New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ceftaroline
Ceftaroline in Infective Endocarditis and Osteomyelitis
3.2. Daptomycin
Daptomycin in Infective Endocarditis and Osteomyelitis
3.3. Telavancin
Telavancin in Infective Endocarditis and Osteomyelitis
3.4. Dalbavancin
Dalbavancin in Infective Endocarditis and Osteomyelitis
3.5. Oritavancin
Oritavancin in Infective Endocarditis and Osteomyelitis
3.6. Linezolid
Linezolid in Infective Endocarditis and Osteomyelitis
3.7. Tedizolid
Tedizolid in Infective Endocarditis and Osteomyelitis
3.8. Delafloxacin
Delafloxacin in Infective Endocarditis and Osteomyelitis
3.9. Omadacycline
Omadacycline in Infective Endocarditis and Osteomyelitis
4. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar] [CrossRef]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs 2011, 34, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Mah, T.F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Pani, A.; Colombo, F.; Agnelli, F.; Frantellizzi, V.; Baratta, F.; Pastori, D.; Scaglione, F. Off-label use of ceftaroline fosamil: A systematic review. Int. J. Antimicrob. Agents 2019, 54, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Henao-Martinez, A.F.; Franco-Paredes, C.; Chastain, D.B. Treatment of osteoarticular, cardiovascular, intravascular-catheter-related and other complicated infections with dalbavancin and oritavancin: A systematic review. Int. J. Antimicrob. Agents 2020, 56, 106069. [Google Scholar] [CrossRef]
- Abbas, M.; Paul, M.; Huttner, A. New and improved? A review of novel antibiotics for Gram-positive bacteria. Clin. Microbiol. Infect. 2017, 23, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirupathi, R.; Areti, S.; Salim, S.A.; Palabindala, V.; Jonnalagadda, N. Acute bacterial skin and soft tissue infections: New drugs in ID armamentarium. J. Community Hosp. Intern. Med. Perspect. 2019, 9, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Carnelutti, A.; Castaldo, N.; Peghin, M. Important new therapies for methicillin-resistant Staphylococcus aureus. Expert Opin. Pharm. 2019, 20, 2317–2334. [Google Scholar] [CrossRef]
- Bassetti, M.; Magnasco, L.; Del Puente, F.; Giacobbe, D.R. Role of new antibiotics in the treatment of acute bacterial skin and skin-structure infections. Curr. Opin. Infect. Dis. 2020, 33, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Golan, Y. Current Treatment Options for Acute Skin and Skin-structure Infections. Clin. Infect. Dis. 2019, 68, S206–S212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, T.; Matsunaga, N.; Tawada, H.; Kuroda, N.; Nakayama, Y.; Ishibashi, Y.; Tomimoto, M.; Ikeda, Y.; Tagawa, Y.; Iizawa, Y.; et al. TAK-599, a novel N-phosphono type prodrug of anti-MRSA cephalosporin T-91825: Synthesis, physicochemical and pharmacological properties. Bioorganic Med. Chem. 2003, 11, 2427–2437. [Google Scholar] [CrossRef]
- Kaushik, D.; Rathi, S.; Jain, A. Ceftaroline: A comprehensive update. Int. J. Antimicrob. Agents 2011, 37, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Righi, E. Ceftaroline and Ceftaroline-Avibactam. In Kucers’ the Use of Antibiotics, 7th ed.; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 603–607. [Google Scholar]
- EMA. Annex 1 Summary of Product Characteristics; EMA: Amsterdam, The Netherlands, 2012. [Google Scholar]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: http://www.eucast.org (accessed on 8 February 2021).
- Cheng, K.; Pypstra, R.; Yan, J.L.; Hammond, J. Summary of the safety and tolerability of two treatment regimens of ceftaroline fosamil: 600 mg every 8 h versus 600 mg every 12 h. J. Antimicrob. Chemother. 2019, 74, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Dryden, M.; Zhang, Y.; Wilson, D.; Iaconis, J.P.; Gonzalez, J. A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J. Antimicrob. Chemother. 2016, 71, 3575–3584. [Google Scholar] [CrossRef]
- Perrottet, N.; Steinrucken, J.; Chan, M.; Pannatier, A.; Borens, O.; Yusuf, E.; Trampuz, A. Efficacy and safety of high-dose daptomycin (>6 mg/kg) for complicated bone and joint infections and implant-associated infections caused by Gram-positive bacteria. Int. J. Antimicrob. Agents 2015, 46, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Peghin, M.; Givone, F.; Ingani, M.; Graziano, E.; Bassetti, M. Daptomycin-containing regimens for treatment of Gram-positive endocarditis. Int. J. Antimicrob. Agents 2019, 54, 423–434. [Google Scholar] [CrossRef]
- Telles, J.P.; Cieslinski, J.; Tuon, F.F. Daptomycin to bone and joint infections and prosthesis joint infections: A systematic review. Braz. J. Infect. Dis. 2019, 23, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Destache, C.J.; Guervil, D.J.; Kaye, K.S. Ceftaroline fosamil for the treatment of Gram-positive endocarditis: CAPTURE study experience. Int. J. Antimicrob. Agents 2019, 53, 644–649. [Google Scholar] [CrossRef]
- Johnson, L.B.; Ramani, A.; Guervil, D.J. Use of Ceftaroline Fosamil in Osteomyelitis: CAPTURE Study Experience. BMC Infect. Dis. 2019, 19, 183. [Google Scholar] [CrossRef]
- Fabre, V.; Ferrada, M.; Buckel, W.R.; Avdic, E.; Cosgrove, S.E. Ceftaroline in Combination With Trimethoprim-Sulfamethoxazole for Salvage Therapy of Methicillin-Resistant Staphylococcus aureus Bacteremia and Endocarditis. Open Forum Infect. Dis. 2014, 1, ofu046. [Google Scholar] [CrossRef]
- Casapao, A.M.; Davis, S.L.; Barr, V.O.; Klinker, K.P.; Goff, D.A.; Barber, K.E.; Kaye, K.S.; Mynatt, R.P.; Molloy, L.M.; Pogue, J.M.; et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob. Agents Chemother. 2014, 58, 2541–2546. [Google Scholar] [CrossRef] [Green Version]
- Paladino, J.A.; Jacobs, D.M.; Shields, R.K.; Taylor, J.; Bader, J.; Adelman, M.H.; Wilton, G.J.; Crane, J.K.; Schentag, J.J. Use of ceftaroline after glycopeptide failure to eradicate meticillin-resistant Staphylococcus aureus bacteraemia with elevated vancomycin minimum inhibitory concentrations. Int. J. Antimicrob. Agents 2014, 44, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.; Huang, V.; Hartman, P.; Perri, M.B.; Moreno, D.; Zervos, M.J. Ceftaroline fosamil monotherapy for methicillin-resistant Staphylococcus aureus bacteremia: A comparative clinical outcomes study. Int. J. Infect. Dis. 2017, 57, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliazar, J.; Johnson, T.; Chbib, C. Pre-clinical impact of the synergistic mechanism of daptomycin and ceftaroline in patients with methicillin-resistant Staphylococcus aureus bacteremia infections. Curr. Clin. Pharmacol. 2021. [Google Scholar] [CrossRef]
- Hutton, M.A.; Sundaram, A.; Perri, M.B.; Zervos, M.J.; Herc, E.S. Assessment of invitrosynergy of daptomycin or vancomycin plus ceftaroline for daptomycin non-susceptible Staphylococcus aureus. Diagn Microbiol. Infect. Dis. 2020, 98, 115126. [Google Scholar] [CrossRef] [PubMed]
- Sakoulas, G.; Moise, P.A.; Casapao, A.M.; Nonejuie, P.; Olson, J.; Okumura, C.Y.; Rybak, M.J.; Kullar, R.; Dhand, A.; Rose, W.E.; et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin. Ther. 2014, 36, 1317–1333. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, I.; Bulman, Z.P.; Spitznogle, S.L.; Osorio, J.E.; Reilly, I.S.; Lesse, A.J.; Parameswaran, G.I.; Mergenhagen, K.A.; Tsuji, B.T. A combination of ceftaroline and daptomycin has synergistic and bactericidal activity in vitro against daptomycin nonsusceptible methicillin-resistant Staphylococcus aureus (MRSA). Infect. Dis. 2017, 49, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Zasowski, E.J.; Trinh, T.D.; Claeys, K.C.; Casapao, A.M.; Sabagha, N.; Lagnf, A.M.; Klinker, K.P.; Davis, S.L.; Rybak, M.J. Multicenter Observational Study of Ceftaroline Fosamil for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrob. Agents Chemother. 2017, 61, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornak, J.P.; Anjum, S.; Reynoso, D. Adjunctive ceftaroline in combination with daptomycin or vancomycin for complicated methicillin-resistant Staphylococcus aureus bacteremia after monotherapy failure. Adv. Infect. Dis. 2019, 6, 2049936119886504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCreary, E.K.; Kullar, R.; Geriak, M.; Zasowski, E.J.; Rizvi, K.; Schulz, L.T.; Ouellette, K.; Vasina, L.; Haddad, F.; Rybak, M.J.; et al. Multicenter Cohort of Patients With Methicillin-Resistant Staphylococcus aureus Bacteremia Receiving Daptomycin Plus Ceftaroline Compared With Other MRSA Treatments. Open Forum Infect. Dis. 2020, 7, ofz538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geriak, M.; Haddad, F.; Rizvi, K.; Rose, W.; Kullar, R.; LaPlante, K.; Yu, M.; Vasina, L.; Ouellette, K.; Zervos, M.; et al. Clinical Data on Daptomycin plus Ceftaroline versus Standard of Care Monotherapy in the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother. 2019, 63, e02483-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, A.E.; Gyssens, I.C. Daptomycin. In Kucers’ The Use of Antibiotics; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 866–907. [Google Scholar]
- Wang, S.Z.; Hu, J.T.; Zhang, C.; Zhou, W.; Chen, X.F.; Jiang, L.Y.; Tang, Z.H. The safety and efficacy of daptomycin versus other antibiotics for skin and soft-tissue infections: A meta-analysis of randomised controlled trials. BMJ Open 2014, 4, e004744. [Google Scholar] [CrossRef] [Green Version]
- EMA. Daptomycin: Summary of Product Characteristics; EMA: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Balli, E.P.; Venetis, C.A.; Miyakis, S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob. Agents Chemother. 2014, 58, 734–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Jin, W.; Xie, Y.; Zhou, D.; Xu, S.; Li, Q.; Lin, N. Efficacy and safety of daptomycin versus linezolid treatment in patients with vancomycin-resistant enterococcal bacteraemia: An updated systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 21, 235–245. [Google Scholar] [CrossRef]
- Kullar, R.; Casapao, A.M.; Davis, S.L.; Levine, D.P.; Zhao, J.J.; Crank, C.W.; Segreti, J.; Sakoulas, G.; Cosgrove, S.E.; Rybak, M.J. A multicentre evaluation of the effectiveness and safety of high-dose daptomycin for the treatment of infective endocarditis. J. Antimicrob. Chemother. 2013, 68, 2921–2926. [Google Scholar] [CrossRef] [PubMed]
- Britt, N.S.; Potter, E.M.; Patel, N.; Steed, M.E. Comparative Effectiveness and Safety of Standard-, Medium-, and High-Dose Daptomycin Strategies for the Treatment of Vancomycin-Resistant Enterococcal Bacteremia Among Veterans Affairs Patients. Clin. Infect. Dis. 2017, 64, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Chuang, Y.C.; Lin, H.Y.; Chen, P.Y.; Lin, C.Y.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Effect of Daptomycin Dose on the Outcome of Vancomycin-Resistant, Daptomycin-Susceptible Enterococcus faecium Bacteremia. Clin. Infect. Dis. 2017, 64, 1026–1034. [Google Scholar] [CrossRef]
- Timbrook, T.T.; Caffrey, A.R.; Luther, M.K.; Lopes, V.; LaPlante, K.L. Association of Higher Daptomycin Dose (7 mg/kg or Greater) with Improved Survival in Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia. Pharmacotherapy 2018, 38, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Claeys, K.C.; Zasowski, E.J.; Casapao, A.M.; Lagnf, A.M.; Nagel, J.L.; Nguyen, C.T.; Hallesy, J.A.; Compton, M.T.; Kaye, K.S.; Levine, D.P.; et al. Daptomycin Improves Outcomes Regardless of Vancomycin MIC in a Propensity-Matched Analysis of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrob. Agents Chemother. 2016, 60, 5841–5848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malizos, K.; Sarma, J.; Seaton, R.A.; Militz, M.; Menichetti, F.; Riccio, G.; Gaudias, J.; Trostmann, U.; Pathan, R.; Hamed, K. Daptomycin for the treatment of osteomyelitis and orthopaedic device infections: Real-world clinical experience from a European registry. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miro, J.M.; Garcia-de-la-Maria, C.; Armero, Y.; Soy, D.; Moreno, A.; del Rio, A.; Almela, M.; Sarasa, M.; Mestres, C.A.; Gatell, J.M.; et al. Addition of gentamicin or rifampin does not enhance the effectiveness of daptomycin in treatment of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 4172–4177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Haj, C.; Murillo, O.; Ribera, A.; Vivas, M.; Garcia-Somoza, D.; Tubau, F.; Cabellos, C.; Cabo, J.; Ariza, J. Daptomycin combinations as alternative therapies in experimental foreign-body infection caused by meticillin-susceptible Staphylococcus aureus. Int. J. Antimicrob. Agents 2015, 46, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Parra-Ruiz, J.; Vidaillac, C.; Rose, W.E.; Rybak, M.J. Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination with clarithromycin or rifampin in a novel in vitro model of Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 2010, 54, 4329–4334. [Google Scholar] [CrossRef] [Green Version]
- Garrigos, C.; Murillo, O.; Euba, G.; Verdaguer, R.; Tubau, F.; Cabellos, C.; Cabo, J.; Ariza, J. Efficacy of usual and high doses of daptomycin in combination with rifampin versus alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5251–5256. [Google Scholar] [CrossRef] [Green Version]
- Stein, C.; Makarewicz, O.; Forstner, C.; Weis, S.; Hagel, S.; Loffler, B.; Pletz, M.W. Should daptomycin-rifampin combinations for MSSA/MRSA isolates be avoided because of antagonism? Infection 2016, 44, 499–504. [Google Scholar] [CrossRef]
- Garcia-de-la-Maria, C.; Gasch, O.; Garcia-Gonzalez, J.; Soy, D.; Shaw, E.; Ambrosioni, J.; Almela, M.; Pericas, J.M.; Tellez, A.; Falces, C.; et al. The Combination of Daptomycin and Fosfomycin Has Synergistic, Potent, and Rapid Bactericidal Activity against Methicillin-Resistant Staphylococcus aureus in a Rabbit Model of Experimental Endocarditis. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Pujol, M.; Miro, J.M.; Shaw, E.; Aguado, J.M.; San-Juan, R.; Puig-Asensio, M.; Pigrau, C.; Calbo, E.; Montejo, M.; Rodriguez-Alvarez, R.; et al. Daptomycin plus Fosfomycin versus Daptomycin Alone for Methicillin-Resistant Staphylococcus aureus Bacteremia and Endocarditis. A Randomized Clinical Trial. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, I.M.; Kuti, J.L.; Nicolau, D.P. Telavancin. In Kucers’ The Use of Antibiotics; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 930–939. [Google Scholar]
- EMA. Vibativ—Telavancin; EMA: Amsterdam, The Netherlands, 2018. [Google Scholar]
- FDA. Drug Approval Package VIBATIV (Telavancin) for Injection; FDA: White Oak, MD, USA, 2013.
- Rubinstein, E.; Lalani, T.; Corey, G.R.; Kanafani, Z.A.; Nannini, E.C.; Rocha, M.G.; Rahav, G.; Niederman, M.S.; Kollef, M.H.; Shorr, A.F.; et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin. Infect. Dis. 2011, 52, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Barriere, S.L. The ATTAIN trials: Efficacy and safety of telavancin compared with vancomycin for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia. Future Microbiol. 2014, 9, 281–289. [Google Scholar] [CrossRef] [PubMed]
- FDA. Risk Assessment and Risk Mitigation Reviews Research; FDA: White Oak, MD, USA, 2013.
- FDA. Supplement Approval. Release from REMS Requirement; FDA: White Oak, MD, USA, 2017.
- Joson, J.; Grover, C.; Downer, C.; Pujar, T.; Heidari, A. Successful treatment of methicillin-resistant Staphylococcus aureus mitral valve endocarditis with sequential linezolid and telavancin monotherapy following daptomycin failure. J. Antimicrob. Chemother. 2011, 66, 2186–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcos, L.A.; Camins, B.C. Successful treatment of vancomycin-intermediate Staphylococcus aureus pacemaker lead infective endocarditis with telavancin. Antimicrob. Agents Chemother. 2010, 54, 5376–5378. [Google Scholar] [CrossRef] [Green Version]
- Nace, H.; Lorber, B. Successful treatment of methicillin-resistant Staphylococcus aureus endocarditis with telavancin. J. Antimicrob. Chemother. 2010, 65, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggero, M.A.; Peaper, D.R.; Topal, J.E. Telavancin for refractory methicillin-resistant Staphylococcus aureus bacteremia and infective endocarditis. Infect. Dis. 2015, 47, 379–384. [Google Scholar] [CrossRef]
- Reilly, J.; Jacobs, M.A.; Friedman, B.; Cleveland, K.O.; Lombardi, D.A.; Castaneda-Ruiz, B. Clinical Experience with Telavancin for the Treatment of Patients with Bacteremia and Endocarditis: Real-World Results from the Telavancin Observational Use Registry (TOUR). Drugs Real World Outcomes 2020, 7, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Harting, J.; Fernandez, F.; Kelley, R.; Wiemken, T.; Peyrani, P.; Ramirez, J. Telavancin for the treatment of methicillin-resistant Staphylococcus aureus bone and joint infections. Diagn. Microbiol. Infect. Dis. 2017, 89, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, C.P.; Van Anglen, L.J.; Dretler, R.H.; Adams, J.S.; Prokesch, R.C.; Luu, Q.; Krinsky, A.H. Outpatient treatment of osteomyelitis with telavancin. Int. J. Antimicrob. Agents 2017, 50, 93–96. [Google Scholar] [CrossRef]
- Saravolatz, L.D.; Cleveland, K.O.; Rikabi, K.; Hassoun, A.; Reilly, J.; Johnson, L.B.; Spak, C.; Valenti, S.; Szpunar, S. Real-world use of telavancin in the treatment of osteomyelitis. Diagn. Microbiol. Infect. Dis. 2019, 95, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Stryjewski, M.E.; Lentnek, A.; O’Riordan, W.; Pullman, J.; Tambyah, P.A.; Miro, J.M.; Fowler, V.G., Jr.; Barriere, S.L.; Kitt, M.M.; Corey, G.R. A randomized Phase 2 trial of telavancin versus standard therapy in patients with uncomplicated Staphylococcus aureus bacteremia: The ASSURE study. BMC Infect. Dis. 2014, 14, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaftari, A.M.; Hachem, R.; Jordan, M.; Garoge, K.; Al Hamal, Z.; El Zakhem, A.; Viola, G.M.; Granwehr, B.; Mulanovich, V.; Gagel, A.; et al. Case-Control Study of Telavancin as an Alternative Treatment for Gram-Positive Bloodstream Infections in Patients with Cancer. Antimicrob. Agents Chemother. 2016, 60, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressler, A.M.; Hassoun, A.A.; Saravolatz, L.D.; Ravenna, V.; Barnes, C.N.; Castaneda-Ruiz, B. Clinical Experience with Telavancin: Real-World Results from the Telavancin Observational Use Registry (TOUR). Drugs Real World Outcomes 2019, 6, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Monogue, M.L.; Nicolau, D.P. Dalbavancin. In Kucers’ The Use of Antibiotics; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 917–929. [Google Scholar]
- EMA. Dalbavancin: Summary of Product Characteristics; last update 18/08/2020; EMA: Amsterdam, The Netherlands, 2015. [Google Scholar]
- FDA. Dalbavancin: Medical Review; FDA: White Oak, MD, USA, 2014.
- Wunsch, S.; Krause, R.; Valentin, T.; Prattes, J.; Janata, O.; Lenger, A.; Bellmann-Weiler, R.; Weiss, G.; Zollner-Schwetz, I. Multicenter clinical experience of real life Dalbavancin use in gram-positive infections. Int. J. Infect. Dis. 2019, 81, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo-Tenorio, C.; Vinuesa, D.; Plata, A.; Martin Davila, P.; Iftimie, S.; Sequera, S.; Loeches, B.; Lopez-Cortes, L.E.; Farinas, M.C.; Fernandez-Roldan, C.; et al. DALBACEN cohort: Dalbavancin as consolidation therapy in patients with endocarditis and/or bloodstream infection produced by gram-positive cocci. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 30. [Google Scholar] [CrossRef] [Green Version]
- Tobudic, S.; Forstner, C.; Burgmann, H.; Lagler, H.; Ramharter, M.; Steininger, C.; Vossen, M.G.; Winkler, S.; Thalhammer, F. Dalbavancin as Primary and Sequential Treatment for Gram-Positive Infective Endocarditis: 2-Year Experience at the General Hospital of Vienna. Clin. Infect. Dis. 2018, 67, 795–798. [Google Scholar] [CrossRef]
- Rappo, U.; Puttagunta, S.; Shevchenko, V.; Shevchenko, A.; Jandourek, A.; Gonzalez, P.L.; Suen, A.; Mas Casullo, V.; Melnick, D.; Miceli, R.; et al. Dalbavancin for the Treatment of Osteomyelitis in Adult Patients: A Randomized Clinical Trial of Efficacy and Safety. Open Forum Infect. Dis. 2019, 6, ofy331. [Google Scholar] [CrossRef] [PubMed]
- Morata, L.; Cobo, J.; Fernandez-Sampedro, M.; Guisado Vasco, P.; Ruano, E.; Lora-Tamayo, J.; Sanchez Somolinos, M.; Gonzalez Ruano, P.; Rico Nieto, A.; Arnaiz, A.; et al. Safety and Efficacy of Prolonged Use of Dalbavancin in Bone and Joint Infections. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Raad, I.; Darouiche, R.; Vazquez, J.; Lentnek, A.; Hachem, R.; Hanna, H.; Goldstein, B.; Henkel, T.; Seltzer, E. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin. Infect. Dis. 2005, 40, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Ajaka, L.; Heil, E.; Schmalzle, S. Dalbavancin in the Treatment of Bacteremia and Endocarditis in People with Barriers to Standard Care. Antibiotics 2020, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Hitzenbichler, F.; Mohr, A.; Camboni, D.; Simon, M.; Salzberger, B.; Hanses, F. Dalbavancin as long-term suppressive therapy for patients with Gram-positive bacteremia due to an intravascular source-a series of four cases. Infection 2021, 49, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Baldoni, D.; Furustrand Tafin, U.; Aeppli, S.; Angevaare, E.; Oliva, A.; Haschke, M.; Zimmerli, W.; Trampuz, A. Activity of dalbavancin, alone and in combination with rifampicin, against meticillin-resistant Staphylococcus aureus in a foreign-body infection model. Int. J. Antimicrob. Agents 2013, 42, 220–225. [Google Scholar] [CrossRef]
- So, W.; Nicolau, D.P. Oritavancin. In Kucers’ The Use of Antibiotics; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 908–916. [Google Scholar]
- Arhin, F.F.; Draghi, D.C.; Pillar, C.M.; Parr, T.R., Jr.; Moeck, G.; Sahm, D.F. Comparative in vitro activity profile of oritavancin against recent gram-positive clinical isolates. Antimicrob. Agents Chemother. 2009, 53, 4762–4771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhavnani, S.M.; Owen, J.S.; Loutit, J.S.; Porter, S.B.; Ambrose, P.G. Pharmacokinetics, safety, and tolerability of ascending single intravenous doses of oritavancin administered to healthy human subjects. Diagn. Microbiol. Infect. Dis. 2004, 50, 95–102. [Google Scholar] [CrossRef]
- Billeter, M.; Zervos, M.J.; Chen, A.Y.; Dalovisio, J.R.; Kurukularatne, C. Dalbavancin: A novel once-weekly lipoglycopeptide antibiotic. Clin. Infect. Dis. 2008, 46, 577–583. [Google Scholar] [CrossRef] [PubMed]
- EMA. Oritavancin Summary of Product Characteristics; EMA: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Brade, K.D.; Rybak, J.M.; Rybak, M.J. Oritavancin: A New Lipoglycopeptide Antibiotic in the Treatment of Gram-Positive Infections. Infect. Dis. 2016, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.A.; Feeney, E.R.; Kubiak, D.W.; Corey, G.R. Prolonged Use of Oritavancin for Vancomycin-Resistant Enterococcus faecium Prosthetic Valve Endocarditis. Open Forum Infect. Dis. 2015, 2, ofv156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hise, N.W.; Chundi, V.; Didwania, V.; Anderson, M.; McKinsey, D.; Roig, I.; Sharma, A.; Petrak, R.M. Treatment of Acute Osteomyelitis with Once-Weekly Oritavancin: A Two-Year, Multicenter, Retrospective Study. Drugs Real World Outcomes 2020, 7, 41–45. [Google Scholar] [CrossRef]
- Redell, M.; Sierra-Hoffman, M.; Assi, M.; Bochan, M.; Chansolme, D.; Gandhi, A.; Sheridan, K.; Soosaipillai, I.; Walsh, T.; Massey, J. The CHROME Study, a Real-world Experience of Single- and Multiple-Dose Oritavancin for Treatment of Gram-Positive Infections. Open Forum Infect. Dis. 2019, 6, ofz479. [Google Scholar] [CrossRef] [PubMed]
- Sparham, S.J.; Howden, B.P. Linezolid. In Kucers’ The Use of Antibiotics; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 1293–1347. [Google Scholar]
- Stalker, D.J.; Jungbluth, G.L.; Hopkins, N.K.; Batts, D.H. Pharmacokinetics and tolerance of single- and multiple-dose oral or intravenous linezolid, an oxazolidinone antibiotic, in healthy volunteers. J. Antimicrob. Chemother. 2003, 51, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- Welshman, I.R.; Sisson, T.A.; Jungbluth, G.L.; Stalker, D.J.; Hopkins, N.K. Linezolid absolute bioavailability and the effect of food on oral bioavailability. Biopharm Drug Dispos 2001, 22, 91–97. [Google Scholar] [CrossRef]
- Capsule, H. Linezolid: Summary of Product Characteristics; Pfizer AB: Sollentuna, Sweden, 2009. [Google Scholar]
- Bishop, E.; Melvani, S.; Howden, B.P.; Charles, P.G.; Grayson, M.L. Good clinical outcomes but high rates of adverse reactions during linezolid therapy for serious infections: A proposed protocol for monitoring therapy in complex patients. Antimicrob. Agents Chemother. 2006, 50, 1599–1602. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Siempos, I.I.; Vardakas, K.Z. Linezolid versus glycopeptide or beta-lactam for treatment of Gram-positive bacterial infections: Meta-analysis of randomised controlled trials. Lancet Infect. Dis. 2008, 8, 53–66. [Google Scholar] [CrossRef]
- Crass, R.L.; Cojutti, P.G.; Pai, M.P.; Pea, F. Reappraisal of Linezolid Dosing in Renal Impairment To Improve Safety. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Manta, K.G.; Ntziora, F.; Vardakas, K.Z. Linezolid for the treatment of patients with endocarditis: A systematic review of the published evidence. J. Antimicrob. Chemother. 2006, 58, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colli, A.; Campodonico, R.; Gherli, T. Early switch from vancomycin to oral linezolid for treatment of gram-positive heart valve endocarditis. Ann. Thorac. Surg. 2007, 84, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Munoz, P.; Rodriguez-Creixems, M.; Moreno, M.; Marin, M.; Ramallo, V.; Bouza, E.; Game Study, G. Linezolid therapy for infective endocarditis. Clin. Microbiol. Infect. 2007, 13, 211–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayner, C.R.; Baddour, L.M.; Birmingham, M.C.; Norden, C.; Meagher, A.K.; Schentag, J.J. Linezolid in the treatment of osteomyelitis: Results of compassionate use experience. Infection 2004, 32, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Vercillo, M.; Patzakis, M.J.; Holtom, P.; Zalavras, C.G. Linezolid in the treatment of implant-related chronic osteomyelitis. Clin. Orthop Relat Res. 2007, 461, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.; Ziran, B.H.; Hall, R.A.; Santa, E.R. Successful treatment of chronic bone and joint infections with oral linezolid. Clin. Orthop. Relat. Res. 2004, 427, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.C.; Kim, S.H.; Kim, K.H.; Kim, C.J.; Lee, S.; Song, K.H.; Jeon, J.H.; Park, W.B.; Kim, H.B.; Park, S.W.; et al. Salvage treatment for persistent methicillin-resistant Staphylococcus aureus bacteremia: Efficacy of linezolid with or without carbapenem. Clin. Infect. Dis. 2009, 49, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Kim, S.H.; Kim, M.J.; Lee, Y.M.; Park, S.Y.; Moon, S.M.; Park, K.H.; Chong, Y.P.; Lee, S.O.; Choi, S.H.; et al. Efficacy of linezolid-based salvage therapy compared with glycopeptide-based therapy in patients with persistent methicillin-resistant Staphylococcus aureus bacteremia. J. Infect. 2012, 65, 505–512. [Google Scholar] [CrossRef]
- El Haj, C.; Murillo, O.; Ribera, A.; Lloberas, N.; Gomez-Junyent, J.; Tubau, F.; Fontova, P.; Cabellos, C.; Ariza, J. Evaluation of linezolid or trimethoprim/sulfamethoxazole in combination with rifampicin as alternative oral treatments based on an in vitro pharmacodynamic model of staphylococcal biofilm. Int. J. Antimicrob. Agents 2018, 51, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Pasquet, A.; Legout, L.; Beltrand, E.; Dubreuil, L.; Migaud, H.; Yazdanpanah, Y.; Senneville, E. Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections. Clin. Microbiol. Infect. 2009, 15, 1163–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidell, M.R.; Drusano, G.L.; Lodise, T.P. Tedizolid. In Kucers’ The Use of Antibiotics; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 1356–1373. [Google Scholar]
- Carvalhaes, C.G.; Sader, H.S.; Flamm, R.K.; Mendes, R.E. Tedizolid in vitro activity against Gram-positive clinical isolates causing bone and joint infections in hospitals in the USA and Europe (2014-17). J. Antimicrob. Chemother. 2019, 74, 1928–1933. [Google Scholar] [CrossRef]
- Flanagan, S.D.; Bien, P.A.; Munoz, K.A.; Minassian, S.L.; Prokocimer, P.G. Pharmacokinetics of tedizolid following oral administration: Single and multiple dose, effect of food, and comparison of two solid forms of the prodrug. Pharmacotherapy 2014, 34, 240–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanagan, S.; Minassian, S.L.; Morris, D.; Ponnuraj, R.; Marbury, T.C.; Alcorn, H.W.; Fang, E.; Prokocimer, P. Pharmacokinetics of tedizolid in subjects with renal or hepatic impairment. Antimicrob. Agents Chemother. 2014, 58, 6471–6476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, G.J.; Fang, E.; Corey, G.R.; Das, A.F.; De Anda, C.; Prokocimer, P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2014, 14, 696–705. [Google Scholar] [CrossRef]
- Prokocimer, P.; De Anda, C.; Fang, E.; Mehra, P.; Das, A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: The ESTABLISH-1 randomized trial. JAMA 2013, 309, 559–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodise, T.P.; Fang, E.; Minassian, S.L.; Prokocimer, P.G. Platelet profile in patients with acute bacterial skin and skin structure infections receiving tedizolid or linezolid: Findings from the Phase 3 ESTABLISH clinical trials. Antimicrob. Agents Chemother. 2014, 58, 7198–7204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abad, L.; Tafani, V.; Tasse, J.; Josse, J.; Chidiac, C.; Lustig, S.; Ferry, T.; Diot, A.; Laurent, F.; Valour, F. Evaluation of the ability of linezolid and tedizolid to eradicate intraosteoblastic and biofilm-embedded Staphylococcus aureus in the bone and joint infection setting. J. Antimicrob. Chemother. 2019, 74, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.C.; Basuino, L.; Dip, E.C.; Chambers, H.F. Comparative efficacies of tedizolid phosphate, vancomycin, and daptomycin in a rabbit model of methicillin-resistant Staphylococcus aureus endocarditis. Antimicrob. Agents Chemother. 2015, 59, 3252–3256. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.V.; Arias, C.A.; Murray, B.E. Tedizolid as Step-Down Therapy following Daptomycin versus Continuation of Daptomycin against Enterococci and Methicillin- and Vancomycin-Resistant Staphylococcus aureus in a Rat Endocarditis Model. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Greenwood-Quaintance, K.E.; Mandrekar, J.; Patel, R. Activity of Tedizolid in Methicillin-Resistant Staphylococcus aureus Experimental Foreign Body-Associated Osteomyelitis. Antimicrob. Agents Chemother. 2016, 60, 6568–6572. [Google Scholar] [CrossRef] [Green Version]
- Park, K.H.; Greenwood-Quaintance, K.E.; Schuetz, A.N.; Mandrekar, J.N.; Patel, R. Activity of Tedizolid in Methicillin-Resistant Staphylococcus epidermidis Experimental Foreign Body-Associated Osteomyelitis. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.R.; Yim, J.; Rice, S.; Stamper, K.; Kebriaei, R.; Rybak, M.J. Combination of Tedizolid and Daptomycin against Methicillin-Resistant Staphylococcus aureus in an In Vitro Model of Simulated Endocardial Vegetations. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangalore, R.P.; Kwong, J.; Grayson, M.L. Delafloxacin. In Kucers’ The Use of Antibiotics; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 2, pp. 2132–2138. [Google Scholar]
- McCurdy, S.; Lawrence, L.; Quintas, M.; Woosley, L.; Flamm, R.; Tseng, C.; Cammarata, S. In Vitro Activity of Delafloxacin and Microbiological Response against Fluoroquinolone-Susceptible and Nonsusceptible Staphylococcus aureus Isolates from Two Phase 3 Studies of Acute Bacterial Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Sader, H.S.; Rhomberg, P.R.; Flamm, R.K. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortridge, D.; Flamm, R.K. Comparative In Vitro Activities of New Antibiotics for the Treatment of Skin Infections. Clin. Infect. Dis. 2019, 68, S200–S205. [Google Scholar] [CrossRef]
- Van Bambeke, F. Delafloxacin, a non-zwitterionic fluoroquinolone in Phase III of clinical development: Evaluation of its pharmacology, pharmacokinetics, pharmacodynamics and clinical efficacy. Future Microbiol. 2015, 10, 1111–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaire, S.; Tulkens, P.M.; Van Bambeke, F. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother. 2011, 55, 649–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover, R.; Hunt, T.; Benedict, M.; Paulson, S.K.; Lawrence, L.; Cammarata, S.; Sun, E. Safety, Tolerability, and Pharmacokinetic Properties of Intravenous Delafloxacin After Single and Multiple Doses in Healthy Volunteers. Clin. Ther. 2016, 38, 53–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiu, J.; Ting, G.; Kiang, T.K. Clinical Pharmacokinetics and Pharmacodynamics of Delafloxacin. Eur. J. Drug Metab. Pharm. 2019, 44, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Hunt, T.; Benedict, M.; Paulson, S.K.; Lawrence, L.; Cammarata, S.; Sun, E. Single and Multiple Ascending-dose Studies of Oral Delafloxacin: Effects of Food, Sex, and Age. Clin. Ther. 2016, 38, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Hoover, R.K.; Alcorn, H., Jr.; Lawrence, L.; Paulson, S.K.; Quintas, M.; Cammarata, S.K. Delafloxacin Pharmacokinetics in Subjects With Varying Degrees of Renal Function. J. Clin. Pharmacol. 2018, 58, 514–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Box Warning; FDA: White Oak, MD, USA, 2018.
- Lodise, T.; Corey, R.; Hooper, D.; Cammarata, S. Safety of Delafloxacin: Focus on Adverse Events of Special Interest. Open Forum Infect. Dis. 2018, 5, ofy220. [Google Scholar] [CrossRef]
- Bauer, J.; Siala, W.; Tulkens, P.M.; Van Bambeke, F. A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2013, 57, 2726–2737. [Google Scholar] [CrossRef] [Green Version]
- Siala, W.; Mingeot-Leclercq, M.P.; Tulkens, P.M.; Hallin, M.; Denis, O.; Van Bambeke, F. Comparison of the antibiotic activities of Daptomycin, Vancomycin, and the investigational Fluoroquinolone Delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob. Agents Chemother. 2014, 58, 6385–6397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlowsky, J.A.; Steenbergen, J.; Zhanel, G.G. Microbiology and Preclinical Review of Omadacycline. Clin. Infect. Dis. 2019, 69, S6–S15. [Google Scholar] [CrossRef] [Green Version]
- Mouton, J.W.; Nabuurs-Fransen, M.H. Omadacycline. In Kucers’ The Use of Antibiotics; Grayson, M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 1267–1272. [Google Scholar]
- Rodvold, K.A.; Pai, M.P. Pharmacokinetics and Pharmacodynamics of Oral and Intravenous Omadacycline. Clin. Infect. Dis. 2019, 69, S16–S22. [Google Scholar] [CrossRef] [Green Version]
- Stets, R.; Popescu, M.; Gonong, J.R.; Mitha, I.; Nseir, W.; Madej, A.; Kirsch, C.; Das, A.F.; Garrity-Ryan, L.; Steenbergen, J.N.; et al. Omadacycline for Community-Acquired Bacterial Pneumonia. N. Engl. J. Med. 2019, 380, 517–527. [Google Scholar] [CrossRef]
- EMA. Withdrawal Assessment Report. Nuzyra (Omadacycline Tosylate); EMA: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Berg, J.K.; Tzanis, E.; Garrity-Ryan, L.; Bai, S.; Chitra, S.; Manley, A.; Villano, S. Pharmacokinetics and Safety of Omadacycline in Subjects with Impaired Renal Function. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opal, S.; File, T.M.; van der Poll, T.; Tzanis, E.; Chitra, S.; McGovern, P.C. An Integrated Safety Summary of Omadacycline, a Novel Aminomethylcycline Antibiotic. Clin. Infect. Dis. 2019, 69, S40–S47. [Google Scholar] [CrossRef] [PubMed]
Cephalosporins | Lipopeptides | Lipoglycopeptides | Oxazolidinones | Fluoroquinolones | Tetracyclines | ||||
---|---|---|---|---|---|---|---|---|---|
Ceftaroline | Daptomycin | Telavancin | Dalbavancin | Oritavancin | Linezolid | Tedizolid | Delafloxacin | Omadacycline | |
In vitro activity | MSSA, MRSA, CoNS, streptococci, some Enterococcus faecalis isolates | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanA, vanB | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanB | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanB | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanA, vanB | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanA, vanB | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanA, vanB | MSSA, MRSA, CoNS, streptococci, E. faecalis | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanA, vanB |
No activity | Enterococcus faecium, VRE vanA, vanB | VRE vanA | VRE vanA | E. faecium, VRE vanA, vanB | |||||
Drug target | Cell wall synthesis | Cell wall synthesis | Cell wall synthesis | Cell wall synthesis | Cell wall synthesis | Protein synthesis | Protein synthesis | DNA replication | Protein synthesis |
FDA/EMA approved dosing regimen (for ABSSSI, unless otherwise mentioned) | 600 mg b.i.d. IV | ABSSSI 4 mg/kg/day IVBSI/IE 6 mg/kg/day IV | 10 mg/kg/day IV | 1500 mg IV single doseAlternative: 1000 mg IV single dose at day 1, followed by 500 mg IV single dose at day 8 | 1200 mg IV single dose | 600 mg b.i.d. IV / PO | 200 mg q.d. IV / PO | 300 mg b.i.d. IV OR450 mg b.i.d. PO | Loading dose: - IV: 200 mg q.d. on day 1 OR 100 mg b.i.d on day 1- PO (for ABSSSI only): 450 mg q.d. on day 1 and 2. Maintenance: - IV: 100 mg q.d. OR- PO: 300 mg q.d. |
Recommended dosing regimen for IE and OSM/PJI | 600 mg b.i.d. - t.i.d. IV (15-18) | 6-12 mg/kg/day IV (34, 37, 46) | No data | No data | No data | No data | No data | No data | No data |
Dose adjustments | Creatinine clearance: - 30-50 mL/min: 400 mg b.i.d. IV; - 15-30 mL/min 300 mg b.i.d.; - ESRD/HD: 200 mg b.i.d. | Creatinine clearance <30 mL/min, HD, CAPD: 6 mg/kg IV every 48 h | Creatinine clearance:- 30-50 mL/min 7.5 mg/kg/day - < 30 mL/min 10 mg/kg every 48 h | Creatinine clearance < 30 mL/min: 750 mg IV single dose at day 1, followed by 375 mg IV at day 8 | Not recommended in mild or moderate impairment, pharmacokinetics in patients with severe renal impairment has not been evaluated | None | None | Creatinine clearance 15-29 mL/min: 200 mg b.i.d. IV. No dose adjustment PO. | None |
Points of interest | Only approved cephalosporin active against MRSA | Not indicated for pneumoniaMonitor CPK and renal function once weekly | Renal dysfunction observed more often compared with vancomycin | Single dose therapy | Single dose therapy | Oral formulation available with 100% oral bioavailabilityRisk of myelosuppression after prolonged use >14 days, monitoring recommended | Oral formulation available with 91% oral bioavailability | Oral formulation available with 58.8% oral bioavailability | Oral formulation availableAdequate oral bioavailability only in fasted state (≥4 h before and 2 h after dose) |
FDA approval (year, brand name, and indications) | 2010, Teflaro®, ABSSSI, CAP | 2003, Cubicin®, ABSSSI, right-sided infective endocarditis SA, bacteremia SA | 2009, Vibativ®, ABSSSI, HAP, VAP | 2014, Xydalba®, ABSSSI | 2014, Orbactiv®, ABSSSI | 2000, Zyvox®, - ABSSSI (including diabetic foot infection, without osteomyelitis) caused by MSSA, MRSA, Streptococcus pyogenes, Streptococcus agalactiae= HAP caused by MSSA, MRSA, Streptococcus pneumoniae- CAP caused by S. pneumoniae (incl. BSI), MSSA- VRE infections incl. BSI | 2014, Sivextro®, ABSSSI | 2017 and 2019, Baxdela® ABSSSI (2017), CAP (2019) | 2018, Nuzyra®, ABSSSI, CAP |
EMA approval (year, brand name, and indications) | 2012, Zinforo®, ABSSSI, CAP | 2006, Cubicin®, ABSSI, right-sided infective endocarditis SA, bacteremia SA | Not EMA approved | 2015, Xydalba®, ABSSSI | 2015, Orbactiv®, ABSSSI | 2001, Zyvox®, ABSSSI, HAP, CAP | 2015, Sivextro®, ABSSSI | 2019, Quofenix®, ABSSSI | Not EMA approved |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bloem, A.; Bax, H.I.; Yusuf, E.; Verkaik, N.J. New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis. J. Clin. Med. 2021, 10, 1743. https://doi.org/10.3390/jcm10081743
Bloem A, Bax HI, Yusuf E, Verkaik NJ. New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis. Journal of Clinical Medicine. 2021; 10(8):1743. https://doi.org/10.3390/jcm10081743
Chicago/Turabian StyleBloem, Annemieke, Hannelore I. Bax, Erlangga Yusuf, and Nelianne J. Verkaik. 2021. "New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis" Journal of Clinical Medicine 10, no. 8: 1743. https://doi.org/10.3390/jcm10081743
APA StyleBloem, A., Bax, H. I., Yusuf, E., & Verkaik, N. J. (2021). New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis. Journal of Clinical Medicine, 10(8), 1743. https://doi.org/10.3390/jcm10081743