Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choung, P.-H. A new osteotomy for the correction of mandibular prognathism: Techniques and rationale of the intraoral vertico-sagittal ramus osteotomy. J. Cranio-Maxillofac. Surg. 1992, 20, 153–162. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, T.-J.; Jeon, J.-H. Unilateral intraoral vertical ramus osteotomy and sagittal split ramus osteotomy for the treatment of asymmetric mandibles. J. Korean Assoc. Oral Maxillofac. Surg. 2015, 41, 102. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, S.; Sugawara, Y.; Yamashita, K.; Mano, T.; Takano-Yamamoto, T. Skeletal Class III oligodontia patient treated with titanium screw anchorage and orthognathic surgery. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 730–738. [Google Scholar] [CrossRef]
- Eriksen, E.S.; Wisth, P.; Løes, S.; Moen, K. Skeletal and dental stability after intraoral vertical ramus osteotomy: A long-term follow-up. Int. J. Oral Maxillofac. Surg. 2017, 46, 72–79. [Google Scholar] [CrossRef]
- Leung, Y.Y.; Wang, R.; Wong, N.S.M.; Li, D.T.S.; Au, S.W.; Choi, W.S.; Su, Y.-X. Surgical morbidities of sagittal split ramus osteotomy versus intraoral vertical ramus osteotomy for the correction of mandibular prognathism: A randomized clinical trial. Int. J. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef]
- Ueki, K.; Hashiba, Y.; Marukawa, K.; Okabe, K.; Nakagawa, K.; Alam, S.; Yamamoto, E. Evaluation of bone formation after sagittal split ramus osteotomy with bent plate fixation using computed tomography. J. Oral Maxillofac. Surg. 2009, 67, 1062–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ra’ed, M.; Al-Khen, M. Skeletal relapse after mandibular setback in bi max surgery: Intraoral vertical ramus versus bilateral sagittal split osteotomies. J. Maxillofac. Oral Surg. 2014, 13, 471–477. [Google Scholar]
- Reyneke, J.P.; Ferretti, C. Intraoperative diagnosis of condylar sag after bilateral sagittal split ramus osteotomy. Br. J. Oral Maxillofac. Surg. 2002, 40, 285–292. [Google Scholar] [CrossRef]
- Mitsukawa, N.; Morishita, T.; Saiga, A.; Kubota, Y.; Omori, N.; Akita, S.; Satoh, K. Dislocation of temporomandibular joint: Complication of sagittal split ramus osteotomy. J. Craniofac. Surg. 2013, 24, 1674–1675. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K. Complications associated with orthognathic surgery. J. Korean Assoc. Oral Maxillofac. Surg. 2017, 43, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catherine, Z.; Breton, P.; Bouletreau, P. Condylar resorption after orthognathic surgery: A systematic review. Rev. Stomatol. Chir. Maxillo-Fac. Chir. Orale 2016, 117, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Larson, B.E.; Lee, N.-K.; Jang, M.-J.; Jo, D.-W.; Yun, P.-Y.; Kim, Y.-K. Comparative evaluation of the sliding plate technique for fixation of a sagittal split ramus osteotomy: Finite element analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, e148–e152. [Google Scholar] [CrossRef]
- Politi, M.; Toro, C.; Costa, F.; Polini, F.; Robiony, M. Intraoperative awakening of the patient during orthognathic surgery: A method to prevent the condylar sag. J. Oral Maxillofac. Surg. 2007, 65, 109–114. [Google Scholar] [CrossRef]
- Lee, C.-H.; Cho, S.-W.; Kim, J.-W.; Ahn, H.-J.; Kim, Y.-H.; Yang, B.-E. Three-dimensional assessment of condylar position following orthognathic surgery using the centric relation bite and the ramal reference line: A retrospective clinical study. Medicine 2019, 98, e14931. [Google Scholar] [CrossRef] [PubMed]
- Hirjak, D.; Dvoranova, B.; Reyneke, J.; Machon, M.; Neff, A. Condylar position and mandibular function after bilateral sagittal split osteotomy. Bratisl. Lek. Listy 2020, 121, 379–385. [Google Scholar] [PubMed]
- Kawase-Koga, Y.; Fujii, Y.; Ikehata, M.; Ikehata, N.; Kono, M.; Kimoto, A.; Watanabe, M.; Chikazu, D. Usefulness of early plate removal in patients with occlusal discrepancies after sagittal split ramus osteotomy. J. Craniofac. Surg. 2018, 29, 900–903. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, J.-C.; Jeong, C.-G.; Cheon, K.-J.; Cho, S.-W.; Park, I.-Y.; Yang, B.-E. The accuracy and stability of the maxillary position after orthognathic surgery using a novel computer-aided surgical simulation system. BMC Oral Health 2019, 19, 18. [Google Scholar] [CrossRef]
- Valls-Ontañón, A.; Ascencio-Padilla, R.; Vela-Lasagabaster, A.; Sada-Malumbres, A.; Haas-Junior, O.; Masià-Gridilla, J.; Hernández-Alfaro, F. Relevance of 3D virtual planning in predicting bony interferences between distal and proximal fragments after sagittal split osteotomy. Int. J. Oral Maxillofac. Surg. 2020, 49, 1020–1028. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, J.-C.; Cheon, K.-J.; Cho, S.-W.; Kim, Y.-H.; Yang, B.-E. Computer-aided surgical simulation for yaw control of the mandibular condyle and its actual application to orthognathic surgery: A one-year follow-up study. Int. J. Environ. Res. Public Health 2018, 15, 2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueki, K.; Marukawa, K.; Shimada, M.; Nakagawa, K.; Yamamoto, E. Change in condylar long axis and skeletal stability following sagittal split ramus osteotomy and intraoral vertical ramus osteotomy for mandibular prognathia. J. Oral Maxillofac. Surg. 2005, 63, 1494–1499. [Google Scholar] [CrossRef]
- Ohba, S.; Yoshida, M.; Kohara, H.; Kawasaki, T.; Minamizato, T.; Koga, T.; Nakatani, Y.; Wanatabe, E.; Nakao, N.; Yoshida, N. Short lingual osteotomy without fixation: A new strategy for mandibular osteotomy known as “physiological positioning”. Br. J. Oral Maxillofac. Surg. 2014, 52, e9–e13. [Google Scholar] [CrossRef] [Green Version]
- Yamaji, T.; Ando, K.; Wolf, S.; Augat, P.; Claes, L. The effect of micromovement on callus formation. J. Orthop. Sci. 2001, 6, 571–575. [Google Scholar] [CrossRef]
- Claes, L.; Augat, P.; Suger, G.; Wilke, H.J. Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 1997, 15, 577–584. [Google Scholar] [CrossRef]
- Baldini, N.; Cenni, E.; Ciapetti, G.; Granchi, D.; Savarino, L. Bone repair and regeneration. In Bone Repair Biomaterials; Elsevier: Amsterdam, The Netherlands, 2009; pp. 69–105. [Google Scholar]
- Karanxha, L.; Rossi, D.; Hamanaka, R.; Giannì, A.B.; Baj, A.; Moon, W.; Del Fabbro, M.; Romano, M. Accuracy of splint vs splintless technique for virtually planned orthognathic surgery: A voxel-based three-dimensional analysis. J. Cranio-Maxillofac. Surg. 2021, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.; Paranhos, L.; da Silva, R.; Herval, Á.; Blumenberg, C.; Zanetta-Barbosa, D. Accuracy of orthognathic surgery with customized titanium plates–Systematic review. J. Stomatol. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef]
- Kwon, T.-G. Accuracy and reliability of three-dimensional computer-assisted planning for orthognathic surgery. Maxillofac. Plast. Reconstr. Surg. 2018, 40, 14. [Google Scholar] [CrossRef]
- Ingawale, S.; Goswami, T. Temporomandibular joint: Disorders, treatments, and biomechanics. Ann. Biomed. Eng. 2009, 37, 976–996. [Google Scholar] [CrossRef]
- Epker, B.N.; Wylie, G.A. Control of the condylar-proximal mandibular segments after sagittal split osteotomies to advance the mandible. Oral Surg. Oral Med. Oral Pathol. 1986, 62, 613–617. [Google Scholar] [CrossRef]
- Ueki, K.; Moroi, A.; Sotobori, M.; Ishihara, Y.; Marukawa, K.; Takatsuka, S.; Yoshizawa, K.; Kato, K.; Kawashiri, S. A hypothesis on the desired postoperative position of the condyle in orthognathic surgery: A review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 567–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firoozei, G.; Shahnaseri, S.; Momeni, H.; Soltani, P. Evaluation of orthognathic surgery on articular disc position and temporomandibular joint symptoms in skeletal class II patients: A Magnetic Resonance Imaging study. J. Clin. Exp. Dent. 2017, 9, e976. [Google Scholar] [CrossRef] [PubMed]
- Ueki, K.; Marukawa, K.; Nakagawa, K.; Yamamoto, E. Condylar and temporomandibular joint disc positions after mandibular osteotomy for prognathism. J. Oral Maxillofac. Surg. 2002, 60, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Kawamura, A. Disc displacement and changes in condylar position. Dentomaxillofac. Radiol. 2013, 42, 84227642. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, L.G.; Handelman, C.S. Idiopathic condylar resorption: What should we do? Oral Maxillofac. Surg. Clin. 2020, 32, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Hadjidakis, D.J.; Androulakis, I.I. Bone remodeling. Ann. N. Y. Acad. Sci. 2006, 1092, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015, 11, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pt. No | Age | Sex | Diagnosis | Surgery | The Period from OGS to Screw Removal (Days) | Removal Site |
---|---|---|---|---|---|---|
Pt. 1 | 26 | M | Class III | LFI + SSRO | 24 | Both |
Pt. 2 | 26 | F | Class III | LFI + SSRO | 30 | Both |
Pt. 3 | 20 | F | Class III | LFI + SSRO | 30 | Both |
Pt. 4 | 55 | F | Class III, FA | SSRO | 22 | Right |
Pt. 5 | 22 | M | Class III | LFI + SSRO | 25 | Left |
Pt. 6 | 18 | F | Class III, FA | LFI + SSRO | 24 | Both |
Pt. 7 | 20 | F | Class III, FA | LFI + SSRO | 25 | Both |
Pt. 8 | 20 | M | FA | LFI + SSRO | 22 | Both |
T0 | T1 | T2 | H | p(1) | df | B (2) | |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |||||
AJS (mm) | 1.58 ± 0.25 | 3.16 ± 1.58 | 1.79 ± 0.79 | 15.11 | 0 | 2 | T1 > T0,T2 |
PJS (mm) | 1.93 ± 0.64 | 3.93 ± 1.96 | 2.36 ± 1.30 | 10.16 | 0.01 | 2 | T1 > T0,T2 |
SJS (mm) | 2.25 ± 0.86 | 4.63 ± 1.53 | 2.74 ± 1.38 | 18.74 | 0 | 2 | T1 > T0,T2 |
Angle (°) | 11.08 ± 3.32 | 16.24 ± 4.71 | 12.90 ± 3.57 | 9.27 | 0.01 | 2 | T1 > T0 |
Volume (mm3) | 683.5 ± 143.93 | 893.19 ± 181.11 | 722.64 ± 167.76 | 9.59 | 0.01 | 2 | T1 > T0,T2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, W.-S.; Byun, S.-H.; Cho, S.-W.; Park, I.-Y.; Yi, S.-M.; Kim, J.-C.; Yang, B.-E. Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery. J. Clin. Med. 2021, 10, 1597. https://doi.org/10.3390/jcm10081597
Jang W-S, Byun S-H, Cho S-W, Park I-Y, Yi S-M, Kim J-C, Yang B-E. Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery. Journal of Clinical Medicine. 2021; 10(8):1597. https://doi.org/10.3390/jcm10081597
Chicago/Turabian StyleJang, Won-Seok, Soo-Hwan Byun, Seoung-Won Cho, In-Young Park, Sang-Min Yi, Jong-Cheol Kim, and Byoung-Eun Yang. 2021. "Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery" Journal of Clinical Medicine 10, no. 8: 1597. https://doi.org/10.3390/jcm10081597
APA StyleJang, W. -S., Byun, S. -H., Cho, S. -W., Park, I. -Y., Yi, S. -M., Kim, J. -C., & Yang, B. -E. (2021). Correction of Condylar Displacement of the Mandible Using Early Screw Removal following Patient-Customized Orthognathic Surgery. Journal of Clinical Medicine, 10(8), 1597. https://doi.org/10.3390/jcm10081597