 | Alpha-1-acid glycoprotein 2 | Q14624 | Inter-alpha-trypsin inhibitor heavy chain H4 |
P01011 | Alpha-1-antichymotrypsin | Q6UXX5 | Inter-alpha-trypsin inhibitor heavy chain H6 |
P01009 | Alpha-1-antitrypsin | Q17R60 | Interphotoreceptor matrix proteoglycan 1 |
P04217 | Alpha-1B-glycoprotein | Q9BZV3 | Interphotoreceptor matrix proteoglycan 2 |
P02765 | Alpha-2-HS-glycoprotein | P01042 | Kininogen-1 |
P01023 | Alpha-2-macroglobulin | P02750 | Leucine-rich alpha-2-glycoprotein |
P02489 | Alpha-crystallin A chain | Q68G74 | LIM/homeobox protein Lhx8 |
A0A140G945 | Alpha-crystallin A2 chain | P51884 | Lumican |
P02511 | Alpha-crystallin B chain | P61626 | Lysozyme C |
P06733 | Alpha-enolase | P01033 | Metalloproteinase inhibitor 1 |
P03950 | Angiogenin | P05408 | Neuroendocrine protein 7B2 |
P01019 | Angiotensinogen | P61916 | NPC intracellular cholesterol transporter 2 |
P01008 | Antithrombin-III | Q9UBM4 | Opticin |
P02647 | Apolipoprotein A-I | P10451 | Osteopontin |
P02652 | Apolipoprotein A-II | Q9UQ90 | Paraplegin |
P06727 | Apolipoprotein A-IV | P36955 | Pigment epithelium-derived factor |
P05090 | Apolipoprotein D | Q15149 | Plectin |
P02649 | Apolipoprotein E | P0CG47 | Polyubiquitin-B |
P54253 | Ataxin-1 | P0CG48 | Polyubiquitin-C |
P02749 | Beta-2-glycoprotein 1 | Q9ULS6 | Potassium voltage-gated channel subfamily S member 2 |
P61769 | Beta-2-microglobulin | O94913 | Pre-mRNA cleavage complex 2 protein Pcf11 |
P05813 | Beta-crystallin A3 | Q13395 | Probable methyltransferase TARBP1 |
P53674 | Beta-crystallin B1 | A0A075B6H7 | Probable non-functional immunoglobulin kappa variable 3–7 |
P43320 | Beta-crystallin B2 | O94823 | Probable phospholipid-transporting ATPase VB |
P19022 | Cadherin-2 | Q9UHG2 | ProSAAS |
P07339 | Cathepsin D | P41222 | Prostaglandin-H2 D-isomerase |
Q8N163 | Cell cycle and apoptosis regulator protein 2 | Q92520 | Protein FAM3C |
Q7Z7A1 | Centriolin | P05109 | Protein S100-A8 |
P36222 | Chitinase-3-like protein 1 | Q9H6Z4 | Ran-binding protein 3 |
Q9HAW4 | Claspin | P10745 | Retinol-binding protein 3 |
O43809 | Cleavage and polyadenylation specificity factor subunit 5 | P02753 | Retinol-binding protein 4 |
P10909 | Clusterin | P34096 | Ribonuclease 4 |
P01024 | Complement C3 | P07998 | Ribonuclease pancreatic |
P0C0L4 | Complement C4-A | Q5T481 | RNA-binding protein 20 |
P0C0L5 | Complement C4-B | O75326 | Semaphorin-7A |
P00751 | Complement factor B | P02787 | Serotransferrin |
P00746 | Complement factor D | P00441 | Superoxide dismutase [Cu-Zn] |
P05156 | Complement factor I | P05452 | Tetranectin |
P01034 | Cystatin-C | Q8WZ42 | Titin |
Q8WVS4 | Cytoplasmic dynein 2 intermediate chain 1 | O15050 | TPR and ankyrin repeat-containing protein 1 |
Q96M86 | Dynein heavy chain domain-containing protein 1 | Q15582 | Transforming growth factor-beta-induced protein ig-h3 |
P49792 | E3 SUMO-protein ligase RanBP2 | Q14956 | Transmembrane glycoprotein NMB |
Q9HC35 | Echinoderm microtubule-associated protein-like 4 | P02766 | Transthyretin |
Q13822 | Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 | P60174 | Triosephosphate isomerase |
Q8TE68 | Epidermal growth factor receptor kinase substrate 8-like protein 1 | P35030 | Trypsin-3 |
P02671 | Fibrinogen alpha chain | P62979 | Ubiquitin-40S ribosomal protein S27a |
Q6ZV73 | FYVE, RhoGEF and PH domain-containing protein 6 | P62987 | Ubiquitin-60S ribosomal protein L40 |
P07320 | Gamma-crystallin D | Q5THJ4 | Vacuolar protein sorting-associated protein 13D |
P22914 | Gamma-crystallin S | P02774 | Vitamin D-binding protein |
P06396 | Gelsolin | Q96PQ0 | VPS10 domain-containing receptor SorCS2 |
P22352 | Glutathione peroxidase 3 | Q9P202 | Whirlin |
Q14789 | Golgin subfamily B member 1 | P25311 | Zinc-alpha-2-glycoprotein |
P00738 | Haptoglobin | P0CG04 | Immunoglobulin lambda constant 1 |
P69905 | Hemoglobin subunit alpha | P01700 | Immunoglobulin lambda variable 1–47 |
P68871 | Hemoglobin subunit beta | P0DOX8 | Immunoglobulin lambda-1 light chain |
P02042 | Hemoglobin subunit delta | B9A064 | Immunoglobulin lambda-like polypeptide 5 |
P02790 | Hemopexin | P24592 | Insulin-like growth factor-binding protein 6 |
P62805 | Histone H4 | Q16270 | Insulin-like growth factor-binding protein 7 |
P0DOX3 | Immunoglobulin delta heavy chain | Q14624 | Inter-alpha-trypsin inhibitor heavy chain H4 |
P0DOX5 | Immunoglobulin gamma-1 heavy chain | Q6UXX5 | Inter-alpha-trypsin inhibitor heavy chain H6 |
P01859 | Immunoglobulin heavy constant gamma 2 | Q17R60 | Interphotoreceptor matrix proteoglycan 1 |
P01860 | Immunoglobulin heavy constant gamma 3 | Q9BZV3 | Interphotoreceptor matrix proteoglycan 2 |
P01861 | Immunoglobulin heavy constant gamma 4 | P01042 | Kininogen-1 |
P01780 | Immunoglobulin heavy variable 3–7 | P02750 | Leucine-rich alpha-2-glycoprotein |
A0A0B4J1Y9 | Immunoglobulin heavy variable 3–72 | Q68G74 | LIM/homeobox protein Lhx8 |
A0A0B4J1X5 | Immunoglobulin heavy variable 3–74 | P51884 | Lumican |
A0A0J9YXX1 | Immunoglobulin heavy variable 5-10-1 | P61626 | Lysozyme C |
A0A0B4J1U7 | Immunoglobulin heavy variable 6-1 | P01033 | Metalloproteinase inhibitor 1 |
P01834 | Immunoglobulin kappa constant | P05408 | Neuroendocrine protein 7B2 |
P0DOX7 | Immunoglobulin kappa light chain | P61916 | NPC intracellular cholesterol transporter 2 |
P01624 | Immunoglobulin kappa variable 3–15 | Q9UBM4 | Opticin |
P01619 | Immunoglobulin kappa variable 3–20 | P10451 | Osteopontin |
Canonical Pathways | Overlap of Proteins in the Single-Risk and Cataract Control Groups | Overlap of Proteins in the Double-Risk and Cataract Control Groups | Overlap of Proteins in the Single- and Double-Risk Groups |
---|---|---|---|
LXR/RXR Activation | 12 | 10 | 1 |
FXR/RXR Activation | 12 | 10 | 1 |
Acute-Phase Response Signaling | 11 | 11 | 1 |
Clathrin-mediated Endocytosis Signaling | 12 | ||
Atherosclerosis Signaling | 7 | ||
Primary Immunodeficiency Signaling | 5 | ||
IL-15 Signaling | 9 | 1 | |
B Cell Receptor Signaling | 1 |
Protein-ID | Protein Name | Cataract Control (Spc) | Single (Spc) | Multiple of Change (Spc) | Cataract Control (Spc) | Double (Spc) | Multiple of Change (Spc) |
---|---|---|---|---|---|---|---|
Q99460 | 26S proteasome non-ATPase regulatory subunit 1 | 0.76 ± 1.18 | 2.99 ± 0.91 | 3.93 | 0.76 ± 1.18 | 2.95 ± 1.90 | 3.88 |
P02763 | Alpha-1-acid glycoprotein 1 | 3.26 ± 3.45 | 0.00 ± 0.00 | 0 | 3.26 ± 3.45 | 0.00 ± 0.00 | 0 |
P19652 | Alpha-1-acid glycoprotein 2 | 2.06 ± 1.89 | 0.00 ± 0.00 | 0 | 2.06 ± 1.89 | 0.00 ± 0.00 | 0 |
P01011 | Alpha-1-antichymotrypsin | 2.87 ± 2.07 | 0.32 ± 0.52 | 0.11 | 2.87 ± 2.07 | 0.26 ± 0.74 | 0.09 |
P02765 | Alpha-2-HS-glycoprotein | 0.00 ± 0.00 | 2.14 ± 1.72 | −100 | 0.00 ± 0.00 | 4.30 ± 2.08 | −100 |
P02647 | Apolipoprotein A-I | 3.88 ± 4.11 | 10.49 ± 2.19 | 2.68 | 3.88 ± 4.11 | 9.41 ± 6.49 | 2.43 |
P02652 | Apolipoprotein A-II | 0.09 ± 0.26 | 2.09 ± 1.33 | 23.22 | 0.09 ± 0.26 | 2.26 ± 1.52 | 25.11 |
P02749 | Beta-2-glycoprotein 1 | 1.90 ± 1.49 | 0.09 ± 0.27 | 0.05 | 1.90 ± 1.49 | 0.33 ± 0.63 | 0.17 |
P36222 | Chitinase-3-like protein 1 | 5.39 ± 2.93 | 1.15 ± 1.87 | 0.21 | 5.39 ± 2.93 | 0.71 ± 0.88 | 0.13 |
Q13822 | Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 | 3.63 ± 3.78 | 0.11 ± 0.34 | 0.03 | 3.63 ± 3.78 | 0.14 ± 0.41 | 0.04 |
P22352 | Glutathione peroxidase 3 | 1.15 ± 1.23 | 0.00 ± 0.00 | 0 | 1.15 ± 1.23 | 0.00 ± 0.00 | 0 |
Q14789 | Golgin subfamily B member 1 | 0.54 ± 0.71 | 0.00 ± 0.00 | 0 | 0.54 ± 0.71 | 0.00 ± 0.00 | 0 |
P02790 | Hemopexin | 21.12 ± 8.44 | 1.56 ± 1.62 | 0.07 | 21.12 ± 8.44 | 2.67 ± 3.40 | 0.13 |
P0DOX5 | Immunoglobulin gamma-1 heavy chain | 34.76 ± 6.08 | 10.24 ± 4.37 | 0.29 | 34.76 ± 6.08 | 10.58 ± 5.89 | 0.3 |
P01859 | Immunoglobulin heavy constant gamma 2 | 21.29 ± 3.52 | 5.29 ± 3.57 | 0.25 | 21.29 ± 3.52 | 6.27 ± 4.97 | 0.3 |
P01860 | Immunoglobulin heavy constant gamma 3 | 22.01 ± 4.99 | 6.75 ± 3.30 | 0.31 | 22.01 ± 4.99 | 6.98 ± 4.25 | 0.32 |
P01861 | Immunoglobulin heavy constant gamma 4 | 15.02 ± 3.42 | 4.14 ± 2.88 | 0.28 | 15.02 ± 3.42 | 4.92 ± 2.49 | 0.33 |
P01780 | Immunoglobulin heavy variable 3–7 | 2.46 ± 2.13 | 0.00 ± 0.00 | 0 | 2.46 ± 2.13 | 0.25 ± 0.72 | 0.1 |
A0A0B4J1Y9 | Immunoglobulin heavy variable 3–72 | 1.67 ± 1.09 | 0.00 ± 0.00 | 0 | 1.67 ± 1.09 | 0.13 ± 0.36 | 0.08 |
A0A0B4J1X5 | Immunoglobulin heavy variable 3–74 | 2.08 ± 1.99 | 0.00 ± 0.00 | 0 | 2.08 ± 1.99 | 0.25 ± 0.72 | 0.12 |
A0A0B4J1U7 | Immunoglobulin heavy variable 6–1 | 1.16 ± 1.28 | 0.09 ± 0.27 | 0.08 | 1.16 ± 1.28 | 0.00 ± 0.00 | 0 |
P01834 | Immunoglobulin kappa constant | 16.50 ± 5.02 | 2.75 ± 2.24 | 0.17 | 16.50 ± 5.02 | 2.94 ± 2.81 | 0.18 |
P0DOX7 | Immunoglobulin kappa light chain | 12.23 ± 3.03 | 2.75 ± 2.24 | 0.23 | 12.23 ± 3.03 | 2.94 ± 2.81 | 0.24 |
P0CG04 | Immunoglobulin lambda constant 1 | 4.74 ± 1.71 | 2.29 ± 1.75 | 0.48 | 4.74 ± 1.71 | 1.66 ± 1.20 | 0.35 |
P0DOX8 | Immunoglobulin lambda-1 light chain | 4.74 ± 1.71 | 2.29 ± 1.75 | 0.48 | 4.74 ± 1.71 | 1.66 ± 1.20 | 0.35 |
B9A064 | Immunoglobulin lambda-like polypeptide 5 | 4.74 ± 1.71 | 2.29 ± 1.75 | 0.48 | 4.74 ± 1.71 | 1.66 ± 1.20 | 0.35 |
Q16270 | Insulin-like growth factor-binding protein 7 | 3.52 ± 1.34 | 1.83 ± 1.03 | 0.52 | 3.52 ± 1.34 | 1.09 ± 1.28 | 0.31 |
P01033 | Metalloproteinase inhibitor 1 | 0.78 ± 0.80 | 0.00 ± 0.00 | 0 | 0.78 ± 0.80 | 0.00 ± 0.00 | 0 |
P61916 | NPC intracellular cholesterol transporter 2 | 1.05 ± 0.89 | 0.00 ± 0.00 | 0 | 1.05 ± 0.89 | 0.20 ± 0.58 | 0.19 |
Q92520 | Protein FAM3C | 1.50 ± 1.23 | 0.00 ± 0.00 | 0 | 1.50 ± 1.23 | 0.00 ± 0.00 | 0 |
P02753 | Retinol-binding protein 4 | 2.09 ± 0.97 | 0.71 ± 1.30 | 0.34 | 2.09 ± 0.97 | 0.86 ± 0.96 | 0.41 |
O75326 | Semaphorin-7A | 0.98 ± 1.59 | 0.00 ± 0.00 | 0 | 0.98 ± 1.59 | 0.00 ± 0.00 | 0 |
P02787 | Serotransferrin | 74.79 ± 23.85 | 31.40 ± 9.50 | 0.42 | 74.79 ± 23.85 | 30.22 ± 9.85 | 0.4 |
P00441 | Superoxide dismutase [Cu-Zn] | 2.93 ± 1.87 | 0.19 ± 0.41 | 0.06 | 2.93 ± 1.87 | 0.25 ± 0.72 | 0.09 |
P05452 | Tetranectin | 2.53 ± 1.41 | 0.00 ± 0.00 | 0 | 2.53 ± 1.41 | 0.00 ± 0.00 | 0 |
P25311 | Zinc-alpha-2-glycoprotein | 8.92 ± 2.57 | 0.00 ± 0.00 | 0 | 8.92 ± 2.57 | 0.52 ± 1.12 | 0.06 |
P06727 | Apolipoprotein A-IV | 0.11 ± 0.32 | 5.51 ± 4.11 | 50.09 | |||
P02649 | Apolipoprotein E | 1.04 ± 1.80 | 3.92 ± 2.74 | 3.77 | |||
O43809 | Cleavage and polyadenylation specificity factor subunit 5 | 0.98 ± 0.68 | 0.21 ± 0.68 | 0.21 | |||
P01619 | Immunoglobulin kappa variable 3–20 | 1.06 ± 1.34 | 0.00 ± 0.00 | 0 | |||
P24592 | Insulin-like growth factor-binding protein 6 | 1.88 ± 1.31 | 0.23 ± 0.72 | 0.12 | |||
Q9UBM4 | Opticin | 0.09 ± 0.26 | 0.64 ± 0.74 | 7.11 | |||
P0CG47 | Polyubiquitin-B | 1.54 ± 1.41 | 0.10 ± 0.33 | 0.06 | |||
P0CG48 | Polyubiquitin-C | 1.54 ± 1.41 | 0.10 ± 0.33 | 0.06 | |||
Q9ULS6 | Potassium voltage-gated channel subfamily S member 2 | 0.11 ± 0.32 | 0.65 ± 0.75 | 5.91 | |||
P62979 | Ubiquitin-40S ribosomal protein S27a | 1.54 ± 1.41 | 0.10 ± 0.33 | 0.06 | |||
P62987 | Ubiquitin-60S ribosomal protein L40 | 1.54 ± 1.41 | 0.10 ± 0.33 | 0.06 | |||
P61769 | Beta-2-microglobulin | 5.22 ± 2.45 | 2.02 ± 1.83 | 0.39 | |||
P0C0L4 | Complement C4-A | 0.41 ± 0.82 | 2.16 ± 2.53 | 5.27 | |||
P0C0L5 | Complement C4-B | 0.41 ± 0.82 | 2.16 ± 2.53 | 5.27 | |||
P41222 | Prostaglandin-H2 D-isomerase | 11.39 ± 1.97 | 8.00 ± 1.65 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, W.-C.; Lee, C.-H.; Chiou, S.-H.; Liao, C.-C.; Cheng, C.-W. Proteomic Analysis of Aqueous Humor Proteins in Association with Cataract Risks: Diabetes and Smoking. J. Clin. Med. 2021, 10, 5731. https://doi.org/10.3390/jcm10245731
Chang W-C, Lee C-H, Chiou S-H, Liao C-C, Cheng C-W. Proteomic Analysis of Aqueous Humor Proteins in Association with Cataract Risks: Diabetes and Smoking. Journal of Clinical Medicine. 2021; 10(24):5731. https://doi.org/10.3390/jcm10245731
Chicago/Turabian StyleChang, Wei-Cheng, Cho-Hao Lee, Shih-Hwa Chiou, Chen-Chung Liao, and Chao-Wen Cheng. 2021. "Proteomic Analysis of Aqueous Humor Proteins in Association with Cataract Risks: Diabetes and Smoking" Journal of Clinical Medicine 10, no. 24: 5731. https://doi.org/10.3390/jcm10245731
APA StyleChang, W. -C., Lee, C. -H., Chiou, S. -H., Liao, C. -C., & Cheng, C. -W. (2021). Proteomic Analysis of Aqueous Humor Proteins in Association with Cataract Risks: Diabetes and Smoking. Journal of Clinical Medicine, 10(24), 5731. https://doi.org/10.3390/jcm10245731