Alcohol Intake and Alcohol–SNP Interactions Associated with Prostate Cancer Aggressiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. SNP Selection
2.3. Alcohol Intake Behaviors
2.4. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Brennan, P. Gene-environment interaction and aetiology of cancer: What does it mean and how can we measure it? Carcinogenesis 2002, 23, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Simonds, N.I.; Ghazarian, A.A.; Pimentel, C.B.; Schully, S.D.; Ellison, G.L.; Gillanders, E.M.; Mechanic, L.E. Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know? Genet. Epidemiol. 2016, 40, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Rizos, C.; Papassava, M.; Golias, C.; Charalabopoulos, K. Alcohol consumption and prostate cancer: A mini review. Exp. Oncol. 2010, 32, 66–70. [Google Scholar]
- Perdana, N.R.; Mochtar, C.A.; Umbas, R.; Hamid, A.R. The Risk Factors of Prostate Cancer and Its Prevention: A Literature Review. Acta Med. Indones. 2016, 48, 228–238. [Google Scholar]
- Gronberg, H. Prostate cancer epidemiology. Lancet 2003, 361, 859–864. [Google Scholar] [CrossRef]
- Van den Broeck, T.; Joniau, S.; Clinckemalie, L.; Helsen, C.; Prekovic, S.; Spans, L.; Tosco, L.; Van Poppel, H.; Claessens, F. The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making. Biomed. Res. Int. 2014, 2014, 627510. [Google Scholar] [CrossRef]
- Boffetta, P.; Hashibe, M. Alcohol and cancer. Lancet Oncol. 2006, 7, 149–156. [Google Scholar] [CrossRef]
- Substance Abuse and Mental Health Services Administration. Key Substance Use and Mental Health Indicators in the United States: Results from the 2018 National Survey on Drug Use and Health; (HHS Publication No. PEP19-5068, NSDUH Series H-54); Substance Abuse and Mental Health Services Administration: Rockville, MD, USA, 2019. [Google Scholar]
- Lin, H.Y.; Fisher, P.; Harris, D.; Tseng, T.S. Alcohol intake patterns for cancer and non-cancer individuals: A population study. Transl. Cancer Res. 2019, 8, S334–S345. [Google Scholar] [CrossRef]
- Demoury, C.; Karakiewicz, P.; Parent, M.E. Association between lifetime alcohol consumption and prostate cancer risk: A case-control study in Montreal, Canada. Cancer Epidemiol. 2016, 45, 11–17. [Google Scholar] [CrossRef]
- Zhao, J.; Stockwell, T.; Roemer, A.; Chikritzhs, T. Is alcohol consumption a risk factor for prostate cancer? A systematic review and meta-analysis. BMC Cancer 2016, 16, 845. [Google Scholar] [CrossRef] [Green Version]
- Dickerman, B.A.; Markt, S.C.; Koskenvuo, M.; Pukkala, E.; Mucci, L.A.; Kaprio, J. Alcohol intake, drinking patterns, and prostate cancer risk and mortality: A 30-year prospective cohort study of Finnish twins. Cancer Causes Control. 2016, 27, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Rohrmann, S.; Linseisen, J.; Key, T.J.; Jensen, M.K.; Overvad, K.; Johnsen, N.F.; Tjonneland, A.; Kaaks, R.; Bergmann, M.M.; Weikert, C.; et al. Alcohol consumption and the risk for prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1282–1287. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901. [Google Scholar] [CrossRef]
- Brunner, C.; Davies, N.M.; Martin, R.M.; Eeles, R.; Easton, D.; Kote-Jarai, Z.; Al Olama, A.A.; Benlloch, S.; Muir, K.; Giles, G.; et al. Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study. Int. J. Cancer 2017, 140, 75–85. [Google Scholar] [CrossRef]
- Seitz, H.K.; Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer 2007, 7, 599–612. [Google Scholar] [CrossRef]
- Fukumori, T.; Oka, N.; Takenaka, Y.; Nangia-Makker, P.; Elsamman, E.; Kasai, T.; Shono, M.; Kanayama, H.O.; Ellerhorst, J.; Lotan, R.; et al. Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res. 2006, 66, 3114–3119. [Google Scholar] [CrossRef] [Green Version]
- Poliseno, L.; Tuccoli, A.; Mariani, L.; Evangelista, M.; Citti, L.; Woods, K.; Mercatanti, A.; Hammond, S.; Rainaldi, G. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 2006, 108, 3068–3071. [Google Scholar] [CrossRef]
- Lin, H.Y.; Amankwah, E.K.; Tseng, T.S.; Qu, X.; Chen, D.T.; Park, J.Y. SNP-SNP Interaction Network in Angiogenesis Genes Associated with Prostate Cancer Aggressiveness. PLoS ONE 2013, 8, e59688. [Google Scholar] [CrossRef] [Green Version]
- Eisermann, K.; Fraizer, G. The Androgen Receptor and VEGF: Mechanisms of Androgen-Regulated Angiogenesis in Prostate Cancer. Cancers 2017, 9, 32. [Google Scholar] [CrossRef]
- McKay, R.R.; Zurita, A.J.; Werner, L.; Bruce, J.Y.; Carducci, M.A.; Stein, M.N.; Heath, E.I.; Hussain, A.; Tran, H.T.; Sweeney, C.J.; et al. A Randomized Phase II Trial of Short-Course Androgen Deprivation Therapy With or Without Bevacizumab for Patients With Recurrent Prostate Cancer After Definitive Local Therapy. J. Clin. Oncol. 2016, 34, 1913–1920. [Google Scholar] [CrossRef]
- Boddy, J.L.; Fox, S.B.; Han, C.; Campo, L.; Turley, H.; Kanga, S.; Malone, P.R.; Harris, A.L. The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer. Clin. Cancer Res. 2005, 11, 7658–7663. [Google Scholar] [CrossRef] [Green Version]
- Audet-Walsh, E.; Yee, T.; McGuirk, S.; Vernier, M.; Ouellet, C.; St-Pierre, J.; Giguere, V. Androgen-Dependent Repression of ERRgamma Reprograms Metabolism in Prostate Cancer. Cancer Res. 2017, 77, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Amankwah, E.K.; Anegbe, E.; Park, H.; Pow-Sang, J.; Hakam, A.; Park, J.Y. miR-21, miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases. Asian J. Androl. 2013, 15, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Eeles, R.A.; Olama, A.A.; Benlloch, S.; Saunders, E.J.; Leongamornlert, D.A.; Tymrakiewicz, M.; Ghoussaini, M.; Luccarini, C.; Dennis, J.; Jugurnauth-Little, S.; et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 2013, 45, 385–391. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC), Glossary: Drinking Status. Available online: https://www.cdc.gov/nchs/nhis/alcohol/alcohol_glossary.htm (accessed on 23 January 2021).
- Papa, N.P.; MacInnis, R.J.; Jayasekara, H.; English, D.R.; Bolton, D.; Davis, I.D.; Lawrentschuk, N.; Millar, J.L.; Pedersen, J.; Severi, G.; et al. Total and beverage-specific alcohol intake and the risk of aggressive prostate cancer: A case-control study. Prostate Cancer Prostatic Dis. 2017, 20, 305–310. [Google Scholar] [CrossRef]
- Downer, M.K.; Kenfield, S.A.; Stampfer, M.J.; Wilson, K.M.; Dickerman, B.A.; Giovannucci, E.L.; Rimm, E.B.; Wang, M.; Mucci, L.A.; Willett, W.C.; et al. Alcohol Intake and Risk of Lethal Prostate Cancer in the Health Professionals Follow-Up Study. J. Clin. Oncol. 2019, 37, 1499–1511. [Google Scholar] [CrossRef]
- Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B 2002, 64, 479–498. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Liang, J.; Wang, Z.; Zhou, X.; Chen, L.; Li, M.; Xie, D.; Hu, Z.; Shen, H.; Wang, H. Association of common PALB2 polymorphisms with breast cancer risk: A case-control study. Clin. Cancer Res. 2008, 14, 5931–5937. [Google Scholar] [CrossRef] [Green Version]
- Morisot, N.; Ron, D. Alcohol-dependent molecular adaptations of the NMDA receptor system. Genes Brain Behav. 2017, 16, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Yuan, Q.; Mash, D.C.; Goldman, D. Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc. Natl. Acad. Sci. USA 2011, 108, 6626–6631. [Google Scholar] [CrossRef] [Green Version]
- Lobo, D.S.; Aleksandrova, L.; Knight, J.; Casey, D.M.; el-Guebaly, N.; Nobrega, J.N.; Kennedy, J.L. Addiction-related genes in gambling disorders: New insights from parallel human and pre-clinical models. Mol. Psychiatry 2015, 20, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- Heshmati, E.; Shirpoor, A.; Kheradmand, F.; Alizadeh, M.; Gharalari, F.H. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIdelta gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract. Anatol. J. Cardiol. 2018, 19, 19–26. [Google Scholar]
- Zhang, X.; Yao, X.; Qin, C.; Luo, P.; Zhang, J. Investigation of the molecular mechanisms underlying metastasis in prostate cancer by gene expression profiling. Exp. Ther. Med. 2016, 12, 925–932. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; Schneider, A.; Datta, N.S.; McCauley, L.K. Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res. 2006, 66, 9065–9073. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.J.; Martiniez, A.; Shi, X.B.; Yang, J.; Evans, C.P.; Dobi, A.; deVere White, R.W.; Kung, H.J. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 2014, 33, 2495–2503. [Google Scholar] [CrossRef] [Green Version]
- Permuth-Wey, J.; Chen, Y.A.; Tsai, Y.Y.; Chen, Z.; Qu, X.; Lancaster, J.M.; Stockwell, H.; Dagne, G.; Iversen, E.; Risch, H.; et al. Inherited variants in mitochondrial biogenesis genes may influence epithelial ovarian cancer risk. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1131–1145. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Pan, Y.; Wang, Y.; Hu, L.; Cao, S.; Chu, M.; Dai, J.; Shu, Y.; Xu, L.; Chen, J.; et al. Genome-wide association study of survival in early-stage non-small cell lung cancer. Ann. Surg. Oncol. 2015, 22, 630–635. [Google Scholar] [CrossRef]
- Edenberg, H.J.; Koller, D.L.; Xuei, X.; Wetherill, L.; McClintick, J.N.; Almasy, L.; Bierut, L.J.; Bucholz, K.K.; Goate, A.; Aliev, F.; et al. Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol. Clin. Exp. Res. 2010, 34, 840–852. [Google Scholar] [CrossRef]
- Treutlein, J.; Cichon, S.; Ridinger, M.; Wodarz, N.; Soyka, M.; Zill, P.; Maier, W.; Moessner, R.; Gaebel, W.; Dahmen, N.; et al. Genome-wide association study of alcohol dependence. Arch. Gen. Psychiatry 2009, 66, 773–784. [Google Scholar] [CrossRef]
- Chen, J.; Hutchison, K.E.; Calhoun, V.D.; Claus, E.D.; Turner, J.A.; Sui, J.; Liu, J. CREB-BDNF pathway influences alcohol cue-elicited activation in drinkers. Hum. Brain Mapp. 2015, 36, 3007–3019. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, M.C.; Flint, A.; Field, A.E.; Kraft, P.; Han, J.; Rimm, E.B.; van Dam, R.M. A genome-wide investigation of food addiction. Obesity 2016, 24, 1336–1341. [Google Scholar] [CrossRef] [Green Version]
- Konopatskaya, O.; Poole, A.W. Protein kinase Calpha: Disease regulator and therapeutic target. Trends Pharmacol. Sci. 2010, 31, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Qian, D.; Liu, H.; Abbruzzese, J.L.; Luo, S.; Walsh, K.M.; Wei, Q. Genetic variants of the peroxisome proliferator-activated receptor (PPAR) signaling pathway genes and risk of pancreatic cancer. Mol. Carcinog. 2020, 59, 930–939. [Google Scholar] [CrossRef]
- Rodd, Z.A.; Kimpel, M.W.; Edenberg, H.J.; Bell, R.L.; Strother, W.N.; McClintick, J.N.; Carr, L.G.; Liang, T.; McBride, W.J. Differential gene expression in the nucleus accumbens with ethanol self-administration in inbred alcohol-preferring rats. Pharmacol. Biochem. Behav. 2008, 89, 481–498. [Google Scholar] [CrossRef] [Green Version]
- Pochareddy, S.; Edenberg, H.J. Chronic alcohol exposure alters gene expression in HepG2 cells. Alcohol. Clin. Exp. Res. 2012, 36, 1021–1033. [Google Scholar] [CrossRef] [Green Version]
- Gonda, Y.; Andrews, W.D.; Tabata, H.; Namba, T.; Parnavelas, J.G.; Nakajima, K.; Kohsaka, S.; Hanashima, C.; Uchino, S. Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cereb. Cortex 2013, 23, 1495–1508. [Google Scholar] [CrossRef] [Green Version]
- Khusial, P.R.; Vadla, B.; Krishnan, H.; Ramlall, T.F.; Shen, Y.; Ichikawa, H.; Geng, J.G.; Goldberg, G.S. Src activates Abl to augment Robo1 expression in order to promote tumor cell migration. Oncotarget 2010, 1, 198–209. [Google Scholar] [CrossRef]
- Parray, A.; Siddique, H.R.; Kuriger, J.K.; Mishra, S.K.; Rhim, J.S.; Nelson, H.H.; Aburatani, H.; Konety, B.R.; Koochekpour, S.; Saleem, M. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: Study in African-American and Caucasian prostate cancer models. Int. J. Cancer 2014, 135, 2493–2506. [Google Scholar] [CrossRef] [Green Version]
- Dallol, A.; Forgacs, E.; Martinez, A.; Sekido, Y.; Walker, R.; Kishida, T.; Rabbitts, P.; Maher, E.R.; Minna, J.D.; Latif, F. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 2002, 21, 3020–3028. [Google Scholar] [CrossRef] [Green Version]
- Latil, A.; Chene, L.; Cochant-Priollet, B.; Mangin, P.; Fournier, G.; Berthon, P.; Cussenot, O. Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int. J. Cancer 2003, 103, 306–315. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Mukherjee, N.; Dasgupta, H.; Islam, M.S.; Alam, N.; Roy, A.; Das, P.; Roychoudhury, S.; Panda, C.K. Frequent alterations of SLIT2-ROBO1-CDC42 signalling pathway in breast cancer: Clinicopathological correlation. J. Genet. 2016, 95, 551–563. [Google Scholar] [CrossRef]
- Grone, J.; Doebler, O.; Loddenkemper, C.; Hotz, B.; Buhr, H.J.; Bhargava, S. Robo1/Robo4: Differential expression of angiogenic markers in colorectal cancer. Oncol. Rep. 2006, 15, 1437–1443. [Google Scholar] [CrossRef]
- Choi, Y.J.; Yoo, N.J.; Lee, S.H. Down-regulation of ROBO2 expression in prostate cancers. Pathol. Oncol. Res. 2014, 20, 517–519. [Google Scholar] [CrossRef] [Green Version]
- Koohini, Z.; Koohini, Z.; Teimourian, S. Slit/Robo Signaling Pathway in Cancer; a New Stand PoInt. for Cancer Treatment. Pathol. Oncol. Res. 2019, 25, 1285–1293. [Google Scholar] [CrossRef]
- Lin, H.Y.; Cheng, C.H.; Chen, D.T.; Chen, Y.A.; Park, J.Y. Coexpression and expression quantitative trait loci analyses of the angiogenesis gene-gene interaction network in prostate cancer. Transl. Cancer Res. 2016, 5, S951–S963. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, Y.; Xu, J.; Lv, J.; Ma, Y.; Shao, T.; Gong, B.; Tan, R.; Xiao, Y.; Li, X. Disease-driven detection of differential inherited SNP modules from SNP network. Gene 2011, 489, 119–129. [Google Scholar] [CrossRef]
- Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol. 1995, 147, 386–396. [Google Scholar]
- Kasai, S.; Sugimura, K.; Matsumoto, K.; Nishi, N.; Kishimoto, T.; Nakamura, T. Hepatocyte growth factor is a paracrine regulator of rat prostate epithelial growth. Biochem. Biophys. Res. Commun. 1996, 228, 646–652. [Google Scholar] [CrossRef]
- Pisters, L.L.; Troncoso, P.; Zhau, H.E.; Li, W.; von Eschenbach, A.C.; Chung, L.W. c-met proto-oncogene expression in benign and malignant human prostate tissues. J. Urol. 1995, 154, 293–298. [Google Scholar] [CrossRef]
- Tahara, M.; Matsumoto, K.; Nukiwa, T.; Nakamura, T. Hepatocyte growth factor leads to recovery from alcohol-induced fatty liver in rats. J. Clin. Investig. 1999, 103, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, A.; Aldridge, V.; Haldar, D.; Naylor, A.J.; Weston, C.J.; Hedegaard, D.; Garg, A.; Fear, J.; Reynolds, G.M.; Croft, A.P.; et al. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut 2016, 65, 1175–1185. [Google Scholar] [CrossRef]
- Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2000, 103, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Hoch, R.V.; Soriano, P. Roles of PDGF in animal development. Development 2003, 130, 4769–4784. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.; Hu, J.; Liu, H.; Wang, Y.; Li, H.; Liu, S.; Xie, J.; Owzar, K.; Abbruzzese, J.; Hurwitz, H.; et al. Genetic variants in the platelet-derived growth factor subunit B gene associated with pancreatic cancer risk. Int. J. Cancer 2018, 142, 1322–1331. [Google Scholar] [CrossRef] [Green Version]
- Abtahian, F.; Guerriero, A.; Sebzda, E.; Lu, M.M.; Zhou, R.; Mocsai, A.; Myers, E.E.; Huang, B.; Jackson, D.G.; Ferrari, V.A.; et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 2003, 299, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Coopman, P.J.; Mueller, S.C. The Syk tyrosine kinase: A new negative regulator in tumor growth and progression. Cancer Lett. 2006, 241, 159–173. [Google Scholar] [CrossRef]
- Toyama, T.; Iwase, H.; Yamashita, H.; Hara, Y.; Omoto, Y.; Sugiura, H.; Zhang, Z.; Fujii, Y. Reduced expression of the Syk gene is correlated with poor prognosis in human breast cancer. Cancer Lett. 2003, 189, 97–102. [Google Scholar] [CrossRef]
- Coopman, P.J.; Do, M.T.; Barth, M.; Bowden, E.T.; Hayes, A.J.; Basyuk, E.; Blancato, J.K.; Vezza, P.R.; McLeskey, S.W.; Mangeat, P.H.; et al. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 2000, 406, 742–747. [Google Scholar] [CrossRef]
- Bukong, T.N.; Iracheta-Vellve, A.; Gyongyosi, B.; Ambade, A.; Catalano, D.; Kodys, K.; Szabo, G. Therapeutic Benefits of Spleen Tyrosine Kinase Inhibitor Administration on Binge Drinking-Induced Alcoholic Liver Injury, Steatosis, and Inflammation in Mice. Alcohol. Clin. Exp. Res. 2016, 40, 1524–1530. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.; Zheng, D.; Li, S.; Liu, Y.; Lidofsky, A.; Holmes, J.A.; Chen, J.; He, L.; Wei, L.; Liao, Y.; et al. Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology 2018, 68, 1125–1139. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, G.K.; Igglezou, M.; Sainis, I.; Vareli, K.; Batsis, H.; Briasoulis, E.; Fatouros, M. Impact of breast cancer surgery on angiogenesis circulating biomarkers: A prospective longitudinal study. World J. Surg. Oncol. 2013, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Kauppila, S.; Saarela, J.; Stenback, F.; Risteli, J.; Kauppila, A.; Risteli, L. Expression of mRNAs for type I and type III procollagens in serous ovarian cystadenomas and cystadenocarcinomas. Am. J. Pathol. 1996, 148, 539–548. [Google Scholar]
- Liang, Y.; Lv, Z.; Huang, G.; Qin, J.; Li, H.; Nong, F.; Wen, B. Prognostic significance of abnormal matrix collagen remodeling in colorectal cancer based on histologic and bioinformatics analysis. Oncol. Rep. 2020, 44, 1671–1685. [Google Scholar]
Combined (n = 3306) PCa Aggressiveness (17.7%) | Discovery (n = 1636) PCa Aggressiveness (17.5%) | Validation (n = 1670) PCa Aggressiveness (17.9%) | |||||
---|---|---|---|---|---|---|---|
Factors | Total N (%) | Yes N (%) | No N (%) | Yes N (%) | No N (%) | Yes N (%) | No N (%) |
Heavy alcohol intake (≥2 times/day) | |||||||
No Yes | 1066 (70.4) 448 (29.6) | 218 (20.5) 92 (20.5) | 848 (79.5) 356 (79.5) | 114 (21.8) 46 (20.8) | 410 (78.2) 175 (79.2) | 104 (19.2) 46 (20.3) | 438 (80.8) 181 (79.7) |
Heavy beer intake (≥1 time/day) | |||||||
No Yes | 1690 (80.0) 423 (20.0) | 341 (20.2) 75 (17.7) | 1349 (79.8) 348 (82.3) | 167 (20.2) 35 (16.6) | 659 (79.8) 176 (83.4) | 174 (20.1) 40 (18.9) | 690 (79.9) 172 (81.1) |
High ethanol intake (≥30 g/day) | |||||||
No Yes | 2375 (71.8) 931 (28.2) | 414 (17.4) 171 (18.4) | 1961 (82.6) 760 (81.6) | 205 (17.3) 81 (17.9) | 978 (82.7) 372 (82.1) | 209 (17.5) 90 (18.8) | 983 (82.5) 388 (81.2) |
Smoking status 1 | |||||||
Non-smoker Former smoker Current smoker | 1263 (38.6) 1679 (51.4) 327 (10.0) | 218 (17.3) 291 (17.3) 71 (21.7) | 1045 (82.7) 1388 (82.7) 256 (78.3) | 116 (18.4) 138 (16.8) 31 (18.8) | 515 (81.6) 683 (83.2) 134 (81.2) | 102 (16.1) 153 (17.8) 40 (24.7) | 530 (83.9) 705 (82.2) 122 (75.3) |
Alcohol-SNP Interaction | Combined | Discovery | Validation | |||
---|---|---|---|---|---|---|
p-Value 1 | Mode 2 | p-Value 1 | Mode 2 | p-Value 1 | Mode 2 | |
Heavy alcohol Intake–rs13107662 (CAMK2D) | 6.2 × 10−6 | Add | 2.1 × 10−4 | Add | 0.003 | Rec 4 |
Heavy beer Intake–rs9907521 (PRKCA) | 7.1 × 10−5 | Add | 0.005 | Add | 0.005 | Add |
Heavy beer Intake–rs11925452 (ROBO1) | 8.2 × 10−4 | Add | 0.003 | Rec 3 | 0.002 | Add |
KERRYPNX | Combine PCa Aggressiveness (17.7%) | Discovery PCa Aggressiveness (17.5%) | Validation PCa Aggressiveness (17.9%) | ||||
---|---|---|---|---|---|---|---|
SNP (Gene, Major > Minor Allele, MAF) 1 | Total N (%) | Yes N (%) | No N (%) | Yes N (%) | No N (%) | Yes N (%) | No N (%) |
rs13107662 (CAMK2D, A > G, 34.5%) 2 | |||||||
AA | 657 (43.4) | 130 (19.8) | 527 (80.2) | 74 (21.8) | 266 (78.2) | 56 (17.7) | 261 (82.3) |
AG | 670 (44.3) | 124 (18.5) | 546 (81.5) | 56 (18.3) | 250 (81.7) | 68 (18.7) | 296 (81.3) |
GG | 187 (12.4) | 56 (30.0) | 131 (70.1) | 30 (30.3) | 69 (69.7) | 26 (29.6) | 62 (70.5) |
p = 0.003 | p = 0.046 | p = 0.046 | |||||
rs9907521 (PRKCA, A > G, 7.0%) 2 | |||||||
AA | 1824 (86.5) | 362 (19.9) | 1462 (80.2) | 172 (19.1) | 727 (80.9) | 190 (20.5) | 735 (79.5) |
AG | 273 (13.0) | 51 (18.7) | 222 (81.3) | 27 (21.1) | 101 (78.9) | 24 (16.6) | 121 (83.5) |
GG | 11 (0.5) | 3 (27.3) | 8 (72.7) | 3 (33.3) | 6 (66.7) | 0 | 2 (100) |
p = 0.640 | p = 0.456 | p = 0.561 | |||||
rs11925452 (ROBO1, G > A, 21.1%) 2 | |||||||
GG | 1312 (62.1) | 267 (20.4) | 1045 (79.7) | 130 (20.4) | 507 (79.6) | 137 (20.3) | 538 (79.7) |
AG | 710 (33.6) | 130 (18.3) | 580 (81.7) | 61 (17.1) | 295 (82.9) | 69 (19.5) | 285 (80.5) |
AA | 90 ( 4.3) | 19 (21.1) | 71 (78.9) | 11 (25.0) | 33 (75.0) | 9 (17.4) | 38 (82.6) |
AA | |||||||
AA | |||||||
AA | |||||||
p = 0.514 | p = 0.274 | p = 0.889 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-Y.; Wang, X.; Tseng, T.-S.; Kao, Y.-H.; Fang, Z.; Molina, P.E.; Cheng, C.-H.; Berglund, A.E.; Eeles, R.A.; Muir, K.R.; et al. Alcohol Intake and Alcohol–SNP Interactions Associated with Prostate Cancer Aggressiveness. J. Clin. Med. 2021, 10, 553. https://doi.org/10.3390/jcm10030553
Lin H-Y, Wang X, Tseng T-S, Kao Y-H, Fang Z, Molina PE, Cheng C-H, Berglund AE, Eeles RA, Muir KR, et al. Alcohol Intake and Alcohol–SNP Interactions Associated with Prostate Cancer Aggressiveness. Journal of Clinical Medicine. 2021; 10(3):553. https://doi.org/10.3390/jcm10030553
Chicago/Turabian StyleLin, Hui-Yi, Xinnan Wang, Tung-Sung Tseng, Yu-Hsiang Kao, Zhide Fang, Patricia E. Molina, Chia-Ho Cheng, Anders E. Berglund, Rosalind A. Eeles, Kenneth R. Muir, and et al. 2021. "Alcohol Intake and Alcohol–SNP Interactions Associated with Prostate Cancer Aggressiveness" Journal of Clinical Medicine 10, no. 3: 553. https://doi.org/10.3390/jcm10030553
APA StyleLin, H. -Y., Wang, X., Tseng, T. -S., Kao, Y. -H., Fang, Z., Molina, P. E., Cheng, C. -H., Berglund, A. E., Eeles, R. A., Muir, K. R., Pashayan, N., Haiman, C. A., Brenner, H., Park, J. Y., & The PRACTICAL Consortium. (2021). Alcohol Intake and Alcohol–SNP Interactions Associated with Prostate Cancer Aggressiveness. Journal of Clinical Medicine, 10(3), 553. https://doi.org/10.3390/jcm10030553