Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Longhi, A.; Errani, C.; De Paolis, M.; Mercuri, M.; Bacci, G. Primary bone osteosarcoma in the pediatric age: State of the art. Cancer Treat. Rev. 2006, 32, 423–436. [Google Scholar] [CrossRef]
- Salter, R.B.; Harris, W.R. Injuries involving the epiphyseal plate. J. Bone Jt. Surg 2001, 83, 1753. [Google Scholar] [CrossRef]
- Groundland, J.S.; Binitie, O. Reconstruction After Tumor Resection in the Growing Child. Orthop. Clin. N. Am. 2016, 47, 265–281. [Google Scholar] [CrossRef]
- Yoshida, Y.; Osaka, S.; Tokuhashi, Y. Experience with extendable prostheses for malignant bone tumors in children. J. Formos. Med. Assoc. 2011, 110, 711–715. [Google Scholar] [CrossRef] [Green Version]
- Krepler, P.; Dominkus, M.; Toma, C.D.; Kotz, R. Endoprosthesis management of the extremities of children after resection of primary malignant bone tumors. Orthopade 2003, 32, 1013–1019. [Google Scholar] [CrossRef]
- Ruggieri, P.; Mavrogenis, A.F.; Pala, E.; Romantini, M.; Manfrini, M.; Mercuri, M. Outcome of expandable prostheses in children. J. Pediatr. Orthop. 2013, 33, 244–253. [Google Scholar] [CrossRef]
- Scoccianti, G.; Campanacci, D.A.; Beltrami, G.; Caldora, P.; Capanna, R. The use of osteo-articular allografts for reconstruction after resection of the distal radius for tumour. J. Bone Jt. Surg. Br. 2010, 92, 1690–1694. [Google Scholar] [CrossRef] [Green Version]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone regenerative medicine: Classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Schuh, R.; Panotopoulos, J.; Puchner, S.E.; Willegger, M.; Hobusch, G.M.; Windhager, R.; Funovics, P.T. Vascularised or non-vascularised autologous fibular grafting for the reconstruction of a diaphyseal bone defect after resection of a musculoskeletal tumour. Bone Jt. J. 2014, 1258–1263. [Google Scholar] [CrossRef]
- Kim, J.D.; Lee, G.W.; Chung, S.H. A reconstruction with extracorporeal irradiated autograft in osteosarcoma around the knee. J. Surg. Oncol. 2011, 104, 187–191. [Google Scholar] [CrossRef]
- Muller, D.A.; Beltrami, G.; Scoccianti, G.; Cuomo, P.; Capanna, R. Allograft-prosthetic composite versus megaprosthesis in the proximal tibia-What works best? Injury 2016, 47 (Suppl. 4), S124–S130. [Google Scholar] [CrossRef]
- Fan, H.; Fu, J.; Li, X.; Pei, Y.; Li, X.; Pei, G.; Guo, Z. Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: A case series and review of the literature. World J. Surg. Oncol. 2015, 13, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rengier, F.; Mehndiratta, A.; von Tengg-Kobligk, H.; Zechmann, C.M.; Unterhinninghofen, R.; Kauczor, H.U.; Giesel, F.L. 3D printing based on imaging data: Review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 2010, 5, 335–341. [Google Scholar] [CrossRef]
- Hermanek, P.; Wittekind, C. Residual tumor (R) classification and prognosis. Semin. Surg. Oncol. 1994, 10, 12–20. [Google Scholar] [CrossRef]
- Henderson, E.R.; O’Connor, M.I.; Ruggieri, P.; Windhager, R.; Funovics, P.T.; Gibbons, C.L.; Guo, W.; Hornicek, F.J.; Temple, H.T.; Letson, G.D. Classification of failure of limb salvage after reconstructive surgery for bone tumours: A modified system Including biological and expandable reconstructions. Bone Jt. J. 2014, 96-B, 1436–1440. [Google Scholar] [CrossRef]
- Min, L.; Tang, F.; Duan, H.; Zhou, Y.; Zhang, W.L.; Shi, R.; Tu, C.Q. Cemented allograft-prosthesis composite reconstruction for the proximal femur tumor. OncoTargets Ther. 2015, 8, 2261–2269. [Google Scholar]
- Enneking, W.F.; Dunham, W.; Gebhardt, M.C.; Malawar, M.; Pritchard, D.J. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin. Orthop. Relat. Res. 1993, 286, 241–246. [Google Scholar] [CrossRef]
- Beltrami, G.; Ristori, G.; Scoccianti, G.; Tamburini, A.; Capanna, R.; Campanacci, D.; Innocenti, M. Latissimus dorsi rotational flap combined with a custom-made scapular prosthesis after oncological surgical resection: A report of two patients. BMC Cancer 2018, 18, 1003. [Google Scholar] [CrossRef]
- Beltrami, G. Custom 3D-printed finger proximal phalanx as salvage of limb function after aggressive recurrence of giant cell tumour. BMJ Case Rep. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Regauer, M.; Lange, M.; Soldan, K.; Peyerl, S.; Baumbach, S.; Bocker, W.; Polzer, H. Development of an internally braced prosthesis for total talus replacement. World J. Orthop. 2017, 8, 221–228. [Google Scholar] [CrossRef]
- Wei, R.; Guo, W.; Ji, T.; Zhang, Y.; Liang, H. One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: A technical note. Eur. Spine J. 2017, 26, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Pierce, T.D.; Tomaino, M.M. Use of the pedicled latissimus muscle flap for upper-extremity reconstruction. J. Am. Acad. Orthop. Surg. 2000, 8, 324–331. [Google Scholar] [CrossRef] [PubMed]
Patient | Sex | Age | Anatomical Site | Histology | Concomitant Therapy | Custom Implant | Quality of the Surgical Margin | Bone/Spacer | Soft Tissue |
---|---|---|---|---|---|---|---|---|---|
1 | M | 13 | Humerus | High grade Osteosarcoma | Neoadjuvant and adjuvant CHT | Proximal humerus prosthesis with integrated plate | R0 | Structural antibiotic cement | Latissimus dorsi rotational flap for deltoid region, vascularized and innervated |
2 | F | 13 | Scapula | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Scapular prosthesis | R0 | None | Latissimus dorsi rotational flap vascularized and innervated for subscapularis recovery |
3 | M | 13 | Pelvis | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Ileum prosthesis | R0 | Bone chips | Fascia lata rotational flap |
4 | F | 11 | Tibia | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Anatomical Plate | R0 | Massive allograft + fibular vascularized flap | Medial gastrocnemius rotational flap after scar slough |
5 | M | 8 | Tibia | Low Grade Osteosarcoma | None | Anatomical Plate | R0 | Massive allograft + fibular vascularized flap | Medial gastrocnemius rotational flap after scar slough |
6 | F | 13 | Humerus | High grade Osteosarcoma | Neoadjuvant and adjuvant CHT | Subtotal humerus prosthesis | R0 | Bone chips + fibular vascularized flap | None |
7 | M | 13 | Femur | High grade Osteosarcoma | Neoadjuvant and adjuvant CHT | Distal femur prosthesis with integrated plate | R0 | Massive bone allograft | None |
8 | M | 9 | Calcaneus | Ewing sarcoma | Neoadjuvant and adjuvant CHT with RHT | Calcaneus prosthesis | R1 | Non vascularized fibular strut autograft | Antero-lateral fascio-cutaneous free flap |
9 | M | 13 | Hemipelvis | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Ileum prosthesis | R0 | Antibiotic soluble pearls | Fascia lata rotational flap |
10 | F | 13 | Subtotal radius | Rhabdomyo sarcoma | Neoadjuvant and adjuvant CHT | Osteoarticular radius | R0 | Antibiotic soluble pearls | None |
11 | F | 2 | Subtotal femur | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Anatomical Plate | R0 | Structural bone massive allograft | None |
Patient | MSTS | Postoperative Complications | Timing of Physical Recovery after Surgery |
---|---|---|---|
1 | 32% | Restricted range of motion | 3 months |
2 | 93% | None | 3 months |
3 | 85% | None | 5 months |
4 | 75% | Wound dehiscence | 6 months |
5 | 75% | Wound dehiscence | 6 months |
6 | 93% | Proximal wound dehiscence | 4 months |
7 | 85% | Stiff knee | 5 months |
8 | 32% | Postoperative venous thrombosis of the musculocutaneous free flap | 6 months |
9 | 75% | None | 5 months |
10 | 80% | None | 5 months |
11 | 90% | Stiff knee | 5 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrami, G.; Ristori, G.; Nucci, A.M.; Galeotti, A.; Tamburini, A.; Scoccianti, G.; Campanacci, D.; Innocenti, M.; Capanna, R. Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients. J. Clin. Med. 2021, 10, 1056. https://doi.org/10.3390/jcm10051056
Beltrami G, Ristori G, Nucci AM, Galeotti A, Tamburini A, Scoccianti G, Campanacci D, Innocenti M, Capanna R. Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients. Journal of Clinical Medicine. 2021; 10(5):1056. https://doi.org/10.3390/jcm10051056
Chicago/Turabian StyleBeltrami, Giovanni, Gabriele Ristori, Anna Maria Nucci, Alberto Galeotti, Angela Tamburini, Guido Scoccianti, Domenico Campanacci, Marco Innocenti, and Rodolfo Capanna. 2021. "Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients" Journal of Clinical Medicine 10, no. 5: 1056. https://doi.org/10.3390/jcm10051056
APA StyleBeltrami, G., Ristori, G., Nucci, A. M., Galeotti, A., Tamburini, A., Scoccianti, G., Campanacci, D., Innocenti, M., & Capanna, R. (2021). Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients. Journal of Clinical Medicine, 10(5), 1056. https://doi.org/10.3390/jcm10051056