Interrelationship of Seasons with Inflammation, Red Meat, Fruit, and Vegetable Intakes, Cardio-Metabolic Health, and Smoking Status among Breast Cancer Survivors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dietary Assessment
2.3. Season of Blood Draw at Baseline and Measurement of CRP Using Baseline Blood Samples
2.4. Smoking Assessment
2.5. Other Assessments
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics by Disease Outcomes
3.2. Seasons for Which Dietary 24 h Recalls and Blood Draw Were Performed
3.3. Associations of Food Intakes, Season of Blood Draw, and Other Characteristics with Serum CRP in the Whole Data Set
3.4. Joint Associations of Food Summary Score and Season of Blood Draw with Serum CRP in Different Subgroups
3.4.1. Comparison of CRP Levels between Blood Draws in Non-Summer Seasons and Those in Summer, among Women with a Higher Food Inflammatory Score (Score of 0–1)
3.4.2. Comparison of Women with a Lower Food Inflammatory Score (Score of −1 to −2) Who Had Blood Draws in Different Seasons to Women with a Higher Food Inflammatory Score (Score of 0 to 1) Who Had a Blood Draw in Summer
3.5. Joint Associations of Food Inflammatory Score and Season of Blood Draw with Serum CRP in the Whole Data Set (Excluding Past Smokers with Pack-Years ≥15)
3.6. Sensitivity Analyses Limited to People Who Provided 24 h Recalls and Blood Samples during the Same Seasons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DuBose, D.A.; Agnew, J.W. Seasonal effects on human physiological adaptation factors, thermotolerance and plasma fibronectin. Aviat. Space Environ. Med. 1992, 63, 982–985. [Google Scholar] [PubMed]
- Case, R.M. Variations in Human Physiology; Manchester University Press: Dover, NH, USA, 1985. [Google Scholar]
- Van Ooijen, A.M.; van Marken Lichtenbelt, W.D.; van Steenhoven, K.R.; Westerterp, A.A. Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol. Behav. 2004, 82, 545–553. [Google Scholar] [CrossRef]
- Sung, K.C. Seasonal variation of C-reactive protein in apparently healthy Koreans. Int. J. Cardiol. 2006, 107, 338–342. [Google Scholar] [CrossRef]
- Chiriboga, D.E.; Ma, Y.; Li, W.; Stanek, E.J., III; Hébert, J.R.; Merriam, P.A.; Rawson, E.S.; Ockene, I.S. Seasonal and sex variation of high-sensitivity C-reactive protein in healthy adults: A lon-gitudinal study. Clin. Chem. 2009, 55, 313–321. [Google Scholar] [CrossRef]
- Broers, N.J.H.; Usvyat, L.A.; Marcelli, D.; Bayh, I.; Scatizzi, L.; Canaud, B.; Van Der Sande, F.M.; Kotanko, P.; Moissl, U.; Kooman, J.P.; et al. Season affects body composition and estimation of fluid overload in haemodialysis patients: Variations in body composition; a survey from the European MONDO database. Nephrol. Dial. Transplant. 2015, 30, 676–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazmalar, L.; Ediz, L.; Alpayci, M.; Hiz, O.; Toprak, M.; Tekeoglu, I. Seasonal disease activity and serum vitamin D levels in rheumatoid arthritis, ankylosing spondylitis and osteoarthritis. Afr. Health Sci. 2013, 13, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Palm, F.; Dos Santos, M.; Urbanek, C.; Greulich, M.; Zimmer, K.; Safer, A.; Grau, A.J.; Becher, H. Stroke seasonality associations with subtype, etiology and laboratory results in the Ludwigshafen Stroke Study (LuSSt). Eur. J. Epidemiol. 2013, 28, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Westman, E.; Mattes, R.D.; Wolfe, R.R.; Astrup, A.; Westerterp-Plantenga, M. Protein, weight management, and satiety. Am. J. Clin. Nutr. 2008, 87, 1558S–1561S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp, K.R. Diet induced thermogenesis. Nutr. Metab. 2004, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Toorn, J.E.; Cepeda, M.; Kiefte-de Jong, J.C.; Franco, O.H.; Voortman, T.; Schoufour, J.D. Seasonal variation of diet quality in a large middle-aged and elderly Dutch popula-tion-based cohort. Eur. J. Nutr. 2020, 59, 493–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahar, D.; Yerushalmi, N.; Lubin, F.; Froom, P.; Shahar, A.; Kristal-Boneh, E. Seasonal variations in dietary intake affect the consistency of dietary assessment. Eur. J. Epidemiol. 2001, 17, 129–133. [Google Scholar] [CrossRef]
- Rossato, S.L.; Olinto, M.T.A.; Henn, R.L.; Moreira, L.B.; Camey, S.A.; Anjos, L.A.; Wahrlich, V.; Waissmann, W.; Fuchs, F.D.; Fuchs, S.C. Seasonal variation in food intake and the interaction effects of sex and age among adults in southern Brazil. Eur. J. Clin. Nutr. 2015, 69, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Weiner, L.S.; Hartman, S.J.; Horvath, S.C.; Jeste, D.; Mischel, P.S.; Kado, D.M. Breast cancer treatment and its effects on aging. J. Geriatr. Oncol. 2019, 10, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Cupit-Link, M.C.; Kirkland, J.L.; Ness, K.K.; Armstrong, G.T.; Tchkonia, T.; Lebrasseur, N.K.; Armenian, S.H.; Ruddy, K.J.; Hashmi, S.K. Biology of premature ageing in survivors of cancer. ESMO Open 2017, 2, e000250. [Google Scholar] [CrossRef] [Green Version]
- Saquib, N.; Stefanick, M.L.; Natarajan, L.; Pierce, J.P. Mortality risk in former smokers with breast cancer: Pack-years vs. smoking status. Int. J. Cancer 2013, 133, 2493–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafourcade, A.; His, M.; Baglietto, L.; Boutron-Ruault, M.-C.; Dossus, L.; Rondeau, V. Factors associated with breast cancer recurrences or mortality and dynamic prediction of death using history of cancer recurrences: The French E3N cohort. BMC Cancer 2018, 18, 171. [Google Scholar] [CrossRef] [PubMed]
- Srokowski, T.P.; Fang, S.; Hortobagyi, G.N.; Giordano, S.H. Impact of Diabetes Mellitus on Complications and Outcomes of Adjuvant Chemotherapy in Older Patients With Breast Cancer. J. Clin. Oncol. 2009, 27, 2170–2176. [Google Scholar] [CrossRef] [Green Version]
- Kozlowska, K.L.; Kozlowski, L.; Malyszko, J. Hypertension prevalence in early breast cancer patients un-dergoing primary surgery. Adv. Med. Sci. 2019, 64, 32–36. [Google Scholar] [CrossRef]
- Pierce, J.P.; Faerber, S.; Wright, F.A.; Rock, C.L.; Newman, V.; Flatt, S.W.; Kealey, S.; Jones, V.E.; Caan, B.J.; Gold, E.B.; et al. A randomized trial of the effect of a plant-based dietary pattern on additional breast cancer events and survival: The Women’s Healthy Eating and Living (WHEL) Study. Control Clin. Trials 2002, 23, 728–756. [Google Scholar] [CrossRef]
- Johnson-Kozlow, M.; Rock, C.L.; Gilpin, E.A.; Hollenbach, K.A.; Pierce, J.P. Validation of the WHI Brief Physical Activity Questionnaire among Women Diagnosed with Breast Cancer. Am. J. Health Behav. 2007, 31, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Bardwell, W.A.; Natarajan, L.; Flatt, S.W.; Rock, C.L.; Newman, V.A.; Madlensky, L.; Mills, P.J.; Dimsdale, J.E.; Thomson, C.A.; et al. Correlates of physical activity level in breast cancer survivors participating in the Women’s Healthy Eating and Living (WHEL) Study. Breast Cancer Res. Treat. 2007, 101, 225–232. [Google Scholar] [CrossRef]
- Shivappa, N.; Hebert, J.R.; Kivimaki, M.; Akbaraly, T. Alternative Healthy Eating Index 2010, Dietary Inflammatory Index and risk of mortality: Results from the Whitehall II cohort study and meta-analysis of previous Dietary Inflammatory Index and mortality studies. Br. J. Nutr. 2017, 118, 210–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucchetto, A.; Gini, A.; Shivappa, N.; Hebert, J.R.; Stocco, C.; Maso, L.D.; Birri, S.; Serraino, D.; Polesel, J. Dietary inflammatory index and prostate cancer survival. Int. J. Cancer 2016, 139, 2398–2404. [Google Scholar] [CrossRef] [Green Version]
- Blatteis, C.M. Age-Dependent Changes in Temperature Regulation—A Mini Review. Gerontology 2012, 58, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.F.; Nakamura, K. Central neural pathways for thermoregulation. Front. Biosci. 2011, 16, 74–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikkelsen, P.B.; Toubro, S.; Astrup, A. Effect of fat-reduced diets on 24-h energy expenditure: Comparisons between animal protein, vegetable protein, and carbohydrate. Am. J. Clin. Nutr. 2000, 72, 1135–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp-Plantenga, M.S. The significance of protein in food intake and body weight regulation. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 635–638. [Google Scholar] [CrossRef] [Green Version]
- Layman, D.K.; Baum, J.I. Dietary Protein Impact on Glycemic Control during Weight Loss. J. Nutr. 2004, 134, 968S–973S. [Google Scholar] [CrossRef]
- Turner, K.M.; Keogh, J.B.; Clifton, P.M. Red meat, dairy, and insulin sensitivity: A randomized crossover intervention study. Am. J. Clin. Nutr. 2015, 101, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Li, P.; Huh, J.Y.; Hwang, I.J.; Lu, M.; Kim, J.I.; Ham, M.; Talukdar, S.; Chen, A.; Lu, W.J.; et al. Inflammation Is Necessary for Long-Term but Not Short-Term High-Fat Diet-Induced Insulin Resistance. Diabetes 2011, 60, 2474–2483. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.M.; Perry, I.J. Does Inflammation Determine Metabolic Health Status in Obese and Nonobese Adults? J. Clin. Endocrinol. Metab. 2013, 98, E1610–E1619. [Google Scholar] [CrossRef]
- Wu, T.; Seaver, P.; Lemus, H.; Hollenbach, K.; Wang, S.E.; Pierce, J.P. Associations between Dietary Acid Load and Biomarkers of Inflammation and Hyperglycemia in Breast Cancer Survivors. Nutrients 2019, 11, 1913. [Google Scholar] [CrossRef] [Green Version]
- Buehler, J.H.; Berns, A.S.; Webster, J.R.; Addington, W.W.; Cugell, D.W. Lactic Acidosis from Carboxyhemoglobinemia After Smoke Inhalation. Ann. Intern. Med. 1975, 82, 803. [Google Scholar] [CrossRef] [PubMed]
- Alguacil, J.; Kogevinas, M.; Silverman, D.T.; Malats, N.; Real, F.X.; García-Closas, M.; Tardón, A.; Rivas, M.; Torà, M.; García-Closas, R.; et al. Urinary pH, cigarette smoking and bladder cancer risk. Carcinogenesis 2011, 32, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, M.; Koolhaas, C.M.; Van Rooij, F.J.; Tiemeier, H.; Guxens, M.; Franco, O.H.; Schoufour, J.D. Seasonality of physical activity, sedentary behavior, and sleep in a middle-aged and elderly population: The Rotterdam study. Maturitas 2018, 110, 41–50. [Google Scholar] [CrossRef]
- Grayson, J. Response of microcirculation to hot and cold environment. In Thermoregulation Physiology and Bio-Chemistry; Schonbaum, E., Lomax, P., Eds.; Pergamon Press: New York, NY, USA, 1990. [Google Scholar]
- Kenny, G.P.; Flouris, A.D. Thermoregulatory system and its response to thermal stress. In Protective Clothing: Managing Thermal Stress; Woodhead Publishing Ltd.: Cambridge, UK, 2014; pp. 319–349. [Google Scholar]
- Araki, T. The effect of physical training on sweating responses measured during muscular exercises and resting postures in hot environments. Kobe J. Med Sci. 1976, 22, 17–33. [Google Scholar]
- Keino, S.; Borne, B.V.D.; Plasqui, G. Body composition, water turnover and physical activity among women in Narok County, Kenya. BMC Public Health 2014, 14, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malisova, O.; Bountziouka, V.; Panagiotakos, D.Β.; Zampelas, A.; Kapsokefalou, M. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece. J. Hum. Nutr. Diet. 2013, 26, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Shu, X.-O.; Hebert, J.R.; Jin, F.; Yang, G.; Liu, D.-K.; Gao, Y.-T.; Zheng, W. Variation in nutrient intakes among women in Shanghai, China. Eur. J. Clin. Nutr. 2004, 58, 1604–1611. [Google Scholar] [CrossRef] [Green Version]
- Dmitrieva, N.I.; Burg, M.B. Elevated sodium and dehydration stimulate inflammatory signaling in endo-thelial cells and promote atherosclerosis. PLoS ONE 2015, 10, e0128870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkas, F.; Liberopoulos, E.; Kei, A.; Elisaf, M. Electrolyte and acid-base disorders in inflammatory bowel disease. Ann. Gastroenterol. 2013, 26, 23–28. [Google Scholar] [PubMed]
- Zern, T.L.; Wood, R.J.; Greene, C.; West, K.L.; Liu, Y.; Aggarwal, D.; Shachter, N.S.; Fernandez, M.L. Grape Polyphenols Exert a Cardioprotective Effect in Pre- and Postmenopausal Women by Lowering Plasma Lipids and Reducing Oxidative Stress. J. Nutr. 2005, 135, 1911–1917. [Google Scholar] [CrossRef] [Green Version]
- Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S. [Google Scholar] [CrossRef] [Green Version]
- Runowicz, C.D.; Leach, C.R.; Henry, N.L.; Henry, K.S.; Mackey, H.T.; Cowens-Alvarado, R.L.; Cannady, R.S.; Pratt-Chapman, M.L.; Edge, S.B.; Jacobs, L.A.; et al. American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline. J. Clin. Oncol. 2016, 34, 611–635. [Google Scholar] [CrossRef] [Green Version]
- Runowicz, C.D.; Leach, C.R.; Henry, N.L.; Henry, K.S.; Mackey, H.T.; Cowens-Alvarado, R.L.; Cannady, R.S.; Pratt-Chapman, M.L.; Edge, S.B.; Jacobs, L.A.; et al. American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline. CA Cancer J. Clin. 2016, 66, 43–73. [Google Scholar] [CrossRef]
- WCRF. World Cancer Research Fund International. Available online: https://www.wcrf.org/dietandcancer/exposures/meat-fish-dairy2 (accessed on 17 January 2021).
- Wu, T.; Hsu, F.-C.; Pierce, J.P. Increased Acid-Producing Diet and Past Smoking Intensity Are Associated with Worse Prognoses among Breast Cancer Survivors: A Prospective Cohort Study. J. Clin. Med. 2020, 9, 1817. [Google Scholar] [CrossRef]
- Alexander, D.D.; Mink, P.J.; Cushing, C.A.; Swenor, B.K. A review and meta-analysis of prospective studies of red and processed meat intake and prostate cancer. Nutr. J. 2010, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D.D.; Morimoto, L.M.; Mink, P.J.; Cushing, C.A. A review and meta-analysis of red and processed meat consumption and breast cancer. Nutr. Res. Rev. 2010, 23, 349–365. [Google Scholar] [CrossRef]
- Bylsma, L.C.; Alexander, D.D. A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr. J. 2015, 14, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Wei, W.; Zhan, L. Red and processed meat intake and risk of breast cancer: A meta-analysis of prospective studies. Breast Cancer Res. Treat 2015, 151, 191–198. [Google Scholar] [CrossRef]
- Diallo, A.; Deschasaux, M.; Latino-Martel, P.; Hercberg, S.; Galan, P.; Fassier, P.; Alles, B.; Gueraud, F.; Pierre, F.H.; Touvier, M. Red and processed meat intake and cancer risk: Results from the prospective NutriNet-Sante cohort study. Int. J. Cancer 2018, 142, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.M.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and Processed Meat and Colorectal Cancer Incidence: Meta-Analysis of Prospective Studies. PLoS ONE 2011, 6, e20456. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Lau, R.; Chan, D.S.M.; Viera, R.; Greenwoos, D.C.; Kampman, E.; Norat, T. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on me-ta-analysis of prospective studies. Gastroenterology 2011, 141, 106–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frassetto, L.A.; Morris, R.C., Jr.; Sebastian, A. A practical approach to the balance between acid production and renal acid excretion in humans. J. Nephrol. 2006, 19 (Suppl. S9), S33–S40. [Google Scholar] [PubMed]
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and its Influence on Urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
Characteristics | All Participants |
---|---|
Age at enrollment (years) a | 52 (47–59) |
Whites (%) | 85.7 |
Body mass index (%) | |
Normal weight | 42.8 |
Overweight | 31.0 |
Obese | 26.2 |
Location (%) | |
Northern California and Oregon | 55.4 |
Arizona and Texas | 27.2 |
Southern California | 17.4 |
Season of blood draw (%) | |
Summer | 27.2 |
Fall | 26.8 |
Winter | 22.8 |
Spring | 23.2 |
Smoking status (%) | |
Never smokers | 53.4 |
Past smokers with pack-years <15 | 26.2 |
Past smokers with pack-years ≥15 | 14.6 |
Current smokers | 4.3 |
Postmenopausal women (%) | 79.6 |
Physical activity (MET/week) | 600 (150–1250) |
Chemotherapy (%) | 69.4 |
Radiation (%) | 61.7 |
Hormone receptor status (%) | |
ER+/PR+ | 62.4 |
ER−/PR− | 19.9 |
Cancer stage at diagnosis (%) | |
I | 39.2 |
II | 56.1 |
IIIa | 4.7 |
Tamoxifen use (%) | 66.5 |
C-reactive protein (ng/mL) | 1759 (673–4240) |
Total calorie intakes (kcal) | 1685 (1432–1973) |
Unprocessed red meat intakes (g/day) | 120.83 (66.2–235.9) |
Processed meat intakes (g/day) | 44.4 (18.9–90.9) |
Total vegetable intakes (servings/day) | 2.57 (1.7–3.7) |
Total fruit intakes (servings/day) | 2.07 (1.1–3.3) |
Exposure Variables | Beta (p-Value) | Beta (p-Value) |
---|---|---|
Age-Adjusted | Multivariable-Model | |
Fresh red meat | ||
Quartile 1 (0 to <23.1 g/day) | Ref | Ref |
Quartile 2 (23.1 to <72.0 g/day) | 0.25 (0.0008) | 0.13 (0.05) |
Quartile 3 (72.0 to <174.3 g/day) | 0.47 (<0.0001) | 0.16 (0.01) |
Quartile 4 (≥174.3 g/day) | 0.66 (<0.0001) | 0.13 (0.05) |
Vegetable intakes | ||
Quartile 1 (0 to <1.7 servings/day) | Ref | Ref |
Quartile 2 (1.7 to <2.6 servings/day) | −0.20 (0.003) | −0.09 (0.12) |
Quartile 3 (2.6 to 3.7 servings/day) | −0.31 (<0.0001) | −0.07 (0.16) |
Quartile 4 (≥3.7 servings/day) | −0.47 (0.0001) | −0.12 (0.04) |
Fruit intakes | ||
Quartile 1 (0 to 1.1 servings/day) | Ref | Ref |
Quartile 2 (1.1 to 2.1 serving/day) | −0.10 (0.12) | −0.03 (0.12) |
Quartile 3 (2.1 to 3.3 servings/day) | −0.03 (0.16) | −0.03 (0.16) |
Quartile 4 (≥3.3 servings/day) | −0.18 (0.003) | −0.18 (0.003) |
Season of blood draw | ||
Summer | Ref | Ref |
Fall | 0.04 (0.58) | 0.00 (0.9) |
Winter | −0.08 (0.21) | −0.11 (0.04) |
Spring | −0.03 (0.61) | −0.06 (0.25) |
Body mass index | ||
<25 (kg/m2) | Ref | Ref |
25–29.9 (kg/m2) | 0.89(<0.0001) | 0.78 (<0.0001) |
30–34.9 (kg/m2) | 1.54 (<0.0001) | 1.36 (<0.0001) |
≥35 (kg/m2) | 1.97 (<0.0001) | 1.71 (<0.0001) |
Having cardio-metabolic condition | ||
No | Ref | Ref |
Yes | 0.48 (0.0001) | 0.12 (0.01) |
Smoking status | ||
Never smoker | Ref | Ref |
Past smoker with pack-years 0 to <15 | −0.06 (0.09) | −0.08 (0.09) |
Past smoker with pack years ≥ 15 | 0.27 (0.0002) | 0.14 (0.02) |
Current smoker | 0.29 (0.01) | 0.13 (0.17) |
Beta (p-Value) | Beta (p-Value) | Beta (p-Value) | Beta (p-Value) | ||
---|---|---|---|---|---|
Summer | Fall | Winter | Spring | ||
Red meat intakes | >Quartile 1 (≥23 g/day) | Ref | 0.06 (0.4) | −0.11 (0.11) | −0.03 (0.7) |
n = 692 | n = 656 | n = 558 | n = 590 | ||
=Quartile 1 (0 to <23 g/day) | −0.07 (0.5) | −0.21 (0.04) | −0.22 (0.04) | −0.21 (0.04) | |
n = 103 | n = 127 | n = 107 | n = 85 | ||
Fruit intakes | <Quartile 4 (0 to 3.25 servings/day) | Ref | −0.01 (0.86) | −0.15 (0.02) | −0.10 (0.14) |
n = 541 | n = 537 | n = 544 | n = 559 | ||
=Quartile 4 (3.25 to 11.17 servings/day) | −0.21 (0.01) | −0.20 (0.01) | −0.21 (0.05) | −0.18 (0.11) | |
n = 253 | n = 245 | n = 117 | n = 115 | ||
Vegetable intakes | <Quartile 4 (0 to <3.68 servings/day) | Ref | −0.03 (0.69) | −0.17 (0.007) | −0.09 (0.15) |
n = 583 | n = 575 | n = 508 | n = 515 | ||
=Quartile 4 (3.68 to 16.18 servings/day) | −0.16 (0.06) | −0.10 (0.25) | −0.09 (0.37) | −0.15 (0.11) | |
n = 211 | n = 207 | n = 153 | n = 159 |
Joint Associations of Food Inflammatory Scores and Seasons with C-Reactive Protein in Different Subgroups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Beta (p-Value) | Beta (p-Value) | Beta (p-Value) | Beta (p-Value) | Beta (p-Value) | Beta (p-Value) | Beta (p-Value) | Beta (p-Value) | |||
Smoking Status | Past smokers with pack-years ≥15 (n = 448) | Never smokers and past smokers with pack-years <15 (n = 2439) | ||||||||
Food score | Summer | Fall | Winter | Spring | Food score | Summer | Fall | Winter | Spring | |
High (0 to 1) | Ref | 0.009 (0.9) | −0.07 (0.6) | 0.23 (0.15) | High (0 to 1) | Ref | 0.03 (0.70) | −0.16 (0.03) | −0.04 (0.56) | |
n = 93 | n = 87 | n = 88 | n = 77 | n = 488 | n = 495 | n = 446 | n = 430 | |||
Low (−1 to −2) | −0.15 (0.48) | −0.42 (0.06) | −0.46 (0.08) | 0.02 (0.9) | Low (−1 to −2) | −0.20 (0.05) | −0.14 (0.16) | −0.09 (0.93) | −0.33 (0.003) | |
n = 33 | n = 27 | n = 18 | n = 25 | n = 178 | n = 165 | n = 115 | n = 122 | |||
Having Cardio-metabolic | Yes (n = 689) | No (n = 2385) | ||||||||
Condition | Food score | Summer | Fall | Winter | Spring | Food score | Summer | Fall | Winter | Spring |
High (0 to 1) | Ref | −0.17(0.16) | −0.21 (0.09) | −0.11 (0.4) | High (0 to 1) | Ref | −0.04(0.16) | −0.14 (0.06) | −0.03 (0.70) | |
n = 144 | n = 147 | n = 127 | n = 128 | n = 471 | n = 484 | n = 439 | n = 429 | |||
Low (−1 to −2) | −0.14 (0.48) | −0.23(0.21) | −0.20 (0.37) | −0.52 (0.01) | Low (−1 to −2) | −0.24 (0.01) | −0.20 (0.06) | −0.06 (0.63) | −0.25 (0.03) | |
n = 37 | n = 46 | n = 28 | n = 32 | n = 182 | n = 151 | n = 110 | n = 119 | |||
Obesity Status | Obese (n = 801) | Normal and overweight (n = 2273) | ||||||||
Food score | Summer | Fall | Winter | Spring | Food score | Summer | Fall | Winter | Spring | |
High (0 to 1) | Ref | −0.18 (0.08) | −0.15 (0.17) | −0.15 (0.15) | High (0 to 1) | Ref | 0.07 (0.41) | −0.20 (0.01) | −0.01 (0.91) | |
n = 182 | n = 182 | n = 167 | n = 165 | n = 433 | n = 449 | n = 399 | n = 392 | |||
Low (−1 to −2) | −0.35 (0.06) | −0.26(0.16) | 0.13 (0.59) | −0.50 (0.03) | Low (−1 to −2) | −0.29 (0.007) | −0.26 (0.02) | −0.14 (0.3) | −0.39 (0.001) | |
n = 35 | n = 32 | n = 19 | n = 19 | n = 184 | n = 165 | n = 119 | n = 132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Shinde, R.; Castro, R.; Pierce, J.P. Interrelationship of Seasons with Inflammation, Red Meat, Fruit, and Vegetable Intakes, Cardio-Metabolic Health, and Smoking Status among Breast Cancer Survivors. J. Clin. Med. 2021, 10, 636. https://doi.org/10.3390/jcm10040636
Wu T, Shinde R, Castro R, Pierce JP. Interrelationship of Seasons with Inflammation, Red Meat, Fruit, and Vegetable Intakes, Cardio-Metabolic Health, and Smoking Status among Breast Cancer Survivors. Journal of Clinical Medicine. 2021; 10(4):636. https://doi.org/10.3390/jcm10040636
Chicago/Turabian StyleWu, Tianying, Rajashree Shinde, Robert Castro, and John P. Pierce. 2021. "Interrelationship of Seasons with Inflammation, Red Meat, Fruit, and Vegetable Intakes, Cardio-Metabolic Health, and Smoking Status among Breast Cancer Survivors" Journal of Clinical Medicine 10, no. 4: 636. https://doi.org/10.3390/jcm10040636
APA StyleWu, T., Shinde, R., Castro, R., & Pierce, J. P. (2021). Interrelationship of Seasons with Inflammation, Red Meat, Fruit, and Vegetable Intakes, Cardio-Metabolic Health, and Smoking Status among Breast Cancer Survivors. Journal of Clinical Medicine, 10(4), 636. https://doi.org/10.3390/jcm10040636