Hyperintense Brain Lesions in Asymptomatic Low Risk Patients with Paroxysmal Atrial Fibrillation Undergoing Radiofrequency Pulmonary Vein Isolation
Abstract
:1. Introduction
The Aims of the Study Were
- To determine the occurrence, consequences and risk factors for brain white matter hyperintensities (WMH) assessed in magnetic resonance imaging (MRI) in low-risk patients undergoing PVI-RF.
- To determine risk factors for brain WMH lesions assessed in the brain MRI in low-risk patients before and after PVI-RF.
- To determine the impact of PVI-RF procedure on the occurrence and severity of WMH lesions assessed in the brain MRI.
- To assess a potential relationship of atrial fibrillation with cognitive decline, with particular relation to PVI-RF impact.
2. Materials and Methods
2.1. Magnetic Resonance Imaging
- Grade 1—mild WMH were defined by punctate lesions with a maximum diameter of 9 mm for a single lesion and of 20 mm for grouped lesions.
- Grade 2—moderate WMH were early confluent lesions of 10–20 mm single lesions and >20 mm grouped lesions of any diameter and only connecting bridges between the individual lesions.
- Grade 3—severe WMH were single lesions or confluent areas of hyperintensity ≥ 20 mm in diameter.
2.2. Test Mini-Mental State Examination
2.3. ECG Holter Monitoring
2.4. Transthoracic/Transesophageal Echocardiography and Carotid Ultrasound
2.5. PVI-RF Procedure
2.6. Statistical Analysis
3. Results
3.1. The Study Group Characteristic
3.2. WMH Lesions and Psychological Assessment before PVI-RF Treatment
3.3. WMH Lesions and Psychological Assessment after PVI-RF Treatment
3.4. WMH Lesions and Psychological Assessment Depending on PVI-RF Procedure
4. Discussion
4.1. Study Group
4.2. WMH Lesions before and after the PVI-RF Procedure
4.3. Psychological Assessment before and after the PVI-RF Procedure
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaita, F.; Corsinovi, L.; Anselmino, M.; Raimondo, C.; Pianelli, M.; Toso, E.; Bergamasco, L.; Boffano, C.; Valentini, M.C.; Cesarani, F.; et al. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J. Am. Coll. Cardiol. 2013, 62, 1990–1997. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Lee, S.-H. Prognostic Impact of Cerebral Small Vessel Disease on Stroke Outcome. J. Stroke 2015, 17, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, M.A.; Brach, S.; Rogalewski, A.; Dittrich, R.; Dziewas, R.; Weltermann, B.; Heuschmann, P.U.; Nabavi, D.G. Discrepancy between theoretical knowledge and real action in acute stroke: Self-assessment as an important predictor of time to admission. Neurol. Res. 2007, 29, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Debette, S.; Markus, H.S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010, 341, c3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantoni, L.; Poggesi, A.; Inzitari, D. The relation between white-matter lesions and cognition. Curr. Opin. Neurol. 2007, 20, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, S.E.; Prins, N.D.; Heijer, T.D.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M.B. Silent Brain Infarcts and the Risk of Dementia and Cognitive Decline. N. Engl. J. Med. 2003, 348, 1215–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, J.C.; De Leeuw, F.E.; Oudkerk, M.; Van Gijn, J.; Hofman, A.; Jolles, J.; Breteler, M.M. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann. Neurol. 2002, 52, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; MacFall, J.R.; Payne, M.E. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol. Psychiatry 2008, 64, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazekas, F.; Chawluk, J.B.; Alavi, A.; Hurtig, H.I.; Zimmerman, R.A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am. J. Roentgenol. 1987, 149, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Pantoni, L.; Basile, A.M.; Pracucci, G.; Asplund, K.; Bogousslavsky, J.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Hennerici, M.; et al. Impact of Age-Related Cerebral White Matter Changes on the Transition to Disability—The LADIS Study: Rationale, Design and Methodology. Neuroepidemiology 2004, 24, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.J.; Taylor, D.W.; Eliasziw, M.; Fox, A.J.; Ferguson, G.G.; Haynes, R.B.; Rankin, R.N.; Clagett, G.P.; Hachinski, V.C.; Sackett, D.L.; et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N. Engl. J. Med. 1998, 339, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, D.; Rothenberg, E.; Blennow, K.; Steen, B.; Skoog, I. An 18-year follow-up of overweight and risk of Alzheimer dis-ease. Arch. Intern. Med. 2003, 163, 1524–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roher, A.E.; Esh, C.; Kokjohn, T.A.; Kalback, W.; Luehrs, D.C.; Seward, J.D.; Sue, L.I.; Beach, T.G. Circle of Willis Atherosclerosis Is a Risk Factor for Sporadic Alzheimer’s Disease. Arter. Thromb. Vasc. Biol. 2003, 23, 2055–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Launer, L.J. Diabetes and brain aging: Epidemiologic evidence. Curr. Diabetes Rep. 2005, 5, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Naccarelli, G.; Varker, H.; Lin, J.; Schulman, K.L. Increasing Prevalence of Atrial Fibrillation and Flutter in the United States. Am. J. Cardiol. 2009, 104, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. Heart Disease and Stroke Statistics—2014 Update: A Report from the American Heart Association. Circulation 2013, 129, e28–e292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappato, R.; Calkins, H.; Chen, S.-A.; Davies, W.; Iesaka, Y.; Kalman, J.; Kim, Y.-H.; Klein, G.; Packer, D.; Skanes, A. Worldwide Survey on the Methods, Efficacy, and Safety of Catheter Ablation for Human Atrial Fibrillation. Circulation 2005, 111, 1100–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A. Atrial-fibrillation ablation should be considered first-line therapy for some patients. Curr. Opin. Cardiol. 2008, 23, 1–8. [Google Scholar] [CrossRef]
- Cappato, R.; Calkins, H.; Chen, S.-A.; Davies, W.; Iesaka, Y.; Kalman, J.; Kim, Y.-H.; Klein, G.; Natale, A.; Packer, D.; et al. Updated Worldwide Survey on the Methods, Efficacy, and Safety of Catheter Ablation for Human Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2010, 3, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Bailey, S.M.; Furlan, A.J.; Ching, M.; Zachaib, J.; Di Biase, L.; Mohanty, P.; Horton, R.P.; Burkhardt, J.D.; Sanchez, J.E.; et al. Long-term functional and neurocognitive recovery in patients who had an acute cere-brovascular event secondary to catheter ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 2010, 21, 412–417. [Google Scholar] [CrossRef]
- Di Biase, L.; Burkhardt, J.D.; Santangeli, P.; Mohanty, P.; Sanchez, J.E.; Horton, R.; Gallinghouse, G.J.; Themistoclakis, S.; Rossillo, A.; Lakkireddy, D.; et al. Periprocedural stroke and management of major bleeding complications in patients undergoing catheter ablation of atrial fibrillation: The impact of periprocedural therapeutic international normalized ratio. Circulation 2010, 121, 2550–2556. [Google Scholar] [CrossRef] [PubMed]
- Gaita, F.; Leclercq, J.F.; Schumacher, B.; Scaglione, M.; Toso, E.; Halimi, F.; Schade, A.; Froehner, S.; Ziegler, V.; Sergi, D.; et al. Incidence of Silent Cerebral Thromboembolic Lesions After Atrial Fibrillation Ablation May Change According to Technology Used: Comparison of Irrigated Radiofrequency, Multipolar Nonirrigated Catheter and Cryoballoon. J. Cardiovasc. Electrophysiol. 2011, 22, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Herrera, S.C.; Deneke, T.; Hocini, M.; Lehrmann, H.; Shin, D.I.; Miyazaki, S.; Henschke, S.; Fluegel, P.; Schiebeling-Römer, J.; Bansmann, P.M.; et al. Incidence of asymptomatic intracranial embolic events after pulmonary vein isolation: Comparison of different atrial fibrillation ablation technologies in a multicenter study. J. Am. Coll. Cardiol. 2011, 58, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häusler, K.G.; Koch, L.; Herm, J.; Kopp, U.A.; Heuschmann, P.U.; Endres, M.; Schultheiss, H.-P.; Schirdewan, A.; Fiebach, J.B. 3 Tesla MRI-Detected Brain Lesions after Pulmonary Vein Isolation for Atrial Fibrillation: Results of the MACPAF Study. J. Cardiovasc. Electrophysiol. 2013, 24, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Deneke, T.; Shin, D.I.; Balta, O.; Bünz, K.; Fassbender, F.; Mügge, A.; Anders, H.; Horlitz, M.; Päsler, M.; Karthikapallil, S.; et al. Postablation asymptomatic cerebral lesions: Long-term follow-up using magnetic resonance imaging. Heart Rhythm 2011, 8, 1705–1711. [Google Scholar] [CrossRef] [PubMed]
- Gaita, F.; Caponi, D.; Pianelli, M.; Scaglione, M.; Toso, E.; Cesarani, F.; Boffano, C.; Gandini, G.; Valentini, M.C.; De Ponti, R.; et al. Radiofrequency catheter ablation of atrial fibrillation: A cause of silent thromboembolism? Magnetic resonance imaging assessment of cerebral thromboembolism in patients undergoing ablation of atrial fibrillation. Circulation 2010, 122, 1667–1673. [Google Scholar] [CrossRef]
- von Bary, C.; Deneke, T.; Arentz, T.; Schade, A.; Lehrmann, H.; Eissnert, C.; Schwab-Malek, S.; Fredersdorf, S.; Ücer, E.; Baldaranov, D.; et al. Silent cerebral events as a result of left atrial catheter ablation do not cause neuro-psychological sequelae--a MRI-controlled multicenter study. J. Interv. Card. Electrophysiol. 2015, 43, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Neumann, T.; Kuniss, M.; Conradi, G.; Janin, S.; Berkowitsch, A.; Wojcik, M.; Rixe, J.; Erkapic, D.; Zaltsberg, S.; Rolf, A.; et al. MEDAFI-Trial (Micro-embolization during ablation of atrial fibrillation): Comparison of pulmonary vein isolation using cryoballoon technique vs. radiofrequency energy. Europace 2011, 13, 37–44. [Google Scholar] [CrossRef]
- Gress, D.R. The problem with asymptomatic cerebral embolic complications in vascular procedures: What if they are not asymptomatic? J. Am. Coll. Cardiol. 2012, 60, 1614–1616. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Calkins, H.; Reynolds, M.R.; Spector, P.; Sondhi, M.; Xu, Y.; Martin, A.; Williams, C.J.; Sledge, I. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: Two systematic literature reviews and meta-analyses. Circ. Arrhythm. Electrophysiol. 2009, 2, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, A.N.; Shipp, N.J.; Brooks, A.G.; Kuklik, P.; Lau, D.H.; Lim, H.S.; Sullivan, T.; Roberts-Thomson, K.C.; Sanders, P. Long-term Outcomes of Catheter Ablation of Atrial Fibrillation: A Systematic Review and Meta-analysis. J. Am. Heart Assoc. 2013, 2, e004549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Jiang, C.-Y.; Betts, T.R.; Chen, J.; Deisenhofer, I.; Mantovan, R.; Macle, L.; Morillo, C.A.; Haverkamp, W.; Weerasooriya, R.; et al. Approaches to Catheter Ablation for Persistent Atrial Fibrillation. N. Engl. J. Med. 2015, 372, 1812–1822. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Debruyne, P.; Nardi, S.; Deneke, T.; DeGreef, Y.; Spitzer, S.; Balzer, J.O.; Boersmaand, L. Evaluation and reduction of asymptomatic cerebral embolism in ablation of atrial fibrillation, but high prevalence of chronic silent infarction: Results of the evaluation of reduction of asymptomatic cerebral embolism trial. Circ. Arrhythm. Electrophysiol. 2013, 6, 835–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, B.; Gunawardene, M.; Krieg, D.; Bordignon, S.; Fürnkranz, A.; Kulikoglu, M.; Herrmann, W.; Chun, J. A prospective randomized single-center study on the risk of asymptomatic cere-bral lesions comparing irrigated radiofrequency current ablation with the cryoballoon and the laser balloon. J. Cardiovasc. Electrophysiol. 2013, 24, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, M.; Blandino, A.; Raimondo, C.; Caponi, D.; Di Donna, P.; Toso, E.; Ebrille, E.; Cesarani, F.; Ferrarese, E.; Gaita, F. Impact of Ablation Catheter Irrigation Design on Silent Cerebral Embolism After Radiofrequency Catheter Ablation of Atrial Fibrillation: Results from a Pilot Study. J. Cardiovasc. Electrophysiol. 2012, 23, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Martinek, M.; Sigmund, E.; Lemes, C.; Derndorfer, M.; Aichinger, J.; Winter, S.; Jauker, W.; Gschwendtner, M.; Nesser, H.-J.; Pürerfellner, H. Asymptomatic cerebral lesions during pulmonary vein isolation under uninter-rupted oral anticoagulation. Europace 2013, 15, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Developed with the Special Contribution of the European Heart Rhythm Association (EHRA); Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS); Camm, A.J.; Kirchhof, P.; Lip, G.Y.; Schotten, U.; Savelieva, I.; Ernst, S.; Van Gelder, I.C.; Al-Attar, N.; et al. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 2010, 31, 2369–2429. [Google Scholar]
- Wissner, E.; Metzner, A.; Neužil, P.; Petru, J.; Skoda, J.; Sediva, L.; Kivelitz, D.; Wohlmuth, P.; Weichet, J.; Schoonderwoerd, B.; et al. Asymptomatic brain lesions following laserballoon-based pulmonary vein isolation. Europace 2013, 16, 214–219. [Google Scholar] [CrossRef]
- Kalantarian, S.; Ruskin, J.N. Atrial Fibrillation and Cognitive Decline: Phenomenon or Epiphenomenon? Cardiol. Clin. 2016, 34, 279–285. [Google Scholar] [CrossRef]
- Graves, K.G.; May, H.T.; Jacobs, V.; Bair, T.L.; Stevens, S.M.; Woller, S.C.; Crandall, B.G.; Cutler, M.J.; Day, J.D.; Mallender, C.; et al. Atrial fibrillation incrementally increases dementia risk across all CHADS 2 and CHA 2 DS 2 VASc strata in patients receiving long-term warfarin. Am. Heart J. 2017, 188, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Kalantarian, S.; Ay, H.; Gollub, R.L.; Lee, H.; Retzepi, K.; Mansour, M.; Ruskin, J.N. Association between atrial fibrillation and silent cerebral infarctions: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 161, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Lopez, F.L.; Gottesman, R.F.; Huxley, R.R.; Agarwal, S.K.; Loehr, L.; Mosley, T.; Alonso, A. Atrial fibrillation and cognitive decline-the role of subclinical cerebral infarcts: The atherosclerosis risk in communities study. Stroke 2014, 45, 2568–2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Study Group (n = 74) |
---|---|
Age, y | 58.5 (50–63) |
Male gender | 45 (60.8%) |
AF duration: | |
● 0–5 y | 33 (44.6%) |
● 5–10 y | 26 (35.1%) |
● >10 y | 15 (20.3%) |
Height, cm | 174.2 ± 10.1 |
Weight, kg | 88.7 ± 15.6 |
BMI, kg/m2 | 29.2 ± 4.4 |
BSA, m2 | 2.06 ± 0.22 |
PLT, ×103 | 185 (162–215) |
APTT, sec. | 1.4 (1.3–1.6) |
INR | 1.9 ± 0.4 |
EHRA score | 3 (2–3) |
CHA2DS2-Vasc score | 2 (1–3) |
PFO | 20 (27%) |
Echogenic blood in the left atrium appendage: | |
● Absent | 63 (85.1%) |
● 1 grade | 9 (12.2%) |
● 2 grade | 2 (2.7%) |
Coronary artery disease | 15 (20.3%) |
Arterial hypertension | 50 (67.6%) |
Diabetes mellitus | 15 (20.3%) |
Hyperlipidemia | 55 (67.6%) |
Obesity | 26 (35.1%) |
Tobacco smoking: | |
● Never | 44 (59.5%) |
● In the past | 21 (28.4%) |
● Active | 9 (12.2%) |
Characteristic | WMH Absent (n = 19) | Fazekas 1 Grade (n = 48) | Fazekas 2 Grade (n = 4) | Fazekas 3 Grade (n = 3) | p Value |
---|---|---|---|---|---|
MMSE | 30 (28–30) | 29 (28–30) | 29 (27–30) | 29 (29–30) | 0.31 |
Age, y | 44 (38–56) | 60 (56.5–63.5) | 65,5 (56–69) | 60 (40–66) | 0.0005 |
CHA2DS2-Vasc score | 1 (0–2) | 2 (1–3) | 3 (2–3) | 1 (1–4) | 0.04 |
PFO | 7 (36.8%) | 8 (17%) | 2 (50%) | 3 (100%) | 0.006 |
CAD | 1 (5.3%) | 11 (22.9%) | 3 (75%) | 0 (%) | 0.01 |
Arterial hypertension | 10 (52.6%) | 34 (70,8) | 4 (100%) | 2 (66.7%) | 0.25 |
Diabetes mellitus | 2 (10.5%) | 12 (25%) | 0 (0%) | 1 (33.3%) | 0.37 |
Hyperlipidemia | 11 (57.9%) | 34 (70.8) | 4 (100%) | 1 (33.3%) | 0.2 |
Obesity | 4 (21.1%) | 19 (39.6%) | 1 (25%) | 2 (66.7%) | 0.31 |
Tobacco smoking: | |||||
• Never | 11 (57.9%) | 30 (62.5%) | 3 (75%) | 0 (0%) | 0.1 |
• In the past | 5 (26.3%) | 14 (29.2) | 2 (25%) | 1 (33.3%) | 0.1 |
• Active | 3 (15.8%) | 4 (8.3) | 0 (%) | 2 (66.7%) | 0.1 |
AF duration: | |||||
• 0–5 y | 8 (42.1%) | 25 (52.1%) | 0 (%) | 0 (0%) | 0.1 |
• 5–10 y | 6 (31.6%) | 17 (35.4%) | 2 (50%) | 1 (33.3%) | 0.1 |
• >10 y | 5 (26.3%) | 6 (12.5%) | 2 (50%) | 2 (66.7%) | 0.1 |
BMI | 27.1 (26.2–29.7) | 29.2 (26.3–33) | 26.7 (25.9–30.7) | 32.5 (25.2–35.1) | 0.37 |
Characteristic | WMH Absent (n = 14) | Fazekas 1 Grade (n = 40) | Fazekas 2 Grade (n = 6) | Fazekas 3 Grade (n = 2) | p Value |
---|---|---|---|---|---|
MMSE | 30 (28–30) | 29 (28–30) | 27 (26–29) | 29.5 (29–30) | 0.15 |
Age, y | 45 (39–56) | 61 (56–64) | 65 (58–66) | 53 (40–66) | 0.001 |
CHA2DS2-Vasc score | 1 (1–2) | 2 (1–3) | 3 (3–3) | 2.5 (1–4) | 0.02 |
PFO | 5 (35.7%) | 7 (18%) | 2 (33.3%) | 2 (100%) | 0.05 |
CAD | 1 (7.1%) | 9 (22.5%) | 4 (66.7%) | 0 (0%) | 0.03 |
Arterial hypertension | 8 (42.9%) | 28 (70%) | 6 (100%) | 2 (100%) | 0.2 |
Diabetes mellitus | 1 (7.1%) | 10 (25%) | 0 (0%) | 1 (50%) | 0.19 |
Hyperlipidemia | 10 (71.4%) | 26 (65%) | 6 (100%) | 1 (50%) | 0.34 |
Obesity | 2 (14.3%) | 15 (37,5%) | 1 (16,7%) | 1 (50%) | 0.31 |
Tobacco smoking: | |||||
● Never | 7 (50%) | 27 (67.5%) | 4 (66,7%) | 0 (0%) | 0.36 |
● In the past | 4 (28.6%) | 9 (22.5%) | 2 (33.3%) | 1 (50%) | 0.36 |
● Active | 3 (21.4%) | 0 (0%) | 0 (0%) | 1 (50%) | 0.36 |
AF duration: | |||||
● 0–5 y | 5 (35.7%) | 20 (50%) | 1 (16.7%) | 0 (0%) | 0.3 |
● 5–10 y | 4 (28.6%) | 15 (37.5%) | 3 (50%) | 1 (50%) | 0.3 |
● >10 y | 5 (35.7%) | 5 (12.5%) | 2 (33.3%) | 1 (50%) | 0.3 |
BMI | 27 (26.2–29.4) | 29.2 (26.5–32.7) | 26.1 (25.5–27.1) | 30.2 (25.2–35.1) | 0.2 |
PVI-RF effective (n = 37) | 6 (19.4%) | 21 (67.7%) | 3 (9.7%) | 1 (3.2%) | 0.9 |
PVI-RF ineffective (n = 35) | 8 (26.7%) | 18 (60%) | 3 (10%) | 1 (3.3%) | 0.9 |
Characteristic | Before PVI-RF n = 74 | After PVI-RF n = 62 | p Value |
---|---|---|---|
WMH presence | 55 (74.3%) | 48 (77.4%) | 0.1 |
WMH severity | 1 (0–1) | 1 (1–1) | 0.1 |
WMH severity: | |||
● Fazekas 0, grade | 19 (25.7%) | 14 (22.6%) | |
● Fazekas 1, grade | 48 (64.9%) | 40 (64.5%) | 0.79 |
● Fazekas 2, grade | 4 (5.4%) | 6 (9.7%) | |
● Fazekas 3, grade | 3 (4%) | 2 (3.2%) | |
MMSE, score | 29 (27–29.5) | 29 (28–30) | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieczorek, J.; Mizia-Stec, K.; Lasek-Bal, A.; Wieczorek, P.; Woźniak-Skowerska, I.; Wnuk-Wojnar, A.M.; Szydło, K. Hyperintense Brain Lesions in Asymptomatic Low Risk Patients with Paroxysmal Atrial Fibrillation Undergoing Radiofrequency Pulmonary Vein Isolation. J. Clin. Med. 2021, 10, 565. https://doi.org/10.3390/jcm10040565
Wieczorek J, Mizia-Stec K, Lasek-Bal A, Wieczorek P, Woźniak-Skowerska I, Wnuk-Wojnar AM, Szydło K. Hyperintense Brain Lesions in Asymptomatic Low Risk Patients with Paroxysmal Atrial Fibrillation Undergoing Radiofrequency Pulmonary Vein Isolation. Journal of Clinical Medicine. 2021; 10(4):565. https://doi.org/10.3390/jcm10040565
Chicago/Turabian StyleWieczorek, Joanna, Katarzyna Mizia-Stec, Anetta Lasek-Bal, Piotr Wieczorek, Iwona Woźniak-Skowerska, Anna M. Wnuk-Wojnar, and Krzysztof Szydło. 2021. "Hyperintense Brain Lesions in Asymptomatic Low Risk Patients with Paroxysmal Atrial Fibrillation Undergoing Radiofrequency Pulmonary Vein Isolation" Journal of Clinical Medicine 10, no. 4: 565. https://doi.org/10.3390/jcm10040565
APA StyleWieczorek, J., Mizia-Stec, K., Lasek-Bal, A., Wieczorek, P., Woźniak-Skowerska, I., Wnuk-Wojnar, A. M., & Szydło, K. (2021). Hyperintense Brain Lesions in Asymptomatic Low Risk Patients with Paroxysmal Atrial Fibrillation Undergoing Radiofrequency Pulmonary Vein Isolation. Journal of Clinical Medicine, 10(4), 565. https://doi.org/10.3390/jcm10040565