Biological Markers in Anxiety Disorders
Abstract
:1. Introduction
2. Aim and Methods
3. Salivary
4. Peripheral Blood
5. Cerebrospinal Fluid
6. Neuroimaging
7. Questionnaires
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Remes, O.; Brayne, C.; van der Linde, R.; Lafortune, L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 2016, 6, e00497. [Google Scholar] [CrossRef]
- Aquin, J.P.; El-Gabalawy, R.; Sala, T.; Sareen, J. Anxiety Disorders and General Medical Conditions: Current Research and Future Directions. Focus 2017, 15, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 655–679. [Google Scholar] [CrossRef] [Green Version]
- The Cambridge Economic History of Modern Europe; Chapter Agriculture; Cambridge University Press: Cambridge, UK, 2010; pp. 147–163. [CrossRef]
- Greenberg, P.E.; Sisitsky, T.; Kessler, R.C.; Finkelstein, S.N.; Berndt, E.R.; Davidson, J.R.T.; Ballenger, J.C.; Fyer, A.J. The economic burden of anxiety disorders in the 1990s. J. Clin. Psychiatry 1999, 60, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef]
- Black, P.H. Stress and the inflammatory response: A review of neurogenic inflammation. Brain. Behav. Immun. 2002, 16, 622–653. [Google Scholar] [CrossRef]
- Sternberg, E.M. Neural regulation of innate immunity: A coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 2006, 6, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eack, S.M.; Greeno, C.G.; Lee, B.J. Limitations of the patient health questionnaire in identifying anxiety and depression in community mental health: Many cases are undetected. Res. Soc. Work Pract. 2006, 16, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Bandelow, B.; Michaelis, S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin. Neurosci. 2015, 17, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Kalia, M.; Costa E Silva, J. Biomarkers of psychiatric diseases: Current status and future prospects. Metabolism 2015, 64, S11–S15. [Google Scholar] [CrossRef]
- Venkatasubramanian, G.; Keshavan, M.S. Biomarkers in psychiatry—A critique. Ann. Neurosci. 2016, 23, 3–5. [Google Scholar] [CrossRef]
- Atkinson, A.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar]
- MacAluso, M.; Preskorn, S.H. How biomarkers will change psychiatry: From clinical trials to practice. Part I: Introduction. J. Psychiatr. Pract. 2012, 18, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Scarr, E.; Millan, M.J.; Bahn, S.; Bertolino, A.; Turck, C.W.; Kapur, S.; Möller, H.-J.; Dean, B. Biomarkers for Psychiatry: The Journey from Fantasy to Fact, a Report of the 2013 CINP Think Tank. Int. J. Neuropsychopharmacol. 2015, 18, pyv042. [Google Scholar] [CrossRef] [Green Version]
- Venigalla, H.; Mekala, H.M.; Hassan, M.; Ahmed, R.; Zain, H.; Dar, S.; Veliz, S.S. An Update on Biomarkers in Psychiatric Disorders—Are we aware, Do we use in our clinical practice? Ment. Health Fam. Med. 2017, 13, 471–479. [Google Scholar]
- Chojnowska, S.; Baran, T.; Wilińska, I.; Sienicka, P.; Cabaj-Wiater, I.; Knaś, M. Human saliva as a diagnostic material. Adv. Med. Sci. 2018, 63, 185–191. [Google Scholar] [CrossRef]
- Kaufman, E.; Lamster, I.B. The diagnostic applications of saliva—A review. Crit. Rev. Oral Biol. Med. 2002, 13, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Zalewska, A.; Waszkiewicz, N.; López-Pintor, R.M. The Use of Saliva in the Diagnosis of Oral and Systemic Diseases. Dis. Markers 2019, 2019, 9149503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, L.A.S.; Mussavira, S.; Bindhu, O.S. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: A systematic review. Biochem. Med. 2015, 25, 177–192. [Google Scholar] [CrossRef]
- Kochurova, E.V.; Kozlov, S.V. The diagnostic possibilities of Saliva. Klin. Lab. Diagn. 2014, 13–15. [Google Scholar] [PubMed]
- Kawas, S.A.; Rahim, Z.H.A.; Ferguson, D.B. Potential uses of human salivary protein and peptide analysis in the diagnosis of disease. Arch. Oral Biol. 2012, 57, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kułak-Bejda, A.; Waszkiewicz, N.; Bejda, G.; Zalewska, A.; Maciejczyk, M. Diagnostic value of salivary markers in neuropsychiatric disorders. Dis. Markers 2019, 2019, 4360612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stachniuk, J.; Kubalczyk, P.; Furmaniak, P.; Głowacki, R. A versatile method for analysis of saliva, plasma and urine for total thiols using HPLC with UV detection. Talanta 2016, 155, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.; Debono, M. Review: Replication of cortisol circadian rhythm: New advances in hydrocortisone replacement therapy. Ther. Adv. Endocrinol. Metab. 2010, 1, 129–138. [Google Scholar] [CrossRef]
- Chojnowska, S.; Ptaszyńska-Sarosiek, I.; Kępka, A.; Knaś, M.; Waszkiewicz, N. Salivary Biomarkers of Stress, Anxiety and Depression. J. Clin. Med. 2021, 10, 517. [Google Scholar] [CrossRef] [PubMed]
- Gozansky, W.S.; Lynn, J.S.; Laudenslager, M.L.; Kohrt, W.M. Salivary cortisol determined by enzyme immunoassay is preferable to serum total cortisol for assessment of dynamic hypothalamic-pituitary-adrenal axis activity. Clin. Endocrinol. 2005, 63, 336–341. [Google Scholar] [CrossRef]
- Johnson, L. Essential Medical Physiology; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Bandelow, B.; Baldwin, D.; Abelli, M.; Bolea-Alamanac, B.; Bourin, M.; Chamberlain, S.R.; Cinosi, E.; Davies, S.; Domschke, K.; Fineberg, N.; et al. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World J. Biol. Psychiatry 2017, 18, 162–214. [Google Scholar] [CrossRef] [PubMed]
- Schoofs, D.; Hartmann, R.; Wolf, O.T. Neuroendocrine stress responses to an oral academic examination: No strong influence of sex, repeated participation and personality traits. Stress 2008, 11, 52–61. [Google Scholar] [CrossRef]
- Gröschl, M. Current status of salivary hormone analysis. Clin. Chem. 2008, 54, 1759–1769. [Google Scholar] [CrossRef] [Green Version]
- Clow, A.; Hucklebridge, F.; Thorn, L. The cortisol awakening response in context. In International Review of Neurobiology; Academic Press Inc.: Cambridge, MA, USA, 2010; Volume 93, pp. 153–175. [Google Scholar]
- Miller, G.E.; Chen, E.; Zhou, E.S. If It Goes Up, Must It Come Down? Chronic Stress and the Hypothalamic-Pituitary-Adrenocortical Axis in Humans. Psychol. Bull. 2007, 133, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Heim, C.; Ehlert, U.; Hellhammer, D.H. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 2000, 25, 1–35. [Google Scholar] [CrossRef]
- Fries, E.; Hesse, J.; Hellhammer, J.; Hellhammer, D.H. A new view on hypocortisolism. Psychoneuroendocrinology 2005, 30, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Hek, K.; Direk, N.; Newson, R.S.; Hofman, A.; Hoogendijk, W.J.G.; Mulder, C.L.; Tiemeier, H. Anxiety disorders and salivary cortisol levels in older adults: A population-based study. Psychoneuroendocrinology 2013, 38, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Knorr, U.; Vinberg, M.; Kessing, L.; Wetterslev, J.; Sundpark, T. Salivary cortisol in depressed patients versus control persons: A systematic review and meta-analysis. Psychoneuroendocrinology 2010, 35, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Miller, G.E.; Rabin, B.S. Psychological Stress and Antibody Response to Immunization: A Critical Review of the Human Literature. Psychosom. Med. 2001, 63, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, T.; Kamado, S.; Nakayama, T. Development of a bionanodevice for detecting stress levels. IOP Conf. Series: Mater. Sci. Eng. 2011, 21, 012029. [Google Scholar] [CrossRef]
- Engeland, C.G.; Hugo, F.N.; Hilgert, J.B.; Nascimento, G.G.; Junges, R.; Lim, H.J.; Marucha, P.T.; Bosch, J.A. Psychological distress and salivary secretory immunity. Brain. Behav. Immun. 2016, 52, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Sava, G.; Pacor, S. Lysozyme and cancer: Role of exogenous lysozyme as anticancer agent (review). Anticancer Res. 1989, 9, 583–591. [Google Scholar]
- Lee-Huang, S.; Huang, P.L.; Sun, Y.; Huang, P.L.; Kung, H.-F.; Blithe, D.L.; Chen, H.-C. Lysozyme and RNases as anti-HIV components in -core preparations of human chorionic gonadotropin. Proc. Natl. Acad. Sci. USA 1999, 96, 2678–2681. [Google Scholar] [CrossRef] [Green Version]
- Perera, S.; Uddin, M.; Hayes, J.A. Salivary lysozyme: A noninvasive marker for the study of the effects of stress on natural immunity. Int. J. Behav. Med. 1997, 4, 170–178. [Google Scholar] [CrossRef]
- Yang, Y. Self perceived work related stress and the relation with salivary IgA and lysozyme among emergency department nurses. Occup. Environ. Med. 2002, 59, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Allgrove, J.E.; Oliveira, M.; Gleeson, M. Stimulating whole saliva affects the response of antimicrobial proteins to exercise. Scand. J. Med. Sci. Sports 2014, 24, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Abey, S.K.; Yuana, Y.; Joseph, P.V.; Kenea, N.D.; Fourie, N.H.; Sherwin, L.B.; Gonye, G.E.; Smyser, P.A.; Stempinski, E.S.; Boulineaux, C.M.; et al. Lysozyme association with circulating RNA, extracellular vesicles, and chronic stress. BBA Clin. 2017, 7, 23–35. [Google Scholar] [CrossRef]
- Dubocovich, M.L.; Yun, K.; Al-Ghoul, W.M.; Benloucif, S.; Masana, M.I. Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J. 1998, 12, 1211–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y.; Iida, T.; Yamamura, Y.; Teramura, M.; Nakagami, Y.; Kawai, K.; Nagamura, Y.; Teradaira, R. Relationships between salivary Melatonin Levels, Quality of sleep, and stress in Young Japanese Females. Int. J. Tryptophan Res. 2013, 2013, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.A.; Love, R.J.; Jetly, R.; Richardson, J.D.; Lanius, R.A.; Miller, J.C.; MacDonald, M.; Rhind, S.G. Blunted Nocturnal Salivary Melatonin Secretion Profiles in Military-Related Posttraumatic Stress Disorder. Front. Psychiatry 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundberg, I.; Ramklint, M.; Stridsberg, M.; Papadopoulos, F.C.; Ekselius, L.; Cunningham, J.L. Salivary Melatonin in Relation to Depressive Symptom Severity in Young Adults. PLoS ONE 2016, 11, e0152814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scannapieco, F.A.; Torres, G.; Levine, M.J. Salivary α-Amylase: Role in Dental Plaque and Caries Formation. Crit. Rev. Oral Biol. Med. 1993, 4, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Takai, N.; Yamaguchi, M.; Aragaki, T.; Eto, K.; Uchihashi, K.; Nishikawa, Y. Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch. Oral Biol. 2004, 49, 963–968. [Google Scholar] [CrossRef]
- Strahler, J.; Mueller, A.; Rosenloecher, F.; Kirschbaum, C.; Rohleder, N. Salivary α-amylase stress reactivity across different age groups. Psychophysiology 2010, 47, 587–595. [Google Scholar] [CrossRef]
- Jafari, A.; Pouramir, M.; Shirzad, A.; Motallebnejad, M.; Bijani, A.; Moudi, S.; Abolghasem-Zade, F.; Dastan, Z. Evaluation of Salivary Alpha Amylase as a Biomarker for Dental Anxiety. Iran. J. Psychiatry Behav. Sci. 2018, 12. [Google Scholar] [CrossRef]
- Nagasawa, S.; Nishikawa, Y.; Li, J.; Futai, Y.; Kanno, T.; Iguchi, K.; Mochizuki, T.; Hoshino, M.; Yanaihara, C.; Yanaihara, N. Simple enzyme immunoassay for the measurement of immunoreactive chromogranin A in human plasma, urine and saliva. Biomed. Res. 1998, 19, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, Y.; Li, J.; Futai, Y.; Yanaihara, N.; Iguch, K.; Mochizuki, T.; Hoshino, M.; Yanaihara, C. Region-specific radioimmunoassay for human chromogranin A. Biomed. Res. 1998, 19, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Nakane, H.; Asami, O.; Yamada, Y.; Harada, T.; Matsui, N.; Kanno, T.; Yanaihara, N. Salivary chromogranin a as an index of psychosomatic stress response. Biomed. Res. 1998, 19, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Kanamaru, Y.; Kikukawa, A.; Shimamura, K. Salivary chromogranin-A as a marker of psychological stress during a cognitive test battery in humans. Stress 2006, 9, 127–131. [Google Scholar] [CrossRef]
- Nakane, H.; Asami, O.; Yamada, Y.; Ohira, H. Effect of negative air ions on computer operation, anxiety and salivary chromogranin A-like immunoreactivity. Int. J. Psychophysiol. 2002, 46, 85–89. [Google Scholar] [CrossRef]
- Ng, V.; Koh, D.; Mok, B.Y.Y.; Chia, S.-E.; Lim, L.-P. Salivary Biomarkers Associated with Academic Assessment Stress Among Dental Undergraduates. J. Dent. Educ. 2003, 67, 1091–1094. [Google Scholar] [CrossRef]
- Obara, S.; Iwama, H. Assessment of psychological tension after premedication by measurement of salivary chromogranin A. J. Clin. Anesth. 2005, 17, 554–557. [Google Scholar] [CrossRef]
- Hua, J.; Le Scanff, C.; Larue, J.; José, F.; Martin, J.-C.; Devillers, L.; Filaire, E. Global stress response during a social stress test: Impact of alexithymia and its subfactors. Psychoneuroendocrinology 2014, 50, 53–61. [Google Scholar] [CrossRef]
- Diaz, M.M.; Bocanegra, O.L.; Teixeira, R.R.; Soares, S.S.; Espindola, F.S. Response of Salivary Markers of Autonomic Activity to Elite Competition. Int. J. Sports Med. 2012. [Google Scholar] [CrossRef] [Green Version]
- Graham, B.M.; Richardson, R. Memory of fearful events: The role of fibroblast growth factor-2 in fear acquisition and extinction. Neuroscience 2011, 189, 156–169. [Google Scholar] [CrossRef]
- Graham, B.M.; Richardson, R. Fibroblast growth factor 2 as a new approach to fighting fear. JAMA Psychiatry 2015, 72, 959–960. [Google Scholar] [CrossRef]
- Duits, P.; Cath, D.C.; Lissek, S.; Hox, J.J.; Hamm, A.O.; Engelhard, I.M.; van den Hout, M.A.; Baas, J.M.P. Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depress. Anxiety 2015, 32, 239–253. [Google Scholar] [CrossRef]
- Bland, S.T.; Schmid, M.J.; Greenwood, B.N.; Watkins, L.R.; Maier, S.F. Behavioral control of the stressor modulates stress-induced changes in neurogenesis and fibroblast growth factor-2. Neuroreport 2006, 17, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Delorme, R.; Chabane, N.; Callebert, J.; Falissard, B.; Mouren-Siméoni, M.C.; Rouillon, F.; Launay, J.M.; Leboyer, M. Platelet Serotonergic Predictors of Clinical Improvement in Obsessive Compulsive Disorder. J. Clin. Psychopharmacol. 2004, 24, 18–23. [Google Scholar] [CrossRef]
- Iny, L.J.; Pecknold, J.; Suranyi-Cadotte, B.E.; Bernier, B.; Luthe, L.; Nair, N.P.V.; Meaney, M.J. Studies of a neurochemical link between depression, anxiety, and stress from [3H]imipramine and [3H]paroxetine binding on human platelets. Biol. Psychiatry 1994, 36, 251–291. [Google Scholar] [CrossRef]
- Hernández, E.; Lastra, S.; Urbina, M.; Carreira, I.; Lima, L. Serotonin, 5-hydroxyindoleacetic acid and serotonin transporter in blood peripheral lymphocytes of patients with generalized anxiety disorder. Int. Immunopharmacol. 2002, 2, 893–900. [Google Scholar] [CrossRef]
- Koudouovoh-Tripp, P. Influence of mental stress on platelet bioactivity. World J. Psychiatry 2012, 2, 134. [Google Scholar] [CrossRef]
- Ransing, R.S.; Patil, B.; Grigo, O. Mean platelet volume and platelet distribution width level in patients with panic disorder. J. Neurosci. Rural Pract. 2017, 8, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Canan, F.; Dikici, S.; Kutlucan, A.; Celbek, G.; Coskun, H.; Gungor, A.; Aydin, Y.; Kocaman, G. Association of mean Platelet volume with DSM-IV major depression in a large community-based population: The MELEN study. J. Psychiatr. Res. 2012, 46, 298–302. [Google Scholar] [CrossRef]
- Haroon, E.; Raison, C.L.; Miller, A.H. Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2012, 37, 137–162. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Shimizu, E.; Hashimoto, K.; Mitsumori, M.; Koike, K.; Okamura, N.; Koizumi, H.; Ohgake, S.; Matsuzawa, D.; Zhang, L.; et al. Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: As a biological predictor of response to group cognitive behavioral therapy. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2005, 29, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Suliman, S.; Hemmings, S.M.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: Systematic review and meta-regression analysis. Front. Integr. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baykan, H.; Baykan, Ö.; Durmaz, O.; Kara, H.; Hişmioğullari, A.A.; Karlidere, T. Plasma neuropeptide-S levels in populations diagnosed with generalized anxiety disorder: A controlled study. Noropsikiyatri Ars. 2019, 56, 52–56. [Google Scholar] [CrossRef]
- Yao, Y.; Su, J.; Zhang, F.; Lei, Z. Effects of central and peripheral administration of neuropeptide S on the level of serum proinflammatory cytokines in pigs. Neuroimmunomodulation 2013, 21, 45–51. [Google Scholar] [CrossRef]
- Ghazal, P. The Physio-Pharmacological Role of the NPS/NPSR System in Psychiatric Disorders: A Translational Overview. Curr. Protein Pept. Sci. 2016, 17, 380–397. [Google Scholar] [CrossRef]
- Jüngling, K.; Seidenbecher, T.; Sosulina, L.; Lesting, J.; Sangha, S.; Clark, S.D.; Okamura, N.; Duangdao, D.M.; Xu, Y.L.; Reinscheid, R.K.; et al. Neuropeptide S-Mediated Control of Fear Expression and Extinction: Role of Intercalated GABAergic Neurons in the Amygdala. Neuron 2008, 59, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Cosci, F.; Mansueto, G. Biological and clinical markers in panic disorder. Psychiatry Investig. 2019, 16, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Bandelow, B.; Baldwin, D.; Abelli, M.; Altamura, C.; Dell’Osso, B.; Domschke, K.; Fineberg, N.A.; Grünblatt, E.; Jarema, M.; Maron, E.; et al. Biological markers for anxiety disorders, OCD and PTSD—A consensus statement. Part I: Neuroimaging and genetics. World J. Biol. Psychiatry 2016, 17, 321–365. [Google Scholar] [CrossRef]
- Ising, M.; Hohne, N.; Siebertz, A.; Parchmann, A.-M.; Erhardt, A.; Keck, M. Stress Response Regulation in Panic Disorder. Curr. Pharm. Des. 2012, 18, 5675–5684. [Google Scholar] [CrossRef]
- Faravelli, C.; Lo Sauro, C.; Lelli, L.; Pietrini, F.; Lazzeretti, L.; Godini, L.; Benni, L.; Fioravanti, G.; Alina Talamba, G.; Castellini, G.; et al. The Role of Life Events and HPA Axis in Anxiety Disorders: A Review. Curr. Pharm. Des. 2012, 18, 5663–5674. [Google Scholar] [CrossRef]
- Abelson, J.L.; Khan, S.; Liberzon, I.; Young, E.A. HPA axis activity in patients with panic disorder: Review and synthesis of four studies. Depress. Anxiety 2007, 24, 66–76. [Google Scholar] [CrossRef]
- Bandelow, B.; Domschke, K.; Baldwin, D. Panic Disorder and Agoraphobia; OUP Oxford: Oxford, UK, 2013. [Google Scholar]
- Abelson, J.L.; Curtis, G.C. Hypothalamic-pituitary-adrenal axis activity in panic disorder: Prediction of long-term outcome by pretreatment cortisol levels. Am. J. Psychiatry 1996, 153, 69–73. [Google Scholar] [PubMed]
- Coryell, W.; Noyes, R., Jr.; Reich, J. The prognostic significance of HPA-axis disturbance in panic disorder: A three-year follow-up. Biol. Psychiatry 1991, 29, 96–102. [Google Scholar] [CrossRef]
- Cremers, H.R.; Roelofs, K. Social anxiety disorder: A critical overview of neurocognitive research. Wiley Interdiscip. Rev. Cogn. Sci. 2016, 7, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Cleare, A.J. Cortisol as a predictor of psychological therapy response in anxiety disorders—Systematic review and meta-analysis. J. Anxiety Disord. 2017, 47, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrowski, K.; Schmalbach, I.; Strunk, A.; Hoyer, J.; Kirschbaum, C.; Joraschky, P. Cortisol reactivity in social anxiety disorder: A highly standardized and controlled study. Psychoneuroendocrinology 2021, 123. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Binder, E.B. Gene× environment vulnerability factors for PTSD: The HPA-axis. Neuropharmacology 2012, 62, 654–662. [Google Scholar] [CrossRef]
- Wagner, E.Y.N.; Strippoli, M.P.F.; Ajdacic-Gross, V.; Gholam-Rezaee, M.; Glaus, J.; Vandeleur, C.; Vollenweider, P.; Preisig, M.; von Känel, R. Generalized Anxiety Disorder is Prospectively Associated with Decreased Levels of Interleukin-6 and Adiponectin Among Individuals from the Community. J. Affect. Disord. 2020, 270, 114–117. [Google Scholar] [CrossRef]
- Felger, J.C. Imaging the role of inflammation in mood and anxiety-related disorders. Curr. Neuropharmacol. 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.A.; Geyer, M.A. Physiological evidence of exaggerated startle response in a subgroup of Vietnam Veterans with combat-related PTSD. Artic. Am. J. Psychiatry 1990. [Google Scholar] [CrossRef]
- Neurauter, G.; Schrocksnadel, K.; Scholl-Burgi, S.; Sperner-Unterweger, B.; Schubert, C.; Ledochowski, M.; Fuchs, D. Chronic Immune Stimulation Correlates with Reduced Phenylalanine Turnover. Curr. Drug Metab. 2008, 9, 622–627. [Google Scholar] [CrossRef]
- Capuron, L.; Schroecksnadel, S.; Féart, C.; Aubert, A.; Higueret, D.; Barberger-Gateau, P.; Layé, S.; Fuchs, D. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: Role in neuropsychiatric symptoms. Biol. Psychiatry 2011, 70, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Candito, M.; Nagatsu, T.; Chambon, P.; Chatel, M. High-performance liquid chromatographic measurement of cerebrospinal fluid tetrahydrobiopterin, neopterin, homovanillic acid and 5-hydroxindoleacetic acid in neurological diseases. J. Chromatogr. B Biomed. Sci. Appl. 1994, 657, 61–66. [Google Scholar] [CrossRef]
- Vogelzangs, N.; Beekman, A.T.F.; de Jonge, P.; Penninx, B.W.J.H. Anxiety disorders and inflammation in a large adult cohort. Transl. Psychiatry 2013, 3, e249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628. [Google Scholar] [CrossRef] [Green Version]
- Costello, H.; Gould, R.L.; Abrol, E.; Howard, R. Systematic review and meta-analysis of the association between peripheral inflammatory cytokines and generalised anxiety disorder. BMJ Open 2019, 9, e027925. [Google Scholar] [CrossRef] [Green Version]
- Bankier, B.; Barajas, J.; Martinez-Rumayor, A.; Januzzi, J.L. Association between C-reactive protein and generalized anxiety disorder in stable coronary heart disease patients. Eur. Heart J. 2008, 29, 2212–2217. [Google Scholar] [CrossRef]
- Copeland, W.E.; Shanahan, L.; Worthman, C.; Angold, A.; Costello, E.J. Generalized anxiety and C-reactive protein levels: A prospective, longitudinal analysis. Psychol. Med. 2012, 42, 2641. [Google Scholar] [CrossRef] [Green Version]
- Tofani, T.; Mannelli, L.D.C.; Zanardelli, M.; Ghelardini, C.; Pallanti, S. P. 1. f. 003 An immunologic profile study in drug-näive generalized anxiety non depressed patients: A pilot study. Eur. Neuropsychopharmacol. 2015, 25, S226. [Google Scholar] [CrossRef]
- Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in Fear-and Anxiety-Based Disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 2017, 42, 254–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, I.G.; Bauer, M.E.; MacHado-Vieira, R.; Teixeira, A.L. Cytokines in bipolar disorder: Paving the way for neuroprogression. Neural Plast. 2014, 2014, 360481. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016, 21, 1696–1709. [Google Scholar] [CrossRef] [PubMed]
- De Berardis, D.; Campanella, D.; Gambi, F.; Sepede, G.; Salini, G.; Carano, A.; La Rovere, R.; Pelusi, L.; Penna, L.; Cicconetti, A.; et al. Insight and alexithymia in adult outpatients with obsessive-compulsive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2005, 255, 350–358. [Google Scholar] [CrossRef] [PubMed]
- De Berardis, D.; Serroni, N.; Marini, S.; Rapini, G.; Carano, A.; Valchera, A.; Iasevoli, F.; Mazza, M.; Signorelli, M.; Aguglia, E.; et al. Alexithymia, suicidal ideation, and serum lipid levels among drug-naïve outpatients with obsessive-compulsive disorder. Rev. Bras. Psiquiatr. 2014, 36, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Berardis, D.; Serroni, N.; Campanella, D.; Marini, S.; Rapini, G.; Valchera, A.; Iasevoli, F.; Mazza, M.; Fornaro, M.; Perna, G.; et al. Alexithymia, Suicide Ideation, C-Reactive Protein, and Serum Lipid Levels Among Outpatients with Generalized Anxiety Disorder. Arch. Suicide Res. 2017, 21, 100–112. [Google Scholar] [CrossRef]
- De Berardis, D.; Vellante, F.; Fornaro, M.; Anastasia, A.; Olivieri, L.; Rapini, G.; Serroni, N.; Orsolini, L.; Valchera, A.; Carano, A.; et al. Alexithymia, suicide ideation, affective temperaments and homocysteine levels in drug naïve patients with post-traumatic stress disorder: An exploratory study in the everyday ‘real world’ clinical practice. Int. J. Psychiatry Clin. Pract. 2020, 24, 83–87. [Google Scholar] [CrossRef]
- Murphy, C.P.; Singewald, N. Role of MicroRNAs in Anxiety and Anxiety-Related Disorders. In Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2019; Volume 42, pp. 185–219. [Google Scholar]
- Murphy, C.P.; Singewald, N. Potential of microRNAs as novel targets in the alleviation of pathological fear. Genes Brain Behav. 2018, 17, e12427. [Google Scholar] [CrossRef] [Green Version]
- De Cristofaro, M.T.R.; Sessarego, A.; Pupi, A.; Biondi, F.; Faravelli, C. Brain perfusion abnormalities in drug-naive, lactate-sensitive panic patients: A SPECT study. Biol. Psychiatry 1993, 33, 505–512. [Google Scholar] [CrossRef]
- Cosci, F.; Mansueto, G. Biological and clinical markers to differentiate the type of anxiety disorders. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1191, pp. 197–218. [Google Scholar]
- Massaro, A.R.; Scivoletto, G.; Tonali, P. Cerebrospinal fluid markers in neurological disorders. Ital. J. Neurol. Sci. 1990, 11, 537–547. [Google Scholar] [CrossRef]
- Vismara, M.; Girone, N.; Cirnigliaro, G.; Fasciana, F.; Vanzetto, S.; Ferrara, L.; Priori, A.; D’addario, C.; Viganò, C.; Dell’osso, B. Peripheral biomarkers in DSM-5 anxiety disorders: An updated overview. Brain Sci. 2020, 10, 564. [Google Scholar] [CrossRef]
- Orlovska-Waast, S.; Köhler-Forsberg, O.; Brix, S.W.; Nordentoft, M.; Kondziella, D.; Krogh, J.; Benros, M.E. Correction: Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: A systematic review and meta-analysis. (Mol. Psychiatry 2019, 24, 869–887, doi:10.1038/s41380-018-0220-4). Mol. Psychiatry 2019, 24, 929–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, G.M.; Oquendo, M.A.; Huang, Y.Y.; Mann, J.J. Elevated cerebrospinal fluid 5-hydroxyindoleacetic acid levels in women with comorbid depression and panic disorder. Int. J. Neuropsychopharmacol. 2006, 9, 547–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, E.; Westberg, P.; Alling, C.; Thuresson, K.; Modigh, K. Cerebrospinal fluid levels of monoamine metabolites in panic disorder. Psychiatry Res. 1991, 36, 243–251. [Google Scholar] [CrossRef]
- Surget, A.; Leman, S.; Griebel, G.; Belzung, C.; Yalcin, I. Neuropeptides in Psychiatric Diseases: An Overview with a Particular Focus on Depression and Anxiety Disorders. CNS Neurol. Disord. Drug Targets 2008, 5, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burbach, J.P.H. What are neuropeptides? Methods Mol. Biol. 2011, 789, 1–36. [Google Scholar] [CrossRef] [PubMed]
- van Megen, H.J.G.M.; den Boer, J.A.; Westenberg, H.G.M. Neuropeptiden en angststoornissen. Acta Neuropsychiatr. 1992, 4, 25–30. [Google Scholar] [CrossRef]
- Lin, E.-J.D. Neuropeptides as Therapeutic Targets in Anxiety Disorders. Curr. Pharm. Des. 2012, 18, 5709–5727. [Google Scholar] [CrossRef]
- Bourin, M.; Malinge, M.; Vasar, E.; Bradwejn, J. Two faces of cholecystokinin: Anxiety and schizophrenia. Fundam. Clin. Pharmacol. 1996, 10, 116–126. [Google Scholar] [CrossRef]
- Bradwejn, J.; du Tertre, A.C.; Palmour, R.; Ervin, F.; Bourin, M. The cholecystokinin hypothesis of panic and anxiety disorders: A review. J. Psychopharmacol. 1992, 6, 345–351. [Google Scholar] [CrossRef]
- Gottschalk, M.G.; Domschke, K. Oxytocin and anxiety disorders. In Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2018; Volume 35, pp. 467–498. [Google Scholar]
- Neumann, I.D.; Slattery, D.A. Oxytocin in General Anxiety and Social Fear: A Translational Approach. Biol. Psychiatry 2016, 79, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Carson, D.S.; Berquist, S.W.; Trujillo, T.H.; Garner, J.P.; Hannah, S.L.; Hyde, S.A.; Sumiyoshi, R.D.; Jackson, L.P.; Moss, J.K.; Strehlow, M.C.; et al. Cerebrospinal fluid and plasma oxytocin concentrations are positively correlated and negatively predict anxiety in children. Mol. Psychiatry 2015, 20, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Weisman, O.; Zagoory-Sharon, O.; Schneiderman, I.; Gordon, I.; Feldman, R. Plasma oxytocin distributions in a large cohort of women and men and their gender-specific associations with anxiety. Psychoneuroendocrinology 2013, 38, 694–701. [Google Scholar] [CrossRef]
- Chuang, J.C.; Zigman, J.M. Ghrelin’s roles in stress, mood, and anxiety regulation. Int. J. Pept. 2010, 2010, 1–5. [Google Scholar] [CrossRef]
- Jetty, P.V.; Charney, D.S.; Goddard, A.W. Neurobiology of generalized anxiety disorder. Psychiatr. Clin. North Am. 2001, 24, 75–97. [Google Scholar] [CrossRef]
- Lydiard, R.B.; Ballenger, J.C.; Laraia, M.T.; Fossey, M.D.; Beinfeld, M.C. CSF cholecystokinin concentrations in patients with panic disorder and in normal comparison subjects. Am. J. Psychiatry 1992, 149, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Boccia, M.L.; Petrusz, P.; Suzuki, K.; Marson, L.; Pedersen, C.A. Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience 2013, 253, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Viero, C.; Shibuya, I.; Kitamura, N.; Verkhratsky, A.; Fujihara, H.; Katoh, A.; Ueta, Y.; Zingg, H.H.; Chvatal, A.; Sykova, E.; et al. Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci. Ther. 2010, 16, e138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.; Kim, Y.K. The role of the oxytocin system in anxiety disorders. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1191, pp. 103–120. [Google Scholar]
- Myers, A.J.; Williams, L.; Gatt, J.M.; McAuley-Clark, E.Z.; Dobson-Stone, C.; Schofield, P.R.; Nemeroff, C.B. Variation in the oxytocin receptor gene is associated with increased risk for anxiety, stress and depression in individuals with a history of exposure to early life stress. J. Psychiatr. Res. 2014, 59, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currie, P.J.; Khelemsky, R.; Rigsbee, E.M.; Dono, L.M.; Coiro, C.D.; Chapman, C.D.; Hinchcliff, K. Ghrelin is an orexigenic peptide and elicits anxiety-like behaviors following administration into discrete regions of the hypothalamus. Behav. Brain Res. 2012, 226, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, S.J.; Xu, L.; Clarke, M.A.; Lemus, M.; Reichenbach, A.; Geenen, B.; Kozicz, T.; Andrews, Z.B. Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress. Biol. Psychiatry 2012, 72, 457–465. [Google Scholar] [CrossRef]
- Miller, A.H.; Haroon, E.; Felger, J.C. Therapeutic Implications of Brain-Immune Interactions: Treatment in Translation. Neuropsychopharmacology 2017, 42, 334–359. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.È.; Stevens, B.; Sierra, A.; Wake, H.; Bessis, A.; Nimmerjahn, A. The role of microglia in the healthy brain. J. Neurosci. 2011, 31, 16064–16069. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, A.; Davis, B.; Matthews, J.C.; Rahmoune, H.; Hong, G.; Gee, A.; Earnshaw, D.; Brown, J. The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant α1-acid glycoprotein: Implications for the use of the ligand as a CNS inflammatory marker. Nucl. Med. Biol. 2003, 30, 199–206. [Google Scholar] [CrossRef]
- Raivich, G.; Bohatschek, M.; Kloss, C.U.A.; Werner, A.; Jones, L.L.; Kreutzberg, G.W. Neuroglial activation repertoire in the injured brain: Graded response, molecular mechanisms and cues to physiological function. Brain Res. Rev. 1999, 30, 77–105. [Google Scholar] [CrossRef]
- Saijo, K.; Glass, C.K. Microglial cell origin and phenotypes in health and disease. Nat. Rev. Immunol. 2011, 11, 775–787. [Google Scholar] [CrossRef]
- Marshall, S.A.; McClain, J.A.; Kelso, M.L.; Hopkins, D.M.; Pauly, J.R.; Nixon, K. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype. Neurobiol. Dis. 2013, 54, 239–251. [Google Scholar] [CrossRef] [Green Version]
- D’Mello, C.; Le, T.; Swain, M.G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factora signaling during peripheral organ inflammation. J. Neurosci. 2009, 29, 2089–2102. [Google Scholar] [CrossRef] [Green Version]
- Wohleb, E.S.; McKim, D.B.; Shea, D.T.; Powell, N.D.; Tarr, A.J.; Sheridan, J.F.; Godbout, J.P. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol. Psychiatry 2014, 75, 970–981. [Google Scholar] [CrossRef] [Green Version]
- Wohleb, E.S.; Fenn, A.M.; Pacenta, A.M.; Powell, N.D.; Sheridan, J.F.; Godbout, J.P. Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology 2012, 37, 1491–1505. [Google Scholar] [CrossRef] [Green Version]
- Hodes, G.E.; Pfau, M.L.; Leboeuf, M.; Golden, S.A.; Christoffel, D.J.; Bregman, D.; Rebusi, N.; Heshmati, M.; Aleyasin, H.; Warren, B.L.; et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA 2014, 111, 16136–16141. [Google Scholar] [CrossRef] [Green Version]
- Shin, L.M.; Rauch, S.L.; Pitman, R.K. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann. N. Y. Acad. Sci. 2006, 1071, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, N.A.; Brydon, L.; Walker, C.; Gray, M.A.; Steptoe, A.; Critchley, H.D. Inflammation Causes Mood Changes Through Alterations in Subgenual Cingulate Activity and Mesolimbic Connectivity. Biol. Psychiatry 2009, 66, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inagaki, T.K.; Muscatell, K.A.; Irwin, M.R.; Cole, S.W.; Eisenberger, N.I. Inflammation selectively enhances amygdala activity to socially threatening images. Neuroimage 2012, 59, 3222–3226. [Google Scholar] [CrossRef] [Green Version]
- Muscatell, K.A.; Dedovic, K.; Slavich, G.M.; Jarcho, M.R.; Breen, E.C.; Bower, J.E.; Irwin, M.R.; Eisenberger, N.I. Greater amygdala activity and dorsomedial prefrontal-amygdala coupling are associated with enhanced inflammatory responses to stress. Brain. Behav. Immun. 2015, 43, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenigs, M.; Grafman, J. Posttraumatic stress disorder: The role of medial prefrontal cortex and amygdala. Neuroscientist 2009, 15, 540–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, M.F.; Irwin, M.R.; Wellisch, D.K. When grief heats up: Pro-inflammatory cytokines predict regional brain activation. Neuroimage 2009, 47, 891–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, A.; Strigo, I.A.; Matthews, S.C.; Paulus, M.P.; Stein, M.B. Initial evidence of a failure to activate right anterior insula during affective set shifting in posttraumatic stress disorder. Psychosom. Med. 2009, 71, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Paulus, M.P.; Stein, M.B. An Insular View of Anxiety. Biol. Psychiatry 2006, 60, 383–387. [Google Scholar] [CrossRef]
- Fonzo, G.A.; Simmons, A.N.; Thorp, S.R.; Norman, S.B.; Paulus, M.P.; Stein, M.B. Exaggerated and disconnected insular-amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biol. Psychiatry 2010, 68, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Eisenberger, N.I.; Lieberman, M.D. Why rejection hurts: A common neural alarm system for physical and social pain. Trends Cogn. Sci. 2004, 8, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Tang, J.; Glaser, D.; Butterworth, B.; Dolan, R.J. Anterior cingulate activity during error and autonomic response. Neuroimage 2005, 27, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, D.A.; Chao, L.; Neylan, T.C.; O’Donovan, A.; Metzler, T.J.; Inslicht, S.S. Association among anterior cingulate cortex volume, psychophysiological response, and PTSD diagnosis in a Veteran sample. Neurobiol. Learn. Mem. 2018, 155, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Shin, L.M.; Bush, G.; Milad, M.R.; Lasko, N.B.; Brohawn, K.H.; Hughes, K.C.; Macklin, M.L.; Gold, A.L.; Karpf, R.D.; Orr, S.P.; et al. Exaggerated activation of dorsal anterior cingulate cortex during cognitive interference: A monozygotic twin study of posttraumatic stress disorder. Am. J. Psychiatry 2011, 168, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Shin, L.M.; Lasko, N.B.; Macklin, M.L.; Karpf, R.D.; Milad, M.R.; Orr, S.P.; Goetz, J.M.; Fischman, A.J.; Rauch, S.L.; Pitman, R.K. Resting metabolic activity in the cingulate cortex and vulnerability to posttraumatic stress disorder. Arch. Gen. Psychiatry 2009, 66, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Eisenberger, N.I.; Lieberman, M.D.; Satpute, A.B. Personality from a controlled processing perspective: An fMRI study of neuroticism, extraversion, and self-consciousness. Cogn. Affect. Behav. Neurosci. 2005, 5, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Ursu, S.; Shear, K.; Jones, M.R. Overactive Action Monitoring in Obsessive-Compulsive. Psychol. Sci. 2003, 14, 347–353. [Google Scholar] [CrossRef]
- Paulus, M.P.; Feinstein, J.S.; Simmons, A.; Stein, M.B. Anterior cingulate activation in high trait anxious subjects is related to altered error processing during decision making. Biol. Psychiatry 2004, 55, 1179–1187. [Google Scholar] [CrossRef]
- Marshall, J.; White, K.; Weaver, M.; Flury Wetherill, L.; Hui, S.; Stout, J.C.; Johnson, S.A.; Beristain, X.; Gray, J.; Wojcieszek, J.; et al. Specific psychiatric manifestations among preclinical huntington disease mutation carriers. Arch. Neurol. 2007, 64, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, P.; Wang, F.; Ji, G.; Miao, L.; You, S. Psychological Results of 438 Patients with persisting Gastroesophageal Reflux Disease Symptoms by Symptom Checklist 90-Revised Questionnaire. Euroasian J. Hepato Gastroenterol. 2017, 7, 117–121. [Google Scholar] [CrossRef]
- Solbakken, O.A.; Abbass, A. Intensive short-term dynamic residential treatment program for patients with treatment-resistant disorders. J. Affect. Disord. 2015, 181, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H. Review of the psychometric evidence of the perceived stress scale. Asian Nurs. Res. 2012, 6, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.M. Psychometric analysis of the ten-item perceived stress scale. Psychol. Assess. 2015, 27, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renovanz, M.; Soebianto, S.; Tsakmaklis, H.; Keric, N.; Nadji-Ohl, M.; Beutel, M.; Ringel, F.; Wollschläger, D.; Hickmann, A.K. Evaluation of the psychological burden during the early disease trajectory in patients with intracranial tumors by the ultra-brief Patient Health Questionnaire for Depression and Anxiety (PHQ-4). Support. Care Cancer 2019, 27, 4469–4477. [Google Scholar] [CrossRef]
- Smarr, K.L.; Keefer, A.L. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionna. Arthritis Care Res. 2011, 63, S454–S466. [Google Scholar] [CrossRef]
- Julian, L.J. Measures of anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Arthritis Care Res. 2011, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloninger, C.R. Implications of Comorbidity for the Classification of Mental Disorders: The Need for a Psychobiology of Coherence. In Psychiatric Diagnosis and Classification; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003; pp. 79–106. [Google Scholar]
- Lema, Y.Y.; Gamo, N.J.; Yang, K.; Ishizuka, K. Trait and state biomarkers for psychiatric disorders: Importance of infrastructure to bridge the gap between basic and clinical research and industry. Psychiatry Clin. Neurosci. 2018, 72, 482–489. [Google Scholar] [CrossRef]
- Boksa, P. A way forward for research on biomarkers for psychiatric disorders. J. Psychiatry Neurosci. 2013, 38, 75–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fava, G.A.; Guidi, J.; Grandi, S.; Hasler, G. The Missing Link between Clinical States and Biomarkers in Mental Disorders. Psychother. Psychosom. 2014, 83, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Kapur, S.; Phillips, A.G.; Insel, T.R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it. Mol. Psychiatry 2012, 17, 1174–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.H. Cortisol in mood disorders. Stress 2004, 7, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Nobis, A.; Zalewski, D.; Waszkiewicz, N. Peripheral Markers of Depression. J. Clin. Med. 2020, 9, 3793. [Google Scholar] [CrossRef]
- Waszkiewicz, N. Mentally Sick or Not—(Bio) Markers of Psychiatric Disorders Needed. J. Clin. Med. 2020, 9, 2375. [Google Scholar] [CrossRef] [PubMed]
Salivary Biomarker | Blood Biomarker | Cerebrospinal Fluid | Neuroimaging Marker |
---|---|---|---|
Cortisol ↓ [33,36] (PD) | Serotonin ↑ [68] (OCD) | 5-HIAA ↑ [119] (PD) | Amygdala activity ↑ [151,153] (Stress) |
sIgA ↓ [38,40] (Stress) | BDNF ↓ [76] (PD, GAD) | CCK ↓ [133] (PD) | ACC ↑ [155] (Stress) |
Melatonin ↓ [49] (PTSD) | NPS ↑ [78,79] (GAD) | Oxytocin ↓ [129] (Stress) | Insula ↑ [158] (PTSD) |
sAA ↑ [53] (Stress) | Cortisol ↓ [87,89] (PD) | Ghrelin ↑ [139] (Sress) | dACC ↑ [161,163] (PTSD) |
FGF-2 ↓ [67] (Stress) | IM: IL-1, IL-6, CRP ↑ [94,95] (PTSD, GAD) | ||
HDL-C ↓ [109] (OCD) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łoś, K.; Waszkiewicz, N. Biological Markers in Anxiety Disorders. J. Clin. Med. 2021, 10, 1744. https://doi.org/10.3390/jcm10081744
Łoś K, Waszkiewicz N. Biological Markers in Anxiety Disorders. Journal of Clinical Medicine. 2021; 10(8):1744. https://doi.org/10.3390/jcm10081744
Chicago/Turabian StyleŁoś, Kacper, and Napoleon Waszkiewicz. 2021. "Biological Markers in Anxiety Disorders" Journal of Clinical Medicine 10, no. 8: 1744. https://doi.org/10.3390/jcm10081744
APA StyleŁoś, K., & Waszkiewicz, N. (2021). Biological Markers in Anxiety Disorders. Journal of Clinical Medicine, 10(8), 1744. https://doi.org/10.3390/jcm10081744