Ocular Surface Changes Associated with Ophthalmic Surgery
Abstract
:1. Introduction
2. Materials and Methods
3. Dry Eye Disease
4. Dry Eye Disease Diagnostic Tests
5. Influence of Dry Eye Disease on Quality of Vision
6. Dry Eye Disease after Ocular Surgery
6.1. Cataract Surgery
6.2. Refractive Eye Surgery
6.3. Trabeculectomy
6.4. Vitrectomy
7. Take Home Messages
- DED is a multifactorial disease of the ocular surface with etiology of tear film instability and hyperosmolarity, ocular surface inflammation, damage and neurosensory abnormalities, which often presents with ocular symptoms.
- DED is diagnosed when there are characteristic symptoms, confirmed by standardized questionnaires (OSDI score ≥ 13 or DEQ-5 score ≥ 5) and at least one marker of ocular surface homeostasis disruption (TBUT < 10 s; tear osmolarity ≥ 308 mOsm/L in either eye or if the difference between two eyes is >8 mOsm/L; ocular surface staining of more than five corneal spots (or >9 conjunctival spots)).
- The ocular surface should be carefully evaluated before surgery to predict the exacerbation of DED and to optimize the ocular surface for a better visual outcome. For patients with preoperative dry eye, ocular surface management before surgery should be considered (tear supplements and ointments; anti-inflammatory agents).
- Cataract surgery usually causes short-term ocular surface changes. Femtosecond laser-assisted cataract surgery can cause a greater impact on the ocular surface compared to conventional phacoemulsification.
- DED is thought to occur most commonly after the LASIK procedure. Nonsignificant changes in postoperative tear production were seen in other refractive surgery types, such as SMILE, FLEx and PRK.
- Trabeculectomy and vitrectomy seem to alter tear film stability and cause changes to ocular surface parameters; however, few studies have been conducted to describe it.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kasetsuwan, N.; Satitpitakul, V.; Changul, T.; Jariyakosol, S. Incidence and Pattern of Dry Eye after Cataract Surgery. PLoS ONE 2013, 8, e78657. [Google Scholar] [CrossRef]
- Xue, W.; Zhu, M.-M.; Zhu, B.-J.; Huang, J.-N.; Sun, Q.; Miao, Y.-Y.; Zou, H.-D. Long-term impact of dry eye symptoms on vision-related quality of life after phacoemulsification surgery. Int. Ophthalmol. 2018, 39, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.-K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D.; Argüeso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U.; et al. The Ocular Surface TFOS DEWS II Tear Film Report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wang, J.; Tao, A.; Shen, M.; Jiao, S.; Lu, F. Ultrahigh-Resolution Measurement by Optical Coherence Tomography of Dynamic Tear Film Changes on Contact Lenses. Investig. Opthalmol. Vis. Sci. 2010, 51, 1988–1993. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, S.Z.; Koh, S.K.; Chen, L.; Vaz, C.; Tanavde, V.; Li, X.R.; Beuerman, R.W. In-depth analysis of the human tear proteome. J. Proteom. 2012, 75, 3877–3885. [Google Scholar] [CrossRef]
- King-Smith, P.E.; Hinel, E.A.; Nichols, J.J. Application of a Novel Interferometric Method to Investigate the Relation between Lipid Layer Thickness and Tear Film Thinning. Investig. Opthalmol. Vis. Sci. 2010, 51, 2418–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pflugfelder, S.C.; De Paiva, C.S.; States, U. The pathophysiology of dry eye disease: What we know and future directions for research. Ophthalmology 2017, 124 (Suppl. S11), S4–S13. [Google Scholar] [CrossRef]
- Belmonte, C.; Nichols, J.J.; Cox, S.M.; Brock, J.A.; Begley, C.G.; Bereiter, D.A.; Dartt, D.A.; Galor, A.; Hamrah, P.; Ivanusic, J.J.; et al. The Ocular Surface TFOS DEWS II pain and sensation report. Ocul. Surf. 2017, 15, 404–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marfurt, C.F.; Cox, J.; Deek, S.; Dvorscak, L. Anatomy of the human corneal innervation. Exp. Eye Res. 2010, 90, 478–492. [Google Scholar] [CrossRef]
- Labetoulle, M.; Baudouin, C.; Calonge, M.; Merayo-Lloves, J.; Boboridis, K.G.; Akova, Y.A.; Aragona, P.; Geerling, G.; Messmer, E.M.; Benítez-Del-Castillo, J. Role of corneal nerves in ocular surface homeostasis and disease. Acta Ophthalmol. 2019, 97, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Labbé, A.; Liang, Q.; Wang, Z.; Zhang, Y.; Xu, L.; Baudouin, C.; Sun, X. Corneal Nerve Structure and Function in Patients with Non-Sjögren Dry Eye: Clinical Correlations. Investig. Opthalmol. Vis. Sci. 2013, 54, 5144–5150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labbé, A.; Alalwani, H.; Van Went, C.; Brasnu, E.; Georgescu, D.; Baudouin, C. The Relationship between Subbasal Nerve Morphology and Corneal Sensation in Ocular Surface Disease. Investig. Opthalmol. Vis. Sci. 2012, 53, 4926–4931. [Google Scholar] [CrossRef] [PubMed]
- Kheirkhah, A.; Dohlman, T.H.; Amparo, F.; Arnoldner, M.A.; Jamali, A.; Hamrah, P.; Dana, R. Effects of Corneal Nerve Density on the Response to Treatment in Dry Eye Disease. Ophthalmology 2015, 122, 662–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kheirkhah, A.; Saboo, U.S.; Abud, T.B.; Dohlman, T.H.; Arnoldner, M.A.; Hamrah, P.; Dana, R. Reduced Corneal Endothelial Cell Density in Patients with Dry Eye Disease. Am. J. Ophthalmol. 2015, 159, 1022–1026.e2. [Google Scholar] [CrossRef] [Green Version]
- Kheirkhah, A.; Satitpitakul, V.; Hamrah, P.; Dana, R. Patients With Dry Eye Disease and Low Subbasal Nerve Density Are at High Risk for Accelerated Corneal Endothelial Cell Loss. Cornea 2017, 36, 196–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kheirkhah, A.; Darabad, R.R.; Cruzat, A.; Hajrasouliha, A.R.; Witkin, D.; Wong, N.; Dana, R.; Hamrah, P. Corneal Epithelial Immune Dendritic Cell Alterations in Subtypes of Dry Eye Disease: A Pilot In Vivo Confocal Microscopic Study. Investig. Opthalmol. Vis. Sci. 2015, 56, 7179–7185. [Google Scholar] [CrossRef]
- Alzahrani, Y.; Colorado, L.H.; Pritchard, N.; Efron, N. Longitudinal changes in Langerhans cell density of the cornea and conjunctiva in contact lens-induced dry eye. Clin. Exp. Optom. 2017, 100, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Gadaria-Rathod, N.; Epstein, S.; Asbell, P. Tear Cytokine Profile as a Noninvasive Biomarker of Inflammation for Ocular Surface Diseases: Standard Operating Procedures. Investig. Opthalmol. Vis. Sci. 2013, 54, 8327–8336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragona, P.; Aguennouz, M.; Rania, L.; Postorino, E.; Sommario, M.S.; Roszkowska, A.M.; De Pasquale, M.G.; Pisani, A.; Puzzolo, D. Matrix Metalloproteinase 9 and Transglutaminase 2 Expression at the Ocular Surface in Patients with Different Forms of Dry Eye Disease. Ophthalmology 2015, 122, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, X.; Ma, Y.; Lin, X.; Yu, X.; He, S.; Luo, C.; Xu, W. Analysis of tear inflammatory molecules and clinical correlations in evaporative dry eye disease caused by meibomian gland dysfunction. Int. Ophthalmol. 2020, 40, 3049–3058. [Google Scholar] [CrossRef] [PubMed]
- Macri, A.; Scanarotti, C.; Bassi, A.M.; Giuffrida, S.; Sangalli, G.; Traverso, C.E.; Iester, M. Evaluation of oxidative stress levels in the conjunctival epithelium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15% and vitamin B12 eye drops. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 425–430. [Google Scholar] [CrossRef]
- Choi, W.; Lian, C.; Ying, L.; Kim, G.E.; You, I.C.; Park, S.H.; Yoon, K.C. Expression of Lipid Peroxidation Markers in the Tear Film and Ocular Surface of Patients with Non-Sjogren Syndrome: Potential Biomarkers for Dry Eye Disease. Curr. Eye Res. 2016, 41, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. The Ocular Surface TFOS DEWS II Diagnostic Methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef]
- Shimazaki, J. Definition and Diagnostic Criteria of Dry Eye Disease: Historical Overview and Future Directions. Investig. Opthalmol. Vis. Sci. 2018, 59, DES7–DES12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsubota, K.; Yokoi, N.; Watanabe, H.; Dogru, M.; Kojima, T.; Yamada, M.; Kinoshita, S.; Kim, H.-M.; Tchah, H.-W.; Hyon, J.Y.; et al. A New Perspective on Dry Eye Classification: Proposal by the Asia Dry Eye Society. Eye Contact Lens Sci. Clin. Pract. 2020, 46 (Suppl. S1), S2–S13. [Google Scholar] [CrossRef]
- Begley, C.G.; Chalmers, R.L.; Abetz, L.; Venkataraman, K.; Mertzanis, P.; Caffery, B.A.; Snyder, C.; Edrington, T.; Nelson, D.; Simpson, T. The Relationship between Habitual Patient-Reported Symptoms and Clinical Signs among Patients with Dry Eye of Varying Severity. Investig. Opthalmol. Vis. Sci. 2003, 44, 4753–4761. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Drinkwater, O.J.; Van Dusen, K.W.; Brissette, A.R.; Starr, C.E. Prevalence of ocular surface dysfunction in patients presenting for cataract surgery evaluation. J. Cataract. Refract. Surg. 2018, 44, 1090–1096. [Google Scholar] [CrossRef]
- Herbaut, A.; Liang, H.; Denoyer, A.; Baudouin, C.; Labbé, A. Tear film analysis and evaluation of optical quality: A review of the literature. J. Gynecol. Obstet. Biol. Reprod. 2019, 42, e21–e35. [Google Scholar] [CrossRef]
- Su, Y.D.; Liang, Q.F.; Wang, N.L.; Antoine, L. A study on the diagnostic value of tear film objective scatter index in dry eye. Chin. J. Ophthalmol. 2017, 53, 668–674. [Google Scholar] [CrossRef]
- Ma, J.; Wei, S.; Jiang, X.; Chou, Y.; Wang, Y.; Hao, R.; Yang, J.; Li, X. Evaluation of objective visual quality in dry eye disease and corneal nerve changes. Int. Ophthalmol. 2020, 40, 2995–3004. [Google Scholar] [CrossRef]
- Herbaut, A.; Liang, H.; Rabut, G.; Trinh, L.; Kessal, K.; Baudouin, C.; Labbé, A. Impact of Dry Eye Disease on Vision Quality: An Optical Quality Analysis System Study. Transl. Vis. Sci. Technol. 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Liu, R.; Liu, Y.; Ma, B.; Yang, T.; Hu, C.; Qi, H. Optical quality in patients with dry eye before and after treatment. Clin. Exp. Optom. 2021, 104, 101–106. [Google Scholar] [CrossRef]
- Lu, N.; Lin, F.; Huang, Z.; He, Q.; Han, W. Changes of Corneal Wavefront Aberrations in Dry Eye Patients after Treatment with Artificial Lubricant Drops. J. Ophthalmol. 2016, 2016, 1342056. [Google Scholar] [CrossRef] [Green Version]
- Arikan, S.; Gökmen, F.; Comez, A.T.; Gencer, B.; Kara, S.; Akbal, A. Evaluation of possible factors affecting contrast sensitivity function in patients with primary Sjögren’s syndrome. Arq. Bras. Oftalmol. 2015, 78, 150–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, J.; Shih, K.C.; Chan, T.C.; Wan, K.H.; Jhanji, V.; Tong, L. Preoperative optimization of ocular surface disease before cataract surgery. J. Cataract. Refract. Surg. 2017, 43, 1596–1607. [Google Scholar] [CrossRef] [PubMed]
- Epitropoulos, A.T.; Matossian, C.; Berdy, G.J.; Malhotra, R.P.; Potvin, R. Effect of tear osmolarity on repeatability of keratometry for cataract surgery planning. J. Cataract. Refract. Surg. 2015, 41, 1672–1677. [Google Scholar] [CrossRef]
- Röggla, V.; Leydolt, C.; Schartmüller, D.; Schwarzenbacher, L.; Meyer, E.; Abela-Formanek, C.; Menapace, R. Influence of Artificial Tears on Keratometric Measurements in Cataract Patients. Am. J. Ophthalmol. 2021, 221, 1–8. [Google Scholar] [CrossRef]
- Jensen, M.N.; Søndergaard, A.P.; Pommerencke, C.; Møller, F. Variations in keratometric values (K-value) after administration of three different eye drops—Effects on the intraocular lens calculations in relation to cataract surgery. Acta Ophthalmol. 2020, 98, 613–617. [Google Scholar] [CrossRef]
- Grzybowski, A. Recent developments in cataract surgery. Ann. Transl. Med. 2020, 8, 1540. [Google Scholar] [CrossRef]
- Szakáts, I.; Sebestyén, M.; Tóth, É.; Purebl, G. Dry Eye Symptoms, Patient-Reported Visual Functioning, and Health Anxiety Influencing Patient Satisfaction After Cataract Surgery. Curr. Eye Res. 2017, 42, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Kohli, P.; Arya, S.K.; Raj, A.; Handa, U. Changes in ocular surface status after phacoemulsification in patients with senile cataract. Int. Ophthalmol. 2018, 39, 1345–1353. [Google Scholar] [CrossRef]
- Oh, T.; Jung, Y.; Chang, D.; Kim, J.; Kim, H. Changes in the tear film and ocular surface after cataract surgery. Jpn. J. Ophthalmol. 2012, 56, 113–118. [Google Scholar] [CrossRef]
- Zamora, M.G.; Caballero, E.F.; Maldonado, M.J. Short-term changes in ocular surface signs and symptoms after phacoemulsification. Eur. J. Ophthalmol. 2020, 30, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Ju, R.-H.; Chen, Y.; Chen, H.-S.; Zhou, W.-J.; Yang, W.; Lin, Z.-D.; Wu, Z.-M. Changes in ocular surface status and dry eye symptoms following femtosecond laser-assisted cataract surgery. Int. J. Ophthalmol. 2019, 12, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hua, H.; Wu, M.; Yu, Y.; Yu, W.; Lai, K.; Yao, K. Evaluation of dry eye after femtosecond laser–assisted cataract surgery. J. Cataract. Refract. Surg. 2015, 41, 2614–2623. [Google Scholar] [CrossRef] [PubMed]
- Schargus, M.; Ivanova, S.; Stute, G.; Dick, H.B.; Joachim, S.C. Comparable effects on tear film parameters after femtosecond laser-assisted and conventional cataract surgery. Int. Ophthalmol. 2020, 40, 3097–3104. [Google Scholar] [CrossRef]
- Sahu, P.K.; Das, G.K.; Malik, A.; Biakthangi, L. Dry Eye Following Phacoemulsification Surgery and its Relation to Associated Intraoperative Risk Factors. Middle East Afr. J. Ophthalmol. 2015, 22, 472–477. [Google Scholar] [CrossRef]
- Trattler, W.B.; Majmudar, P.A.; Donnenfeld, E.D.; McDonald, M.B.; Stonecipher, K.C.; Goldberg, D.F. The Prospective Health Assessment of Cataract Patients’ Ocular Surface (PHACO) study: The effect of dry eye. Clin. Ophthalmol. 2017, 11, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.K.; Kim, M.S. Dry Eye After Cataract Surgery and Associated Intraoperative Risk Factors. Korean J. Ophthalmol. 2009, 23, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Sajnani, R.; Raia, S.; Gibbons, A.; Chang, V.; Karp, C.L.; Sarantopoulos, C.D.; Levitt, R.C.; Galor, A. Epidemiology of Persistent Postsurgical Pain Manifesting as Dry Eye-Like Symptoms After Cataract Surgery. Cornea 2018, 37, 1535–1541. [Google Scholar] [CrossRef]
- Costigan, M.; Scholz, J.; Woolf, C.J. Neuropathic Pain: A Maladaptive Response of the Nervous System to Damage. Annu. Rev. Neurosci. 2009, 32, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.A.A.; Abdelhalim, A.S. Differential time-course tear film quantitative changes following limbal relaxing incisions. BMC Ophthalmol. 2020, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Zhu, X.; Sun, W.; Cheng, P.; Chen, W.; Wang, H. Effects of femtosecond laser-assisted cataract surgery on dry eye. Exp. Ther. Med. 2018, 16, 5073–5078. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, K.; Igarashi, A.; Hayashi, K.; Negishi, K.; Sato, M.; Bissen-Miyajima, H. A Multicenter Prospective Cohort Study on Refractive Surgery in 15 011 Eyes. Am. J. Ophthalmol. 2017, 175, 159–168. [Google Scholar] [CrossRef]
- González-García, M.J.; Murillo, G.M.; Pinto-Fraga, J.; García, N.; Fernández, I.; Maldonado, M.J.; Calonge, M.; Enríquez-De-Salamanca, A. Clinical and tear cytokine profiles after advanced surface ablation refractive surgery: A six-month follow-up. Exp. Eye Res. 2020, 193, 107976. [Google Scholar] [CrossRef] [PubMed]
- Sambhi, R.-D.S.; Mather, R.; Malvankar-Mehta, M.S. Dry eye after refractive surgery: A meta-analysis. Can. J. Ophthalmol. 2020, 55, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Toda, I. Dry Eye After LASIK. Investig. Opthalmol. Vis. Sci. 2018, 59, DES109–DES115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, C.; Stapleton, F.; Zhou, X.; Chen, S.; Zhou, S.; Golebiowski, B. Structural and functional changes in corneal innervation after laser in situ keratomileusis and their relationship with dry eye. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 2029–2039. [Google Scholar] [CrossRef]
- Bayraktutar, B.N.; Ozmen, M.C.; Muzaaya, N.; Dieckmann, G.; Koseoglu, N.D.; Müller, R.T.; Cruzat, A.; Cavalcanti, B.M.; Hamrah, P. Comparison of clinical characteristics of post-refractive surgery-related and post-herpetic neuropathic corneal pain. Ocul. Surf. 2020, 18, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, A.H.; Grønbech, K.T.; Grauslund, J.; Ivarsen, A.R.; Hjortdal, J.Ø. Subbasal nerve morphology, corneal sensation, and tear film evaluation after refractive femtosecond laser lenticule extraction. Graefe’s Arch. Clin. Exp. Ophthalmol. 2013, 251, 2591–2600. [Google Scholar] [CrossRef]
- Recchioni, A.; Sisó-Fuertes, I.; Hartwig, A.; Hamid, A.; Shortt, A.J.; Morris, R.; Vaswani, S.; Dermott, J.; Cerviño, A.; Wolffsohn, J.S.; et al. Short-Term Impact of FS-LASIK and SMILE on Dry Eye Metrics and Corneal Nerve Morphology. Cornea 2020, 39, 851–857. [Google Scholar] [CrossRef]
- Kobashi, H.; Kamiya, K.; Shimizu, K. Dry Eye After Small Incision Lenticule Extraction and Femtosecond Laser–Assisted LASIK: Meta-Analysis. Cornea 2017, 36, 85–91. [Google Scholar] [CrossRef] [PubMed]
- DeNoyer, A.; Landman, E.; Trinh, L.; Faure, J.-F.; Auclin, F.; Baudouin, C. Dry Eye Disease after Refractive Surgery: Comparative outcomes of small incision lenticule extraction versus LASIK. Ophthalmology 2015, 122, 669–676. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Huang, W.; Zhong, X. Central corneal sensitivity after small incision lenticule extraction versus femtosecond laser-assisted LASIK for myopia: A meta-analysis of comparative studies. BMC Ophthalmol. 2015, 15, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Naidu, R.K.; Chu, R.; Dai, J.; Qu, X.; Zhou, H. Dry Eye Disease following Refractive Surgery: A 12-Month Follow-Up of SMILE versus FS-LASIK in High Myopia. J. Ophthalmol. 2015, 2015, 132417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, Z.; Szalai, E.; Berta, A.; Modis, L.; Nemeth, G. Assessment of Tear Osmolarity and Other Dry Eye Parameters in Post-LASIK Eyes. Cornea 2013, 32, e142–e145. [Google Scholar] [CrossRef]
- Shehadeh-Mashor, R.; Mimouni, M.; Shapira, Y.; Sela, T.; Munzer, G.; Kaiserman, I. Risk Factors for Dry Eye After Refractive Surgery. Cornea 2019, 38, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zeng, L.; Mi, S.; Li, Y.; Liu, Z.; Yu, K.; Hu, Q.; Li, H.; Ma, D.; Zhou, Y.; et al. A Multi-Center Study of the Prevalence of Dry Eye Disease in Chinese Refractive Surgery Candidates. Ophthalmic Res. 2021, 64, 224–229. [Google Scholar] [CrossRef]
- Torricelli, A.A.M.; Bechara, S.J.; Wilson, S.E. Screening of Refractive Surgery Candidates for LASIK and PRK. Cornea 2014, 33, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-X.; Liu, W.; Ji, J. The impact of trabeculectomy on ocular surface. Chin. J. Ophthalmol. 2013, 49, 185–188. [Google Scholar]
- Tong, L.; Hou, A.; Wong, T. Altered expression level of inflammation-related genes and long-term changes in ocular surface after trabeculectomy, a prospective cohort study. Ocul. Surf. 2018, 16, 441–447. [Google Scholar] [CrossRef]
- Sagara, H.; Sekiryu, T.; Noji, H.; Ogasawara, M.; Sugano, Y.; Horikiri, H. Meibomian gland loss due to trabeculectomy. Jpn. J. Ophthalmol. 2014, 58, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Zhou, H.; Chen, X.; Zhang, W.; Yi, L. Influence of glaucoma surgery on the ocular surface using oculus keratograph. Int. Ophthalmol. 2019, 39, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Vaajanen, A.; Nättinen, J.; Aapola, U.; Gielen, F.; Uusitalo, H. The effect of successful trabeculectomy on the ocular surface and tear proteomics-a prospective cohort study with 1-year follow-up. Acta Ophthalmol. 2021, 99, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, F.K.; Shaheen, Y.; Karimi, M.A.; Aghaei, H.; Parvaresh, M.M.; Bahmani, K.M.; Farrokhi, H.; Abri, A.K. Schirmer test changes after 20 gauge and 23 gauge pars plana vitrectomy. Rom. J. Ophthalmol. 2017, 61, 39–43. [Google Scholar] [CrossRef]
- Lee, J.H.; Na, K.S.; Kim, T.K.; Oh, H.Y.; Lee, M.Y. Effects on ocular discomfort and tear film dynamics of suturing 23-gauge pars plana vitrectomies. Arq. Bras. Oftalmol. 2019, 82, 214–219. [Google Scholar] [CrossRef]
- Sato, T.; Koh, S.; Yasukura, Y.-I.; Kanai, M.; Noguchi, Y.; Jhanji, V.; Nishida, K. Surgical Factors Affecting Changes in Ocular Surface Dynamics in the Early Postoperative Period After 25-Gauge Vitrectomy. Eye Contact Lens Sci. Clin. Pract. 2019, 45, 254–259. [Google Scholar] [CrossRef]
- Mani, R.; Shobha, P.S.; Thilagavathi, S.; Prema, P.; Viswanathan, N.; Vineet, R.; Dhanashree, R.; Angayarkanni, N. Altered mucins and aquaporins indicate dry eye outcome in patients undergoing Vitreo-retinal surgery. PLoS ONE 2020, 15, e0233517. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Surgical Procedure | Postoperative Tests | Results |
---|---|---|---|---|
Kohli et al., 2019 [42] | Prospective study | Phacoemulsification | 2, 4 and 6 weeks postoperatively | OSDI score ≥ 33 was 32% at postoperative 2 weeks and 14.0% at 6 weeks. Patients with abnormal dry eye signs, such as SI-T score ≤ 10 and TBUT ≤ 10 at 2 weeks, were 48.0% and 48.0%, and at 6 weeks postoperatively—24.0% and 28.0%, respectively. |
Oh et al., 2012 [43] | Randomized controlled trial | Phacoemulsification | 1 day, 1 month, and 3 months after surgery | Corneal sensitivity at the center and temporal incision sites, TBUT decreased significantly at 1 day postoperatively but returned to almost the preoperative level 1 month postoperatively. Mean goblet cell density (GCD) decreased significantly at 1 day, 1 month and 3 months postoperatively. |
Zamora et al., 2020 [44] | Prospective interventional study | Phacoemulsification | 1 day, 1 week, and 1 month postoperatively | OSDI score increased significantly 1 week postoperatively. TBUT and Schirmer’s test values were decreased 1 month after surgery. |
Ju et al., 2019 [45] | Prospective study | FLACS | 1, 7, 30 and 90 days after surgery | OSDI scores after surgery were higher but did not return to the basic level by 3 months. TBUT decreased 1 week postoperatively, but returned to basic levels at 1 month; Schirmer’s test results returned to preoperative levels at 3 months. |
Yu et al., 2015 [46] | Prospective consecutive nonrandomized comparative cohort study. | FLACS or phacoemulsification | 1 day, 1 week, and 1 month postoperatively | OSDI and fluorescein staining scores elevated from baseline; TBUT and Schirmer’s test I values decreased in 1 week, but did not return to basic levels at 1 month postoperatively. OSDI score was greater in the FLACS group at 1 week. |
Schargus et al., 2020 [47] | Prospective, randomized, single-center study | FLACS or phacoemulsification | 1 and 3 months postoperatively | No statistically significant difference was found in regard to tear film osmolarity, Schirmer’s test and MMP-9 concentration between the two groups. |
Study | Design | Surgical Procedure | Postoperative Tests | Results |
---|---|---|---|---|
González-García et al., 2020 [56] | Prospective, longitudinal study | Surface ablation refractive surgery | 1, 3 and 6 months postoperatively | IL-4, IL-5, IL-6, IL-13, IL-17A and IFN-γ tear levels were significantly increased 1, 3 and 6 months postoperatively. |
Chao et al., 2015 [59] | Prospective longitudinal cohort study | LASIK | 1 day, 1 week, 1 month, 3 months and 6 months postoperatively | DED symptoms (ocular comfort index) and noninvasive TBUT did not change postoperatively. Central corneal sensitivity did not return to preoperative levels by 6 months. Corneal nerve morphology (nerve fiber density, number of interconnections and average nerve fiber width) decreased immediately, and did not return to preoperative levels by 6 months post-LASIK. |
Vestergaard et al., 2013 [61] | Randomized controlled trial | FLEX in one eye and SMILE in the other | 6 months after surgery. | No difference was found in tear osmolarity, noninvasive TBUT (keratograph), tear meniscus height (anterior segment OCT), Schirmer’s test and fluorescein TBUT between FLEX and SMILE. Corneal subbasal nerve density and total nerve number decreased 6 months after surgery, although total number of nerves decreased more in FLEX eyes than in SMILE eyes. |
Hassan et al., 2013 [67] | Comparative study | LASIK | 1, 30 and 60 days after the surgery. | No significant change was observed in the values of Schirmer’s test, corneal staining and TBUT during the follow-up period. |
Wang et al., 2015 [66] | Prospective, nonrandomised, observational study | SMILE, FS-LASIK | 1, 3, 6 and 12 months postoperatively. | TBUT reduced 1 and 3 months after SMILE, 1, 3 and 6 months following FS-LASIK. Dry eye symptoms were increased 1 and 3 months following SMILE, and 1, 3 and 6 months following FS-LASIK. |
Study | Design | Surgical Procedure | Postoperative Tests | Results |
---|---|---|---|---|
Sagara et al., 2014 [73] | Cross-sectional observational case study | Trabeculectomy with mitomycin C | Duration from trabeculectomy to examination was 0.7 to 24.5 years (median 7.4) | Meibomian gland loss was higher in the bleb-contacting upper eyelid areas than bleb-noncontacting, especially when the bleb is avascular. |
Zhong et al., 2019 [74] | Retrospective, case–control | Trabeculectomy | 3 days, 1 month and 3 months postoperatively | Noninvasive keratography TBUT was reduced at 3 months postoperatively. |
Ghasemi et al., 2017 [76] | Prospective, nonrandomized, comparative study | Pars plana vitrectomy | 1 and 3 months after vitrectomy | Schirmer’s test values decreased significantly at 1 and 3 months postoperatively. |
Lee et al., 2019 [77] | Retrospective chart review | Pars plana vitrectomy | 1 week, 1 month and 3 months after surgery. | TBUT lower 1 week postoperatively, improved 1 and 3 months after surgery. The OSDI scores worsened 1 week postoperatively and recovered at 1 and 3 months. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikalauskiene, L.; Grzybowski, A.; Zemaitiene, R. Ocular Surface Changes Associated with Ophthalmic Surgery. J. Clin. Med. 2021, 10, 1642. https://doi.org/10.3390/jcm10081642
Mikalauskiene L, Grzybowski A, Zemaitiene R. Ocular Surface Changes Associated with Ophthalmic Surgery. Journal of Clinical Medicine. 2021; 10(8):1642. https://doi.org/10.3390/jcm10081642
Chicago/Turabian StyleMikalauskiene, Lina, Andrzej Grzybowski, and Reda Zemaitiene. 2021. "Ocular Surface Changes Associated with Ophthalmic Surgery" Journal of Clinical Medicine 10, no. 8: 1642. https://doi.org/10.3390/jcm10081642
APA StyleMikalauskiene, L., Grzybowski, A., & Zemaitiene, R. (2021). Ocular Surface Changes Associated with Ophthalmic Surgery. Journal of Clinical Medicine, 10(8), 1642. https://doi.org/10.3390/jcm10081642