Considerations for and Mechanisms of Adjunct Therapy in COPD
Abstract
:1. Introduction
2. Roflumilast
3. Macrolides
4. Antibiotics Directed at Chronic Bacterial Colonization of the Airways
5. Mucolytics
6. Nebulized Hypertonic Saline
7. Vitamin D
8. Oral Corticosteroids in COPD
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GlobalInitiative for Chronic Obstructive Lung Disease. Available online: http://www.goldcopd.org (accessed on 15 March 2021).
- Sandhaus, R.A.; Turino, G.; Brantly, M.L.; Campos, M.; Cross, C.E.; Goodman, K.; Hogarth, D.K.; Knight, S.L.; Stocks, J.M.; Stoller, J.K.; et al. The Diagnosis and Management of Alpha-1 Antitrypsin Deficiency in the Adult. Chronic Obstr. Pulm. Dis. 2016, 3, 668–682. [Google Scholar] [CrossRef] [Green Version]
- Vestbo, J. Fixed Triple Therapy in Chronic Obstructive Pulmonary Disease and Survival. Living Better, Longer, or Both? Am. J. Respir. Crit. Care Med. 2020, 201, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Lipson, D.A.; Crim, C.; Criner, G.J.; Day, N.C.; Dransfield, M.T.; Halpin, D.M.G.; Han, M.K.; Jones, C.E.; Kilbride, S.; Lange, P.; et al. Reduction in All-Cause Mortality with Fluticasone Furoate/Umeclidinium/Vilanterol in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2020, 201, 1508–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, F.J.; Rabe, K.F.; Ferguson, G.T.; Wedzicha, J.A.; Singh, D.; Wang, C.; Rossman, K.; Rose, E.S.; Trivedi, R.; Ballal, S.; et al. Reduced All-Cause Mortality in the ETHOS Trial of Budesonide/Glycopyrrolate/Formoterol for Chronic Obstructive Pulmonary Disease. A Randomized, Double-Blind, Multicenter, Parallel-Group Study. Am. J. Respir. Crit. Care Med. 2021, 203, 553–564. [Google Scholar] [CrossRef]
- Wedzicha, J.A.; Calverley, P.M.; Rabe, K.F. Roflumilast: A review of its use in the treatment of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.J.; Cortijo, J.; Morcillo, E.J. PDE4 inhibitors as new anti-inflammatory drugs: Effects on cell trafficking and cell adhesion molecules expression. Pharmacol. Ther. 2005, 106, 269–297. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Fan, L.; Ye, J.; Fan, J.; Xu, X.; You, D.; Liu, S.; Chen, X.; Luo, P. Pharmacological mechanism of roflumilast in the treatment of asthma-COPD overlap. Drug Des. Dev. Ther. 2018, 12, 2371–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabe, K.F.; Watz, H.; Baraldo, S.; Pedersen, F.; Biondini, F.; Bagul, N.; Hanauer, G.; Gohring, U.-M.; Purkayastha, D.; Roman, J.; et al. Anti-inflammatory effects of roflumilast in chronic obstructive pulmonary disease (ROBERT): A 16-week, randomised, placebo-controlled trial. Lancet Respir Med. 2018, 11, 827–836. [Google Scholar] [CrossRef]
- Han, M.K. Roflumilast for eosinophilic chronic obstructive pulmonary disease? Lancet Respir Med. 2018, 11, 802–803. [Google Scholar] [CrossRef]
- Martinez, F.J.; Calverley, P.M.; Goehring, U.M.; Brose, M.; Fabbri, L.M.; Rabe, K.F. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): A multicentre randomised controlled trial. Lancet 2015, 385, 857–866. [Google Scholar] [CrossRef]
- Martinez, F.J.; Rabe, K.F.; Sethi, S.; Pizzichini, E.; McIvor, A.; Anzueto, A.; Alagappan, V.K.T.; Siddiqui, S.; Rekeda, L.; Miller, C.J.; et al. Effect of Roflumilast and Inhaled Corticosteroid/Long-Acting β2-Agonist on Chronic Obstructive Pulmonary Disease Exacerbations (RE(2)SPOND). A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 559–567. [Google Scholar] [CrossRef]
- Criner, G.J.; Jacobs, M.R.; Zhao, H.; Marchetti, N. Effects of Roflumilast on Rehospitalization and Mortality in Patients. Chronic Obstr. Pulm. Dis. 2018, 6, 74–85. [Google Scholar] [CrossRef]
- Kim, K.H.; Kang, H.S.; Kim, J.S.; Yoon, H.K.; Kim, S.K.; Rhee, C.K. Risk factors for the discontinuation of roflumilast in patients with chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 3449–3456. [Google Scholar] [CrossRef] [Green Version]
- Yamaya, M.; Azuma, A.; Takizawa, H.; Kadota, J.-I.; Tamaoki, J.; Kudoh, S. Macrolide effects on the prevention of COPD exacerbations. Eur. Respir. J. 2012, 40, 485–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amsden, G.W. Anti-inflammatory effects of macrolides—An underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J. Antimicrob. Chemother. 2005, 55, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Araki, N.; Yanagihara, K.; Morinaga, Y.; Yamada, K.; Nakamura, S.; Yamada, Y.; Kohno, S.; Kamihira, S. Azithromycin inhibits nontypeable Haemophilus influenzae-induced MUC5AC expression and secretion via inhibition of activator protein-1 in human airway epithelial cells. Eur. J. Pharmacol. 2010, 644, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizawa, K.; Suzuki, T.; Yamaya, M.; Jia, Y.X.; Kobayashi, S.; Ida, S.; Kubo, H.; Sekizawa, K.; Sasaki, H. Erythromycin increases bactericidal activity of surface liquid in human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 289, L565–L573. [Google Scholar] [CrossRef] [PubMed]
- Tateda, K.; Comte, R.; Pechere, J.-C.; Köhler, T.; Yamaguchi, K.; Van Delden, C. Azithromycin Inhibits Quorum Sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2001, 45, 1930–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, P.; Ziesenitz, V.C.; Curtis, N.; Ritz, N. The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms. Front. Immunol. 2018, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Han, M.K.; Tayob, N.; Murray, S.; Dransfield, M.T.; Washko, G.; Scanlon, P.D.; Criner, G.J.; Casaburi, R.; Connett, J.; Lazarus, S.C.; et al. Predictors of chronic obstructive pulmonary disease exacerbation reduction in response to daily azithromycin therapy. Am. J. Respir. Crit. Care Med. 2014, 189, 1503–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Luo, L.; Li, C.; Chen, P.; Chen, Y. Long-term macrolide treatment for the prevention of acute exacerbations in COPD: A systematic review and meta-analysis. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 3813–3829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, S. Infection as a comorbidity of COPD. Eur. Respir. J. 2010, 35, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Matkovic, Z.; Miravitlles, M. Chronic bronchial infection in COPD. Is there an infective phenotype? Respir. Med. 2013, 107, 10–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, S.; Jones, P.W.; Theron, M.S.; Miravitlles, M.; Rubinstein, E.; Wedzicha, J.A.; Wilson, R.; PULSE Study Group. Pulsed moxifloxacin for the prevention of exacerbations of chronic obstructive pulmonary disease: A randomized controlled trial. Respir. Res. 2010, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Herath, S.C.; Normansell, R.; Maisey, S.; Poole, P. Prophylactic antibiotic therapy for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev. 2018, 10, CD009764. [Google Scholar] [CrossRef]
- Quon, B.S.; Goss, C.H.; Ramsey, B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014, 11, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Montón, C.; Prina, E.; Pomares, X.; Cugat, J.R.; Casabella, A.; Oliva, J.C.; Gallego, M.; Monsó, E. Nebulized Colistin and Continuous Cyclic Azithromycin in Severe COPD Patients with Chronic Bronchial Infection due to Pseudomonas Aeruginosa: A Retrospective Cohort Study. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2365–2373. [Google Scholar] [CrossRef] [Green Version]
- Dal Negro, R.; Micheletto, C.; Tognella, S.; Visconti, M.; Turati, C. Tobramycin Nebulizer Solution in severe COPD patients colonized with Pseudomonas aeruginosa: Effects on bronchial inflammation. Adv. Ther. 2008, 25, 1019–1030. [Google Scholar] [CrossRef]
- Barnes, P.J. Chronic obstructive pulmonary disease. N. Eng. J. Med. 2000, 343, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: Cellular and molecular mechanisms. Cell. Mol. Mech. 2005, 43, 167–188. [Google Scholar] [CrossRef]
- Rubin, B.K. Mucolytics, expectorants, and mucokinetic medications. Respir. Care 2007, 52, 859–865. [Google Scholar]
- Sheffner, A.L.; Medler, E.M.; Jacobs, L.W.; Sarett, H.P. The in vitro Reduction in Viscosity of Human Tracheobronchial Secretions by Acetylcysteine. Am. Rev. Respir. Dis. 1964, 90, 721–729. [Google Scholar] [PubMed]
- Cotgreave, I.A.; Eklund, A.; Larsson, K.; Moldéus, P.W. No penetration of orally administered N-acetylcysteine into bronchoalveolar lavage fluid. Eur. J. Respir. Dis. 1987, 70, 73–77. [Google Scholar] [PubMed]
- Kasielski, M.; Nowak, D. Long-term administration of N-acetylcysteine decreases hydrogen peroxide exhalation in subjects with chronic obstructive pulmonary disease. Respir. Med. 2001, 95, 448–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decramer, M.; Rutten-van Mölken, M.; Dekhuijzen, P.R.; Troosters, T.; Van Herwaarden, C.; Pellegrino, R.; Van Schayck, C.O.; Olivieri, D.; Del Donno, M.; De Backer, W.; et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): A randomised placebo-controlled trial. Lancet 2005, 365, 1552–1560. [Google Scholar] [CrossRef]
- Zheng, J.-P.; Wen, F.-Q.; Bai, C.-X.; Wan, H.-Y.; Kang, J.; Chen, P.; Yao, W.-Z.; Ma, L.-J.; Li, X.; Raiteri, L.; et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): A randomised, double-blind placebo-controlled trial. Lancet Respir. Med. 2014, 2, 187–194. [Google Scholar] [CrossRef]
- Murray, A.S. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease: A Cochrane review summary. Int. J. Nurs. Stud. 2020, 103711. [Google Scholar] [CrossRef]
- Poole, P.; Sathananthan, K.; Fortescue, R. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2019, 5, CD001287. [Google Scholar] [CrossRef]
- Donaldson, S.H.; Bennett, W.D.; Zeman, K.L.; Knowles, M.R.; Tarran, R.; Boucher, R.C. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N. Eng. J. Med. 2006, 354, 241–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wark, P.A.; McDonald, V.; Jones, A.P. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst. Rev. 2005, Cd001506. [Google Scholar]
- Goralski, J.L.; Wu, D.; Thelin, W.R.; Boucher, R.C.; Button, B. The in vitro effect of nebulised hypertonic saline on human bronchial epithelium. Eur. Respir. J. 2018, 51, 1702652. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.; Tam, J.S.; Belev, G.; Jagadeeshan, S.; Murray, B.; Hassan, N.; Machen, T.E.; Chapman, L.D.; Ianowski, J.P. Nebulized hypertonic saline triggers nervous system-mediated active liquid secretion in cystic fibrosis swine trachea. Sci. Rep. 2019, 9, 540. [Google Scholar] [CrossRef] [PubMed]
- Elkins, M.R.; Bye, P.T.P. Mechanisms and applications of hypertonic saline. J. R. Soc. Med. 2011, 104 (Suppl. 1), S2–S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellett, F.; Redfern, J.; Niven, R.M. Evaluation of nebulised hypertonic saline (7%) as an adjunct to physiotherapy in patients with stable bronchiectasis. Respir. Med. 2005, 99, 27–31. [Google Scholar] [CrossRef]
- Bennett, W.D.; Henderson, A.G.; Ceppe, A.; Zeman, K.L.; Wu, J.; Gladman, C.; Fuller, F.; Gazda, S.; Button, B.; Boucher, R.C.; et al. Effect of hypertonic saline on mucociliary clearance and clinical outcomes in chronic bronchitis. ERJ Open Res. 2020, 6, 00269. [Google Scholar] [CrossRef] [PubMed]
- Valderramas, S.R.; Atallah, A.N. Effectiveness and safety of hypertonic saline inhalation combined with exercise training in patients with chronic obstructive pulmonary disease: A randomized trial. Respir. Care 2009, 54, 327–333. [Google Scholar]
- Samuel, S.; Sitrin, M.D. Vitamin D’s role in cell proliferation and differentiation. Nutr. Rev. 2008, 66, S116–S124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Leung, D.Y.M.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 2012, 188, 2127–2135. [Google Scholar] [CrossRef] [Green Version]
- Cantorna, M.T.; Yu, S.; Bruce, D. The paradoxical effects of vitamin D on type 1 mediated immunity. Mol. Asp. Med. 2008, 29, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Gombart, A.F. The vitamin D—Antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009, 4, 1151–1165. [Google Scholar] [CrossRef] [Green Version]
- Hornikx, M.; Van Remoortel, H.; Lehouck, A.; Mathieu, C.; Maes, K.; Gayan-Ramirez, G.; Decramer, M.; Troosters, T.; Janssens, W. Vitamin D supplementation during rehabilitation in COPD: A secondary analysis of a randomized trial. Respir. Res. 2012, 13, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkes, R.M.; Ceppe, A.S.; Doerschuk, C.M.; Couper, D.; Hoffman, E.A.; Comellas, A.P.; Barr, R.G.; Krishnan, J.A.; Cooper, C.; Labaki, W.W.; et al. Associations Among 25-Hydroxyvitamin D Levels, Lung Function, and Exacerbation Outcomes in COPD: An Analysis of the SPIROMICS Cohort. Chest 2020, 157, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Lehouck, A.; Mathieu, C.; Carremans, C.; Baeke, F.; Verhaegen, J.; Van Eldere, J.; Decallonne, B.; Bouillon, R.; Decramer, M.; Janssens, W. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: A randomized trial. Ann. Intern. Med. 2012, 156, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Martineau, A.R.; James, W.Y.; Hooper, R.L.; Barnes, N.C.; Jolliffe, D.A.; Greiller, C.L.; Islam, K.; McLaughlin, D.; Bhowmik, A.; Timms, P.M.; et al. Vitamin D3 supplementation in patients with chronic obstructive pulmonary disease (ViDiCO): A multicentre, double-blind, randomised controlled trial. Lancet Respir. Med. 2015, 3, 120–130. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Mathyssen, C.; Rafiq, R.; De Jongh, R.T.; Camargo, C.A.; Griffiths, C.J.; Janssens, W.; Martineau, A.R. Vitamin D to prevent exacerbations of COPD: Systematic review and meta-analysis of individual participant data from randomised controlled trials. Thorax 2019, 74, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiq, R.; Prins, H.J.; Boersma, W.G.; Daniels, J.M.; Heijer, M.D.; Lips, P.; De Jongh, R.T. Effects of daily vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients: A pilot trial. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 2583–2592. [Google Scholar] [CrossRef] [Green Version]
- Postma, D.S.; Peters, I.; Steenhuis, E.J.; Sluiter, H.J. Moderately severe chronic airflow obstruction. Can corticosteroids slow down obstruction? Eur. Respir. J. 1988, 1, 22–26. [Google Scholar]
- Callahan, C.M.; Dittus, R.S.; Katz, B.P. Oral corticosteroid therapy for patients with stable chronic obstructive pulmonary disease. A meta-analysis. Ann. Intern. Med. 1991, 114, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Renkema, T.E.; Schouten, J.P.; Koëter, G.H.; Postma, D.S. Effects of long-term treatment with corticosteroids in COPD. Chest 1996, 109, 1156–1162. [Google Scholar] [CrossRef]
- Walters, J.A.; Walters, E.H.; Wood-Baker, R. Oral corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2005, Cd005374. [Google Scholar] [CrossRef] [PubMed]
- Schols, A.; Wesseling, G.; Kester, A.D.; De Vries, G.; Mostert, R.; Slangen, J.; Wouters, E. Dose dependent increased mortality risk in COPD patients treated with oral glucocorticoids. Eur. Respir. J. 2001, 17, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horita, N.; Miyazawa, N.; Morita, S.; Kojima, R.; Inoue, M.; Ishigatsubo, Y.; Kaneko, T. Evidence suggesting that oral corticosteroids increase mortality in stable chronic obstructive pulmonary disease. Respir. Res. 2014, 15, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, K.L.; Rubins, J.B.; Lebahn, F.; Parenti, C.M.; Duane, P.G.; Kuskowski, M.; Joseph, A.M.; Niewoehner, D.E. Withdrawal of chronic systemic corticosteroids in patients with COPD: A randomized trial. Am. J. Respir. Crit. Care Med. 2000, 162, 174–178. [Google Scholar] [CrossRef] [PubMed]
Agents | Dosing | Indications | Side Effects |
---|---|---|---|
Roflumilast |
| While on maximal inhaled therapy to prevent exacerbations:
|
|
Macrolides |
| While on maximal inhaled therapy to prevent exacerbations:
|
|
Mucolytics |
| Potential benefit but there is no target population at this time |
|
Prophylactic antibiotics | Moxifloxacin
| These are not indicated at the time of this writing but inhaled agents hold promise and should be studied further | Side effects per select agent. Agents should be cycled on and off therapeutic plan to prevent side effects |
Hypertonic saline |
| Not recommended at this time |
|
Vitamin D |
| May have benefit in those with vitamin D deficiency at preventing AECOPD |
|
Oral Corticosteroids | Dose variable | Not recommended |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandru, R.; Zhou, C.Y.; Pauley, R.; Burkes, R.M. Considerations for and Mechanisms of Adjunct Therapy in COPD. J. Clin. Med. 2021, 10, 1225. https://doi.org/10.3390/jcm10061225
Mandru R, Zhou CY, Pauley R, Burkes RM. Considerations for and Mechanisms of Adjunct Therapy in COPD. Journal of Clinical Medicine. 2021; 10(6):1225. https://doi.org/10.3390/jcm10061225
Chicago/Turabian StyleMandru, Rachana, Christine Y. Zhou, Rachel Pauley, and Robert M. Burkes. 2021. "Considerations for and Mechanisms of Adjunct Therapy in COPD" Journal of Clinical Medicine 10, no. 6: 1225. https://doi.org/10.3390/jcm10061225
APA StyleMandru, R., Zhou, C. Y., Pauley, R., & Burkes, R. M. (2021). Considerations for and Mechanisms of Adjunct Therapy in COPD. Journal of Clinical Medicine, 10(6), 1225. https://doi.org/10.3390/jcm10061225