Faecal Microbiota in Patients with Neurogenic Bowel Dysfunction and Spinal Cord Injury or Multiple Sclerosis—A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Information Sources
2.2. Eligibility Criteria
- -
- Study on the gut microbiota of patients with SCI or MS.
- -
- Study included a group of HC.
- -
- Participants were aged 18 years and older.
- -
- Gut microbiota composition was determined by 16S rRNA gene sequencing.
- -
- Published as full-text article in English in a peer-reviewed journal.
2.3. Data Extraction and Outcome Measures
2.4. Quality Assessment
3. Results
3.1. Literature Search
3.2. Description of Included Studies
3.3. Quality Assessment within Studies
3.4. Alpha Diversity
3.5. Taxonomic Differences
3.6. Variation in Design and Methodology between Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
((((((((((Multiple Sclerosis(MeSH Terms)) OR (Spinal Cord Injuries(MeSH Terms))) OR (Spinal Cord Diseases (MeSH Terms))) OR (Spinal Dysraphism (MeSH Terms))) OR (Multiple sclerosis(Title/Abstract))) OR (Spinal cord disease * (Title/Abstract))) OR (Spinal cord injury * (Title/Abstract))) OR (SCI(Title/Abstract))) OR (Spinal Dysraphism(Title/Abstract))) AND (((((((Gastrointestinal Microbiome(MeSH Terms)) OR (dysbiosis (MeSH Terms))) OR (Microbiom* (Title/Abstract))) OR (dysbiosis (Title/Abstract))) OR (dysbacteriosis(Title/Abstract))) OR (intestine flora(Title/Abstract))) OR (stool sample (Title/Abstract))) On 08-07-2020 Embase databank was searched combining the following terms: ‘multiple sclerosis’/exp OR ‘spinal cord injury’/exp OR ‘spinal cord disease’/exp OR ‘neurogenic bowel’/exp OR ‘spinal dysraphism’/exp OR ‘multiple sclerosis’: ab,ti OR ‘spinal cord injury*’:ab,ti OR ‘spinal cord disease*’:ab,ti OR ‘sci’:ab,ti OR ‘spinal dysraphism’:ab,ti AND ‘intestine flora’/exp OR ‘dysbiosis’/exp OR microbiom*:ab,ti OR ‘intestine flora’:ab,ti OR dysbiosis:ab,ti OR dysbacteriosis:ab,ti OR ‘stool sample’:ab,ti AND [embase]/lim AND ‘article’/it |
Article | Selection | Comparability Cases/Control | Exposure | ||||||
---|---|---|---|---|---|---|---|---|---|
Case Definition | Repre Sentativeness Cases | Selection Controls | Definition Controls | Ascer Tainment. Exposure | Same Method Ascer Tainment Cases and Controls | Non-Response Rate | Stars | ||
[39] | * | - | * | * | * | * | * | - | 6 |
[46] | * | - | * | * | * | * | * | - | 6 |
[43] | * | - | - | * | * | * | * | - | 5 |
[40] | * | - | - | * | ** | * | * | - | 6 |
[49] | * | - | * | * | ** | * | * | * | 8 |
[37] | * | - | - | * | * | * | * | - | 5 |
[45] | * | - | * | * | - | * | * | - | 5 |
[44] | * | - | - | * | - | * | * | - | 4 |
[41] | * | * | - | * | ** | * | * | - | 7 |
[36] | * | - | - | * | * | * | * | - | 5 |
[38] | * | - | - | * | ** | * | * | - | 6 |
[42] | * | - | - | * | * | * | * | - | 5 |
[47] | * | - | - | * | * | * | * | - | 5 |
[48] | * | - | - | * | * | * | * | - | 5 |
Study | Major Differences in Composition |
---|---|
Jia Li [39] | α diversity SCI > HC (A-SCI highest) |
A-SCI more unique bacteria communities but not well-represented (low relative abundances) | |
SCI higher relative abundance: Family: Erysipelotrichaceae, Acidaminococcaceae, Rikencellaceae, Lachnospiraceae, Rikenellaceae, Ruminococcaceae Genera: Lachnoclostridium. Eisenbergiella Genera: Alistipes Genera: Oscillibacter, Anaerotruncus | |
Chron-SCI higher relative abundance: Order: Clostridiales Family: Lachnospiraceae, Eggerthellaceae, Chron-SCI lower relative abundance: Order: Bacillales Genus: Campylobacter | |
A-SCI: higher Family: Desulfovibrionaceae, Burkholderiaceae, Marinifilacceae Genus: Sutterella Genus: Odoribacter | |
Chron-SCI lower relative abundance: Family: Burkholderiaceae | |
Reynders [46] | α diversity: downward trend: benign, active untreated MS, RRMS interferon, untreated RRMS during relapse MS interferon & untreated RRMS during relapse: microbial richness < benign & primary progressive MS HC & active untreated MS: intermediate microbial richness |
RRMS interferon more prevalent: Genus: bacteroides | |
Relative abundance primary progressive MS < active untreated MS < HC Genus: Butyricicoccus (from the Clostridium cluster IV – produces short-chain fatty acids which can initiate anti-inflammatory effects) global microbial composition differed between MS & HC | |
MS lower relative abundance: Alistipes, Anaerotroncus Lactobacillus, Parabacteroides, Sporobacter and Clostridium cluster IV | |
Choileain [43] | α diversity: RRMS < HC β diversity: significant different Altered gut microbiome in MS, suggestive of dysbiosis |
Decreased relative abundance: Genus: Coprococcus, Clostridium and unidentified Ruminococcaceae | |
Increased in MS: Phylum: Bacteroidetes | |
Reduced in MS: Genus: multiple Firmicutes: Coprococcus, Clostridium and Ruminococcaceae (short chain fatty acids producing bacteria) Also reductions: Phylum: Bacteriodetes Genus: paraprevotella Phylum: Euryarchaeota Genus: methanobrevibacter Genus: Proteobacteria | |
Chao Zhang [40] | α diversity SCI < HC Diversity lower in SCI |
SCI decreased: Phylum: Firmicutes (butyrate producing) Genus: Faecalibacterium, Megamonas, Prevotella_9, Dialister, Subdoligranulum | |
SCI more abundant: Phylum: Proteobacteria, Verrucomicrobia Genus: Bacteroides, Blautia (produces short chain fatty acids), Escherichia-Shigella, Lactobacillus and Akkermansia (Genus: Lactobacillus (probiotic) and dialister less abundant?) | |
Ventura [49] | No differences in α diversity & β diversity |
MS Increased relative abundance Genus: Clostridium | |
MS Caucasian: Increase Phylum Verrucomicrobiales Increase Genus Akkermansia | |
Storm-Larsen [37] | β diversity MS > HC α diversity MS = HC |
MS lower relative abundance Genus: Faecalibacterium | |
Oezguen [45] | Overall richness MS = HC Genus level no significant differences MS and HC |
MS decrease Genus: mainly Prevotella, Succinivibrio, (Burytricimonas, Erysipelotrichaceae not significant) | |
MS Increase Genus: Clostridium XVIII, Ruminococcus2, Coriobacteriaceae, Coprococcus, Butyricicoccus, Dorea and Escherichia/Shigella. Parabacteroides and Gemmiger | |
MS increase Phylum: Actinobacteria, Firmicutes | |
Larger microbiota community shifts in MS | |
Kozhieva [44] | MS α diversity > HC |
Relative lower abundance MS Class: Clostridia | |
Relative abundance increase MS Phylum: Verrucomicrobiae (Akkermansia muciniphila) | |
More abundant MS: Order: Desulfovibrionales Family: Desulfovibrionaceae Genus: Bilophila, Desulfovibtio Order level:minimal differences Family level: some differences | |
Zhang [41] | Diversity gut microbiota SCI reduces Structural composition different |
SCI relative abundance lower: Genus: Megamonas, Prevotella_9, (Eubacterium)_rectale_group, Dialister, Subdoligranulum | |
SCI relative abundance higher: Genus: Bacteroides, Blautea, Lachnoclostridium, Escherichia-Shigella, Bifidobacterium | |
SCI:enriched Genus: Veillonellaceae and Prevotellaceae, HC enriched: Genus: Bacteroidaceae and Bacteroides | |
Constipation group: Genus: Bifidobacterium Bloating group: Genus: Megamonas significantly higher Without bloating: Genus: Alistipes significantly higher | |
Paraplegia: Decrease in intestinal flora diversity Genus: Firmicutes higher compared to quadriplegia | |
Forbes [36] | Richness en diversity lower in MS compared to HC |
MS higher relative abundance Genus: Actinomyces, Eggerthella, Clostridium III, Faealicoccus and Streptococcus | |
MS lower relative abundance of Genus: Gemmiger, Lachnospira and Sporobacter | |
MS higher relative abundance Genus: Anaerofustis | |
MS higher relative abundance: Genus: Erysipelotrichaceae, unclassified Clostridiales incertae sedis XIII | |
MS lower relative abundance Genus: Dialister | |
Gungor [38] | Phylum: Butyrate producing members SCI < HC |
UMN bowel dysfunction lower: Genus: Pseudobutyrivibrio (=butyrate, lactic acid and formic acid producer), Dialister,& Megamonas (=Bacteroides members – interactions with intestine) Genus: Marvinbryantia (fam Lachnospiraceae – produce butyrate) UMN < LMN | |
LMN bowel dysfunction lower: Genus: Roseburia (fam Lachnospiraceae – produce butyrate), Pseudobutyrivibrio, Megamonas | |
Jun Chen [42] | α diversity RRMS = HC |
RRMS active disease decreased species richness compared to RRMS remission | |
MS increased relative abundance: Pylum: Proteobactreia Genus: Pseudomonas, Mycoplana, Haemophilus, Blautia and Dorea | |
MS lower relative abundance: Phylum: Actinobacteria Genus: Adlercreutzia, Collinsella | |
MS higher relative abundance: Phylum: Bacteroidetes Genus: Pedobacter, Flavobacterium Lower relative abundance: Genus: Parabacteroides | |
MS enriched: Phylum: Firmicutes Genus: Blautia, Dorea | |
MS lower relative abundance Phylum: Firmicutes Fam: Erysipelotrichaceae, Lachnospiraceae, Veillonellaceae Genus: Lactobacillus, Coprobacillus | |
MS more abundant: Phylum: Proteobacteria Genus: Pseudomonas, Mycoplana | |
HC increased relative abundance/MS decreased Phylum: Bacteroidetes Genus: Parabacteroides, Prevotella Phylum: Actinobacteria Genus: Adlercreutzia, Collinsella Phylum: Firmicutes Genus: Erysipelotrichaceae | |
MS: gut microbial dysbiosis | |
Jangi [47] | α diversity MS = HC |
MS + disease modifying treatment: increase relative abundance: Genus: Prevotella and Sutterella Decrease of: Genus: Sarcina (in treated MS pt; Untreated MS = HC Treatment associated effect) | |
MS: increased relative abundance: Phylum Euryarchaeota Genus: Methanobrevibacter Phylum Verrucomicrobia Genus: Akkermansia | |
MS: reduces relative abundance Phylum Bacteroidetes (Butyrate, short chain fatty acid, producing) Genus: Butyricimonas | |
Untreated MS: decreased Phylum Actinobacteria Genus: Collinsella and Slackia Phylum Bacteroidetes Genus: Prevotella | |
Miyake [48] | MS lower number of species Difference in number of species and richness not significant Shannon index not significant different Overall gut microbiota structure difference MS > inter-individual variability gut microbiota Moderate dysbiosis in structure of gut microbiota MS |
MS higher relative abundance: Species: unknown bacteria | |
MS relative depletion: Species: Clostridia XIV en IV | |
MS more prevalent: Phylum: Actinobacteria | |
MS less abundant: Phylum: Bacteroidetes, Firmicutes Genus: Bacteroides, Faecalibacterium, Prevotella, Anaerostipes. Suterella | |
MS more abundant: Genus: Bifidobacterium, Streptococcus | |
MS significant increase: Genus: Coprococcus Species: Streptococcus thermophilus, Eggerthella lenta |
SCI lower | SCI Higher | MS Lower | MS Higher |
---|---|---|---|
Phylum Firmicutes Class Negativicutes, Genus Dialister, Megamonas, Class Clostridia Genus Subdoligranulum, Pseudobutyrivibrio, Marvinbryantia, Roseburia, Faecalibacterium | Phylum Verrucomicrobia Class Verrucomicrobiae Genus Akkermansia | Phylum Bacteroidetes Class Bacteroidia Genus Parabacteroides, Prevotella, Bacteriodes, Paraprevotella, Butyricimonas | Phylum Actinobacteria Class Actinobacteria Genus Bifidobacterium, Coriobacterium, Actinomyces Eggerthella, |
Phylum Bacteriodetes Class Bacteroidia Genus Prevotella | Phylum Proteobacteria Class Gammaproteobacteria Genus Escherichia-Shigella Class Epsilonproteobacteria Genus Campylobacter Class Betaproteobacteria Genus Suterella, | Phylum Firmicutes Class Bacilli Genus Lactobacillus Class Erysipelotrichaceae, Genus Coprobacillus, Class Clostridia Genus Coprococcus, Clostridium, Ruminococcaceae Clostridia XIV en IV Genus Faecalibacterium, Anaerostipes, Roseburia, Gemmiger, Lachnospira, Sporobacter, Class Negativicutes Genus Dialister | Phylum Verrucomicrobiales Class Verrucomicrobiae Genus Akkermansia |
Phylum Proteobacteria Class Epsilonproteobacteria Genus Campylobacter | Phylum Bacteriodetes Class Bacteroidales Genus Bacterioidetes Class Bacteroidia Genus Alistipes, Odoribacter | Phylum Actinobacteria Class Actinobacteria Genus Adlercreutzia, Collinsella, Slackia | Phylum Proteobacteria Class Gammaproteobacteria Genus Pseudomonas, Haemophilus, Escherichia/Shigella Class Deltaproteobacteria Genus Desulfovibrio, Bilophila |
Phylum Firmicutes Class Clostridia Genus Blautia, Lachnoclostridium, Eisenbergiella, Oscillobacter Anaerotruncus Class Bacilli Genus Lactobacillus | Phylum Euryarchaeota Class Methanobacteria Genus Methanobrevibacter | Phylum Tenericutes Class Mollicutes Genus Mycoplasma | |
Phylum Actinobacteria Class Actinobacteria Genus Bifidobacterium | Phylum Proteobacteria Class Betaproteobacteria Genus Suterella, Class Gammaproteobacteria Genus Succinivibrio | Phylum Bacteroidetes Class Sphingobacteriia Genus Pedobacter Class Flavobacteriia Genus Flavobacterium Class Bacteroidia Genus Parabacteroides, Bacteroides | |
Phylum Firmicutes Class Clostridia Genus Blautia, Dorea, Coprococcus, Clostridium, Clostridium XVIII Eubacterium halii, Eubacterium cylindroides, Anaerofustis, Butyricicoccus Gemmiger Class Bacilli Genus Streptococcus, Lactobacillus, Enterococcus, Ruminococcus, Faelicoccus Class Erysipelotrichia Genus Erysipelotrichaceae, | |||
Phylum Euryarchaeota Class Methanobacteria Genus Methanobrevibacter |
References
- Browne, P.; Chandraratna, D.; Angood, C.; Tremlett, H.; Baker, C.; Taylor, B.V.; Thompson, A.J. Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology 2014, 83, 1022–1024. [Google Scholar] [CrossRef] [Green Version]
- Wyndaele, M.; Wyndaele, J. Incidence, prevalence and epidemiology of spinal cord injury: What learns a worldwide literature survey? Spinal Cord 2006, 44, 523–529. [Google Scholar] [CrossRef]
- Faber, W.X.M.; Nachtegaal, J.; Stolwijk-Swuste, J.M.; Achterberg-Warmer, W.J.; Koning, C.J.M.; Der Vaart, I.B.-V.; Van Bennekom, C.A.M. Study protocol of a double-blind randomised placebo-controlled trial on the effect of a multispecies probiotic on the incidence of antibiotic-associated diarrhoea in persons with spinal cord injury. Spinal Cord 2020, 58, 149–156. [Google Scholar] [CrossRef]
- Krassioukov, A.; Eng, J.J.; Claxton, G.; Sakakibara, B.M.; Shum, S.; the SCIRE Research Team. Neurogenic bowel management after spinal cord injury: A systematic review of the evidence. Spinal Cord 2010, 48, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Adriaansen, J.J.E.; Ruijs, L.E.M.; Van Koppenhagen, C.F.; Van Asbeck, F.W.A.; Snoek, G.J.; Van Kuppevelt, D.; Visser-Meily, J.M.A.; Post, M.W.M. Secondary health conditions and quality of life in persons living with spinal cord injury for at least ten years. J. Rehabil. Med. 2016, 48, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Adriaansen, J.J.; Van Asbeck, F.W.; Van Kuppevelt, D.; Snoek, G.J.; Post, M.W. Outcomes of Neurogenic Bowel Management in Individuals Living with a Spinal Cord Injury for at Least 10 Years. Arch. Phys. Med. Rehabil. 2015, 96, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, A. Neurogenic bowel dysfunction. F1000Research 2019, 8, 1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coggrave, M.; Norton, C.; Wilson-Barnett, J. Management of neurogenic bowel dysfunction in the community after spinal cord injury: A postal survey in the United Kingdom. Spinal Cord 2009, 47, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Johns, J.; Krogh, K.; Ethans, K.; Chi, J.; Querée, M.; Eng, J.; Spinal Cord Injury Research Evidence Team. Pharmacological Management of Neurogenic Bowel Dysfunction after Spinal Cord Injury and Multiple Sclerosis: A Systematic Review and Clinical Implications. J. Clin. Med. 2021, 10, 882. [Google Scholar] [CrossRef] [PubMed]
- Mekhael, M.; Kristensen, H.; Larsen, H.; Juul, T.; Emmanuel, A.; Krogh, K.; Christensen, P. Transanal Irrigation for Neurogenic Bowel Disease, Low Anterior Resection Syndrome, Faecal Incontinence and Chronic Constipation: A Systematic Review. J. Clin. Med. 2021, 10, 753. [Google Scholar] [CrossRef]
- Preziosi, G.; Gordon-Dixon, A.; Emmanuel, A. Neurogenic bowel dysfunction in patients with multiple sclerosis: Prevalence, impact, and management strategies. Degener. Neurol. Neuromuscul. Dis. 2018, 8, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Bakke, A.; Myhr, K.M.; Grønning, M.; Nyland, H. Bladder, bowel and sexual dysfunction in patients with multiple sclerosis--a cohort study. Scand. J. Urol. Nephrol. Suppl. 1996, 179, 61–66. [Google Scholar] [PubMed]
- Hinds, J.P.; Eidelman, B.H.; Wald, A. Prevalence of bowel dysfunction in multiple sclerosis: A population survey. Gastroenterology 1990, 98, 1538–1542. [Google Scholar] [CrossRef]
- Hinds, J.P.; Wald, A. Colonic and anorectal dysfunction associated with multiple sclerosis. Am. J. Gastroenterol. 1989, 84, 587–595. [Google Scholar]
- Munteis, E.; Andreu, M.; Téllez, M.J.; Mon, D.; Ois, A.; Roquer, J. Anorectal dysfunction in multiple sclerosis. Mult. Scler. J. 2006, 12, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.M.; Katsinelos, P.; Horowitz, M.; Read, N.W. Disturbances in anorectal function in patients with diabetes mellitus and faecal incontinence. Eur. J. Gastroenterol. Hepatol. 1996, 8, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Lawthom, C.; Durdey, P.; Hughes, T. Constipation as a presenting symptom. Lancet 2003, 362, 958. [Google Scholar] [CrossRef]
- Lynch, A.C.; Antony, A.; Dobbs, B.R.; Frizelle, F.A. Bowel dysfunction following spinal cord injury. Spinal Cord 2001, 39, 193–203. [Google Scholar] [CrossRef]
- Mazzawi, T.; Lied, G.A.; Sangnes, D.A.; El-Salhy, M.; Hov, J.R.; Gilja, O.H.; Hatlebakk, J.G.; Hausken, T. The kinetics of gut microbial community composition in patients with irritable bowel syndrome following fecal microbiota transplantation. PLoS ONE 2018, 13, e0194904. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Flores, R.; Shi, J.; Gail, M.H.; Gajer, P.; Ravel, J.; Goedert, J.J. Assessment of the human faecal microbiota: II. Reproducibility and associations of 16S rRNA pyrosequences. Eur. J. Clin. Investig. 2012, 42, 855–863. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef] [Green Version]
- Spor, A.; Koren, O.; Ley, R.E. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 2011, 9, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-K.; Chen, C.-C.; Panyod, S.; Chen, R.-A.; Wu, M.-S.; Sheen, L.-Y.; Chang, S.-C. Optimization of fecal sample processing for microbiome study—The journey from bathroom to bench. J. Formos. Med Assoc. 2019, 118, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M.J.; Valles-Colomer, M.; Vandeputte, D.; et al. Population-level analysis of gut microbiome variation. Science 2016, 352, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Tottey, W.; Feria-Gervasio, D.; Gaci, N.; Laillet, B.; Pujos, E.; Martin, J.-F.; Sebedio, J.-L.; Sion, B.; Jarrige, J.-F.; Alric, M.; et al. Colonic Transit Time Is a Driven Force of the Gut Microbiota Composition and Metabolism: In Vitro Evidence. J. Neurogastroenterol. Motil. 2017, 23, 124–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuret-Blanquart, F.; Weber, J.; Gouverneur, J.; Demangeon, S.; Denis, P. Colonic transit time and anorectal manometric anomalies in 19 patients with complete transection of the spinal cord. J. Auton. Nerv. Syst. 1990, 30, 199–207. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Cobas, A.E.; Gosalbes, M.J.; Friedrichs, A.; Knecht, H.; Artacho, A.; Eismann, K.; Otto, W.; Rojo, D.; Bargiela, R.; Von Bergen, M.; et al. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut 2013, 62, 1591–1601. [Google Scholar] [CrossRef]
- Rabadi, M.H.; Mayanna, S.K.; Vincent, A.S. Predictors of mortality in veterans with traumatic spinal cord injury. Spinal Cord 2013, 51, 784–788. [Google Scholar] [CrossRef] [Green Version]
- Bonfill, X.; Rigau, D.; Jáuregui-Abrisqueta, M.L.; Chacón, J.M.B.; De La Barrera, S.S.; Alemán-Sánchez, C.M.; Bea-Muñoz, M.; Pérez, S.M.; Duran, A.B.; Quirós, J.R.E.; et al. A randomized controlled trial to assess the efficacy and cost-effectiveness of urinary catheters with silver alloy coating in spinal cord injured patients: Trial protocol. BMC Urol. 2013, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Marin, J.; Nixon, J.; Gorecki, C. A systematic review of risk factors for the development and recurrence of pressure ulcers in people with spinal cord injuries. Spinal Cord 2013, 51, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, U.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. Open Med. 2009, 3, e123–e130. [Google Scholar] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Stang, A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.D.; Chen, C.-Y.; Knox, N.C.; Marrie, R.-A.; El-Gabalawy, H.; De Kievit, T.; Alfa, M.; Bernstein, C.N.; Van Domselaar, G. A comparative study of the gut microbiota in immune-mediated inflammatory diseases—Does a common dysbiosis exist? Microbiome 2018, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Storm-Larsen, C.; Myhr, K.-M.; Farbu, E.; Midgard, R.; Nyquist, K.; Broch, L.; Berg-Hansen, P.; Buness, A.; Holm, K.; Ueland, T.; et al. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis—A pilot trial. Mult. Scler. J. Exp. Transl. Clin. 2019, 5. [Google Scholar] [CrossRef]
- Gungor, B.; Adigüzel, E.; Gürsel, I.; Yilmaz, B.; Gursel, M. Intestinal Microbiota in Patients with Spinal Cord Injury. PLoS ONE 2016, 11, e0145878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Van Der Pol, W.; Eraslan, M.; McLain, A.; Cetin, H.; Cetin, B.; Morrow, C.; Carson, T.; Yarar-Fisher, C. Comparison of the gut microbiome composition among individuals with acute or long-standing spinal cord injury vs. able-bodied controls. J. Spinal Cord Med. 2020, 1–9. [Google Scholar] [CrossRef]
- Zhang, C.; Jing, Y.; Zhang, W.; Zhang, J.; Yang, M.; Du, L.; Jia, Y.; Chen, L.; Gong, H.; Li, J.; et al. Dysbiosis of gut microbiota is associated with serum lipid profiles in male patients with chronic traumatic cervical spinal cord injury. Am. J. Transl. Res. 2019, 11, 4817–4834. [Google Scholar]
- Zhang, C.; Zhang, W.; Zhang, J.; Jing, Y.; Yang, M.; Du, L.; Gao, F.; Gong, H.; Chen, L.; Li, J.; et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J. Transl. Med. 2018, 16, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Soldan, M.M.P.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016, 6, 28484. [Google Scholar] [CrossRef] [Green Version]
- Choileáin, S.N.; Kleinewietfeld, M.; Raddassi, K.; Hafler, D.A.; Ruff, W.E.; Longbrake, E.E. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. J. Transl. Autoimmun. 2020, 3, 100032. [Google Scholar] [CrossRef] [PubMed]
- Kozhieva, M.; Naumova, N.; Alikina, T.; Boyko, A.; Vlassov, V.; Kabilov, M.R. Primary progressive multiple sclerosis in a Russian cohort: Relationship with gut bacterial diversity. BMC Microbiol. 2019, 19, 309. [Google Scholar] [CrossRef] [PubMed]
- Oezguen, N.; Yalçınkaya, N.; Kücükali, C.I.; Dahdouli, M.; Hollister, E.B.; Luna, R.A.; Türkoglu, R.; Kürtüncü, M.; Eraksoy, M.; Savidge, T.C.; et al. Microbiota stratification identifies disease-specific alterations in neuro-Behcet’s disease and multiple sclerosis. Clin. Exp. Rheumatol. 2019, 37 (Suppl. 121), 58–66. [Google Scholar]
- Reynders, T.; Devolder, L.; Valles-Colomer, M.; Van Remoortel, A.; Joossens, M.; De Keyser, J.; Nagels, G.; D’Hooghe, M.; Raes, J. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Ann. Clin. Transl. Neurol. 2020, 7, 406–419. [Google Scholar] [CrossRef]
- Jangi, S.; Gandhi, R.; Cox, L.M.; Li, N.; Von Glehn, F.; Yan, R.; Patel, B.; Mazzola, M.A.; Liu, S.; Glanz, B.L.; et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 2016, 7, 12015. [Google Scholar] [CrossRef]
- Miyake, S.; Kim, S.; Suda, W.; Oshima, K.; Nakamura, M.; Matsuoka, T.; Chihara, N.; Tomita, A.; Sato, W.; Kim, S.-W.; et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE 2015, 10, e0137429. [Google Scholar] [CrossRef] [Green Version]
- Ventura, R.E.; Iizumi, T.; Battaglia, T.; Liu, M.; Perez-Perez, G.I.; Herbert, J.; Blaser, M.J. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rintala, A.; Pietilä, S.; Munukka, E.; Eerola, E.; Pursiheimo, J.-P.; Laiho, A.; Pekkala, S.; Huovinen, P. Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor. J. Biomol. Tech. JBT 2017, 28, 19–30. [Google Scholar] [CrossRef]
- Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Walter, J.; et al. Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host Microbe 2019, 25, 789–802.e5. [Google Scholar] [CrossRef] [PubMed]
- De La Cochetiere, M.F.; Durand, T.; Lepage, P.; Bourreille, A.; Galmiche, J.P.; Dore, J. Resilience of the Dominant Human Fecal Microbiota upon Short-Course Antibiotic Challenge. J. Clin. Microbiol. 2005, 43, 5588–5592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Tito, R.Y.; Joossens, M.; Raes, J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 2016, 65, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Furuta, A.; Suzuki, Y.; Takahashi, R.; Jakobsen, B.P.; Kimura, T.; Egawa, S.; Yoshimura, N. Effects of Transanal Irrigation on Gut Microbiota in Pediatric Patients with Spina Bifida. J. Clin. Med. 2021, 10, 224. [Google Scholar] [CrossRef] [PubMed]
Authors | Objectives | Sample Size & Mean Age | Disease Characteristics | Healthy Controls | No. Faeces Samples per Subject | Study Design | |
---|---|---|---|---|---|---|---|
Outcome Measures | Microbiome Analyses | ||||||
Li [39] | Compare the gut microbiome composition among individuals with A-SCI, Chron-SCI, vs. able-bodied controls | 7 A-SCI (36 ± 12 years) 25 Chron-SCI (46 ± 13 years) 25 HC (42 ± 13 years) |
|
| 1 |
|
|
Reynders [46] | Microbiota alterations in MS versus HC | 89 MS (48 ± 13.8 years) 120 HC (49 ± 14.3 years) |
|
| 1 |
|
|
Choileain [43] | Association between the gut microbiome and inflammatory T cells subsets in RRMS patients and HC | 26 MS (42 ± 13 years) 39 HC (45 ± 12 years) | RRMS |
| 1 |
|
|
Zhang [40] | Neurogenic bowel management and changes in the gut microbiota and associations between serum biomarkers | 20 SCI (39.9 ± 10.6 years) 23 HC (40 ± 9.0 years) |
|
| 1 |
|
|
Ventura [49] | Compare the microbiome between MS patients and HC | 45 MS (37.1 ± 12.7 years) 44 HC (31.8 ± 9.0 years) |
|
| 1 |
|
|
Storm-Larsen [37] | Determine if dimethyl fumarate alters the abundance and diversity of microbiota, and if these changes are associated with gastrointestinal side-effects | 36 MS (46 ± 7 years) 165 HC (47 ± 6 years) | RRMS |
| >1 |
|
|
Oezguen [45] | Analyze and compare faecal microbiota signatures between HC, MS and NBD | 13 MS (39.1 ± 11.6 years) 14 HC (37.8 ± 8.6 years) |
|
| 1 |
|
|
Kozhieva [44] | Compare the composition and structure of faecal bacterial assemblage in patients with PPMS and HC | 15 MS (45: 25-56 years) 15 HC (23: 20-73 years) | PPMS |
| 1 |
|
|
Zhang [41] | Document neurogenic bowel management of male patients with chronic traumatic complete SCI and perform a comparative analysis of the gut microbiota between patients and healthy males | 43 SCI (39.9 ± 10.6 years) 23 HC (40 ± 9.0 years) |
|
| 1 |
|
|
Forbes [36] | Compare the gut microbiota in patients with Crohn’s disease, ulcerative colitis, multiple sclerosis, rheumatoid arthritis and HC | 19 MS (average 47.3 years) 23 HC (average 32.4 years) |
|
| 2 |
|
|
Gungor [38] | Characterize the gut microbiota in adult SCI patients with different types of bowel dysfunction | 30 SCI: 15 LMN (34 ± 8.9 years) 15 UMN (35 ± 9.5 years) 10 HC (34.4 ± 8.0 years) |
|
| 1 |
|
|
Chen [42] | Investigate whether gut microbiota are altered in MS by comparing the faecal microbiota in RRMS to that of HC | 31 MS: 12 active MS (39.3 ± 10.6 years) 19 remission MS (45.2 ± 10.2 years) 36 HC (40.3 ± 7.3 years) | RRMS:
|
| 1 |
|
|
Jangi [47] | Investigate the gut microbiome in subjects with MS and HC | 60 MS (49.7 ± 8.5 years) 43 HC (42.2 ± 9.6 years) | RRMS |
| 1 |
|
|
Miyake [48] | Investigate whether gut microbiota in patients with MS is altered compared to HC | 20 MS (36 ± years) 50 HC (27.2 ± years) | RRMS |
| In some multiple |
|
|
Article | Diagnosis | Diversity |
---|---|---|
Jia Li [39] | SCI | α diversity SCI > HC (A-SCI highest) |
Reynders [46] | MS | α diversity MS < HC |
Choileain [43] | MS | α diversity: RRMS < HC |
Zhang [40] | SCI | α diversity SCI < HC |
Ventura [49] | MS | No differences in α diversity |
Storm-Larsen [37] | MS | α diversity MS = HC |
Oezguen [45] | MS | Overall richness MS = HC |
Kozhieva [44] | MS | α diversity MS > HC |
Zhang [41] | SCI | α diversity SCI < HC |
Forbes [36] | MS | α diversity MS < HC |
Gungor [38] | SCI | - |
Chen [42] | MS | α diversity RRMS = HC |
Jangi [47] | MS | α diversity MS = HC |
Miyake [48] | MS | α diversity MS < HC |
Alpha Diversity per Article | ||
SCI vs. HC | [39] ↑ [40] ↓ [41] ↓ [38] unknown | |
MS vs. HC | [46] ↓ [43] ↓ [49] = [37] = [45] = [44] ↑ [36] ↓ [42] = [47] = [48] ↓ |
Article | Bowel Function | Diet | No Antibiotic Use for |
---|---|---|---|
Jia Li [39] | - | - | A-SCI: no antibiotic use but not clear for how long Chron-SCI & HC: not clear at all |
Reynders [46] | Participants scored time since last defaecation & stool consistency (not being used in analysis) | Dietary habits assessed (no further details & not being used in analysis) | 4 weeks |
Choileain [43] | - | - | >than 3 months |
Zhang [40] | Patients: NBD symptoms & management data HC: no information (not being used in analysis) | Participants: 2 weeks before stool collection standard hospital food (no specifications) | 4 weeks |
Ventura [49] | - | Participants: dietary survey: assessment of general diet type and duration, current weekly estimate of consumption of variety of foods (e.g., yogurt, red meat, bread, fatty foods, fruits and vegetables) | 3 months |
Storm-Larsen [37] | Participants: GI scoring records (Gastrointestinal Symptoms Rating Scale) (not used in baseline analyses) | Participants: Norwegian Food Frequency questionnaires (not used in baseline analyses) | 30 days |
Oezguen [45] | - | - | - |
Kozhieva [44] | - | - | - |
Zhang [41] | Patients: NBD symptom dates: 2 groups: constipation & without constipation 2 groups: Bloating & without bloating | Participants: 2 weeks before stool collection standard hospital food (not specified) | 4 weeks |
Forbes [36] | - | - | 8 weeks |
Gungor [38] | - | Participants: 1–3 weeks before stool collection standard hospital food (not specified) | 3 weeks |
Chen [42] | - | - | during study |
Jangi [47] | - | Participants: Dietary survey before collection of samples (not used in analyses) | 6 months |
Miyake [48] | - | - | During trial |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faber, W.; Stolwijk-Swuste, J.; van Ginkel, F.; Nachtegaal, J.; Zoetendal, E.; Winkels, R.; Witteman, B. Faecal Microbiota in Patients with Neurogenic Bowel Dysfunction and Spinal Cord Injury or Multiple Sclerosis—A Systematic Review. J. Clin. Med. 2021, 10, 1598. https://doi.org/10.3390/jcm10081598
Faber W, Stolwijk-Swuste J, van Ginkel F, Nachtegaal J, Zoetendal E, Winkels R, Witteman B. Faecal Microbiota in Patients with Neurogenic Bowel Dysfunction and Spinal Cord Injury or Multiple Sclerosis—A Systematic Review. Journal of Clinical Medicine. 2021; 10(8):1598. https://doi.org/10.3390/jcm10081598
Chicago/Turabian StyleFaber, Willemijn, Janneke Stolwijk-Swuste, Florian van Ginkel, Janneke Nachtegaal, Erwin Zoetendal, Renate Winkels, and Ben Witteman. 2021. "Faecal Microbiota in Patients with Neurogenic Bowel Dysfunction and Spinal Cord Injury or Multiple Sclerosis—A Systematic Review" Journal of Clinical Medicine 10, no. 8: 1598. https://doi.org/10.3390/jcm10081598
APA StyleFaber, W., Stolwijk-Swuste, J., van Ginkel, F., Nachtegaal, J., Zoetendal, E., Winkels, R., & Witteman, B. (2021). Faecal Microbiota in Patients with Neurogenic Bowel Dysfunction and Spinal Cord Injury or Multiple Sclerosis—A Systematic Review. Journal of Clinical Medicine, 10(8), 1598. https://doi.org/10.3390/jcm10081598