Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
Study Design
3. Participants
3.1. Outcomes of the Study
3.2. Exposure to ACEi and ARBs
3.3. Measurements
3.4. Statistical Analysis
4. Results
4.1. Effect of ACEi and/or ARBs on Disease Activity
4.2. Effect of ACEi and/or ARBs Use on Medication Use
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RA | rheumatoid arthritis |
CVD | cardiovascular disease |
CV | cardiovascular |
ACE | angiotensin-converting enzyme |
ARB | angiotensin II receptor blockers |
RAS | renin-angiotensin system |
DMARDs | disease-modifying antirheumatic drugs |
NSAIDs | non-steroidal anti-inflammatory drugs |
ACR/EULAR | American College of Rheumatology/European League Against Rheumatism |
DAS28-CRP | Disease Activity Score-28 |
eGFR | estimated glomerular filtration rate |
CRP | C-reactive protein |
bDMARD | biological disease-modifying antirheumatic drugs |
csDMARD | conventional synthetic disease-modifying antirheumatic drugs |
DDD | defined daily dose |
ATC/DDD | Anatomical Therapeutic Chemical classification system/ Defined Daily Dose |
Anti CCP | anti-cyclic citrullinated peptide |
CVA | cerebrovascular accident |
TIA | transient ischemic attack |
AMI | acute myocardial infarct |
AP | angina pectoris |
References
- Castaneda, S.; Nurmohamed, M.T.; Gonzalez-Gay, M.A. Cardiovascular disease in inflammatory rheumatic diseases. Best Pract. Res. Clin. Rheumatol. 2016, 30, 851–869. [Google Scholar] [CrossRef]
- Crowson, C.S.; Rollefstad, S.; Ikdahl, E.; Kitas, G.D.; van Riel, P.; Gabriel, S.E.; Matteson, E.L.; Kvien, T.K.; Douglas, K.; Sandoo, A.; et al. Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2018, 77, 48–54. [Google Scholar] [CrossRef]
- Meyer, P.W.; Anderson, R.; Ker, J.A.; Ally, M.T. Rheumatoid arthritis and risk of cardiovascular disease. Cardiovasc. J. Afr. 2018, 29, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Metsios, G.S.; Moe, R.H.; van der Esch, M.; van Zanten, J.; Fenton, S.A.M.; Koutedakis, Y.; Vitalis, P.; Kennedy, N.; Brodin, N.; Bostrom, C.; et al. The effects of exercise on cardiovascular disease risk factors and cardiovascular physiology in rheumatoid arthritis. Rheumatol. Int. 2020, 40, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Kerola, A.M.; Kerola, T.; Kauppi, M.J.; Kautiainen, H.; Virta, L.J.; Puolakka, K.; Nieminen, T.V. Cardiovascular comorbidities antedating the diagnosis of rheumatoid arthritis. Ann. Rheum. Dis. 2013, 72, 1826–1829. [Google Scholar] [CrossRef]
- Atzeni, F.; Rodríguez-Carrio, J.; Popa, C.D.; Nurmohamed, M.T.; Szűcs, G.; Szekanecz, Z. Cardiovascular effects of approved drugs for rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 270–290. [Google Scholar] [CrossRef]
- England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ 2018, 361, k1036. [Google Scholar] [CrossRef]
- Baker, J.F.; Sauer, B.; Teng, C.C.; George, M.; Cannon, G.W.; Ibrahim, S.; Cannella, A.; England, B.R.; Michaud, K.; Caplan, L.; et al. Initiation of Disease-Modifying Therapies in Rheumatoid Arthritis Is Associated With Changes in Blood Pressure. J. Clin. Rheumatol. 2018, 24, 203–209. [Google Scholar] [CrossRef]
- van den Oever, I.A.M.; Heslinga, M.; Griep, E.N.; Griep-Wentink, H.R.M.; Schotsman, R.; Cambach, W.; Dijkmans, B.A.C.; Smulders, Y.M.; Lems, W.F.; Boers, M.; et al. Cardiovascular risk management in rheumatoid arthritis patients still suboptimal: The Implementation of Cardiovascular Risk Management in Rheumatoid Arthritis project. Rheumatology 2017, 56, 1472–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC Classification and DDD Assignment 2020. Available online: https://www.whocc.no/filearchive/publications/2020_guidelines_web.pdf (accessed on 20 October 2020).
- Akagi, T.; Mukai, T.; Mito, T.; Kawahara, K.; Tsuji, S.; Fujita, S.; Uchida, H.A.; Morita, Y. Effect of Angiotensin II on Bone Erosion and Systemic Bone Loss in Mice with Tumor Necrosis Factor-Mediated Arthritis. Int. J. Mol. Sci. 2020, 21, 4145. [Google Scholar] [CrossRef] [PubMed]
- Fahmy Wahba, M.G.; Shehata Messiha, B.A.; Abo-Saif, A.A. Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur. J. Pharmacol. 2015, 765, 307–315. [Google Scholar] [CrossRef]
- Price, A.; Lockhart, J.C.; Ferrell, W.R.; Gsell, W.; McLean, S.; Sturrock, R.D. Angiotensin II type 1 receptor as a novel therapeutic target in rheumatoid arthritis: In vivo analyses in rodent models of arthritis and ex vivo analyses in human inflammatory synovitis. Arthritis Rheum. 2007, 56, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Silveira, K.D.; Coelho, F.M.; Vieira, A.T.; Barroso, L.C.; Queiroz-Junior, C.M.; Costa, V.V.; Sousa, L.F.C.; Oliveira, M.L.; Bader, M.; Silva, T.A.; et al. Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides 2013, 46, 53–63. [Google Scholar] [CrossRef]
- Martin, M.F.; Surrall, K.E.; McKenna, F.; Dixon, J.S.; Bird, H.A.; Wright, V. Captopril: A new treatment for rheumatoid arthritis? Lancet 1984, 1, 1325–1328. [Google Scholar] [CrossRef]
- Bird, H.A.; Le Gallez, P.; Dixon, J.S.; Catalano, M.A.; Traficante, A.; Liauw, L.A.; Sussman, H.; Rotman, H.; Wright, V. A clinical and biochemical assessment of a nonthiol ACE inhibitor (pentopril; CGS-13945) in active rheumatoid arthritis. J. Rheumatol. 1990, 17, 603–608. [Google Scholar]
- Federatie medisch specialisten richtlijnendatabase. Rheumatoid Arthritis Guideline 2019. Available online: https://richtlijnendatabase.nl/richtlijn/reumato_de_artritis_ra/startpagina_-_reumatoide_artritis.html (accessed on 20 October 2020).
- Schieffer, B.; Bünte, C.; Witte, J.; Hoeper, K.; Böger, R.H.; Schwedhelm, E.; Drexler, H. Comparative effects of AT1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease. J. Am. Coll. Cardiol. 2004, 44, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, P.R.G.; Matias, K.A.; Dantas, A.T.; Marques, C.D.L.; Pereira, M.C.; Duarte, A.; de Melo Rego, M.J.B.; da Rocha Pitta, I.; da Rocha Pitta, M.G. Losartan, but not Enalapril and Valsartan, Inhibits the Expression of IFN-γ, IL-6, IL-17F and IL-22 in PBMCs from Rheumatoid Arthritis Patients. Open Rheumatol. J. 2018, 12, 160–170. [Google Scholar] [CrossRef]
- Chang, Y.; Wei, W. Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin. Exp. Immunol. 2015, 179, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, A.; Cerdá-Nicolás, M.; Naim Abu Nabah, Y.; Mata, M.; Issekutz, A.C.; Panés, J.; Lobb, R.R.; Sanz, M.J. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 2004, 104, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Piqueras, L.; Kubes, P.; Alvarez, A.; O’Connor, E.; Issekutz, A.C.; Esplugues, J.V.; Sanz, M.J. Angiotensin II induces leukocyte-endothelial cell interactions in vivo via AT(1) and AT(2) receptor-mediated P-selectin upregulation. Circulation 2000, 102, 2118–2123. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Liu, J.; Liu, X.; Li, M. Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis 2010, 212, 206–212. [Google Scholar] [CrossRef]
- Sagawa, K.; Nagatani, K.; Komagata, Y.; Yamamoto, K. Angiotensin receptor blockers suppress antigen-specific T cell responses and ameliorate collagen-induced arthritis in mice. Arthritis Rheum. 2005, 52, 1920–1928. [Google Scholar] [CrossRef]
- Dalbeth, N.; Edwards, J.; Fairchild, S.; Callan, M.; Hall, F.C. The non-thiol angiotensin-converting enzyme inhibitor quinapril suppresses inflammatory arthritis. Rheumatology 2005, 44, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Sakuta, T.; Morita, Y.; Satoh, M.; Fox, D.A.; Kashihara, N. Involvement of the renin-angiotensin system in the development of vascular damage in a rat model of arthritis: Effect of angiotensin receptor blockers. Arthritis Rheum. 2010, 62, 1319–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagenais, N.J.; Jamali, F. Protective effects of angiotensin II interruption: Evidence for antiinflammatory actions. Pharmacotherapy 2005, 25, 1213–1229. [Google Scholar] [CrossRef] [PubMed]
- de Jong, H.J.; Vandebriel, R.J.; Saldi, S.R.; van Dijk, L.; van Loveren, H.; Cohen Tervaert, J.W.; Klungel, O.H. Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users. Pharmacoepidemiol. Drug Saf. 2012, 21, 835–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Bemt, B.J.; van den Hoogen, F.H.; Benraad, B.; Hekster, Y.A.; van Riel, P.L.; van Lankveld, W. Adherence rates and associations with nonadherence in patients with rheumatoid arthritis using disease modifying antirheumatic drugs. J. Rheumatol. 2009, 36, 2164–2170. [Google Scholar] [CrossRef]
- Lin, T.T.; Wu, C.K.; Liao, M.T.; Yang, Y.H.; Chen, P.C.; Yeih, D.F.; Lin, L.Y. Primary prevention of myocardial infarction with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in hypertensive patients with rheumatoid arthritis—A nationwide cohort study. PLoS ONE 2017, 12, e0188720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braz, N.F.T.; Pinto, M.R.C.; Vieira, É.L.M.; Souza, A.J.; Teixeira, A.L.; Simoes-e-Silva, A.C.; Kakehasi, A.M. Renin-angiotensin system molecules are associated with subclinical atherosclerosis and disease activity in rheumatoid arthritis. Mod. Rheumatol. 2020, 31, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.E.; Patterson, J.H. Angiotensin II-receptor blockers: Clinical relevance and therapeutic role. Am. J. Health Syst. Pharm. 2001, 58, 671–683. [Google Scholar] [CrossRef] [PubMed]
Exposed to ACEi or ARBs (n = 584) | Non-Exposed (n = 552) | p Value | |
---|---|---|---|
Age, years a | 70.3 (10.0) | 61.2 (14.6) | <0.01 |
Female, n (%) | 382 (65.4) | 395 (71.6) | 0.03 |
Disease duration, years b | 12.8 (6.2–20.4) | 8.0 (2.6–16.0) | <0.01 |
Positive rheumatoid factor (%) | 63.7 | 65.0 | 0.66 |
Anti-CCP positive (%) | 60.2 | 65.0 | 0.11 |
CRP b | 2 (1–7) | 2 (1–6) | 0.76 |
SJC b | 0 (0–1) | 0 (0–1) | 0.05 |
TJC b | 0 (0–1) | 0 (0–1) | 0.62 |
Kidney function (%) | |||
Impaired | 21.4 | 7.1 | <0.01 |
Steroid users (%) | 17.3 | 16.1 | 0.63 |
NSAID users (%) | 37.7 | 42.6 | 0.10 |
DMARD users (%) | 85.8 | 77.4 | <0.01 |
csDMARDs | 72.4 | 62.9 | <0.01 |
bDMARDs | 38.9 | 33.0 | 0.04 |
DDD csDMARDs b | 0.9 (0.6–1.3) | 1.0 (0.7–1.4) | <0.01 |
DDD bDMARDs b | 1.0 (0.5–1.0) | 1.0 (0.6–1.0) | 0.97 |
Medication (%) | |||
Enalapril | 8.7 | ||
Lisinopril | 25.7 | ||
Perindopril | 13.9 | ||
Losartan | 18.2 | ||
Irbesartan | 7.2 | ||
Other ACEi or ARB | 26.3 | ||
Comorbidities (%) | |||
Diabetes | 17.3 | 5.4 | <0.01 |
Hypertension | 48.6 | 13.2 | <0.01 |
Other cardiovascular diseases | 38.2 | 16.7 | <0.01 |
CVA | 5.8 | 3.8 | 0.13 |
TIA | 5.1 | 2.7 | 0.05 |
AMI | 12.5 | 2.0 | <0.01 |
AP | 4.5 | 2.5 | 0.11 |
F(14, 1121) | = | 9.64 | ||
Prob > F | = | 0.0000 | ||
R-squared | = | 0.1074 | ||
DAS28-CRP * | Factor | (95% Conf.Interval) | p > t | |
Intercept | 0.45 # | 0.30–0.60 | <0.001 | |
Using ACEi | 1.00 | 0.94–1.06 | 0.965 | |
Using ARB | 1.02 | 0.96–1.09 | 0.483 | |
Female | 1.10 | 1.05–1.15 | <0.001 | |
Diabetes | 1.01 | 0.94–1.08 | 0.848 | |
Impaired kidney function | 1.06 | 0.99–1.14 | 0.071 | |
Using NSAIDs | 1.05 | 1.00–1.10 | 0.050 | |
Using steroids | 1.16 | 1.09–1.23 | <0.001 | |
Seropositive RA | 0.98 | 0.93–1.03 | 0.343 | |
CVD | 1.01 | 0.96–1.07 | 0.643 | |
Hypertension | 1.06 | 1.00–1.12 | 0.036 | |
BMI ## | 1.01 | 1.00–1.02 | 0.070 | |
Disease duration * | 0.57 | 0.50–0.66 | <0.001 | |
Age | 1.00 | 1.00–1.00 | 0.076 | |
Using csDMARDs | 0.93 | 0.87–0.98 | 0.003 | |
Using bDMARDs | 1.01 | 0.96–1.06 | 0.776 |
F (12, 757) | = | 11.10 | ||
Prob > F | = | 0.0000 | ||
R-squared | = | 0.1496 | ||
DDD csDMARDs * | Factor | (95% Conf. Interval) | p > t | |
Intercept | 0.43 # | 0.21–0.65 | <0.001 | |
Using ACEi | 0.97 | 0.89–1.07 | 0.547 | |
Using ARB | 0.99 | 0.90–1.10 | 0.914 | |
Female | 0.95 | 0.88–1.02 | 0.157 | |
Diabetes | 1.08 | 0.96–1.21 | 0.201 | |
Impaired kidney function | 0.85 | 0.76–0.94 | 0.002 | |
Using NSAIDs | 1.02 | 0.94–1.10 | 0.658 | |
Using steroids | 1.11 | 1.01–1.24 | 0.032 | |
Seropositive RA | 1.10 | 1.01–1.19 | 0.024 | |
CVD | 0.99 | 0.91–1.07 | 0.750 | |
Hypertension | 1.04 | 0.95–1.13 | 0.396 | |
Disease duration * | 2.34 | 2.27–2.42 | <0.001 | |
Age | 1.00 | 0.99–1.00 | 0.070 |
LR chi2(12) | = | 48.85 | ||
Prob > chi2 | = | 0.0000 | ||
Pseudo R2 | = | 0.0395 | ||
bDMARD | Odds Ratio | (95% Conf. Interval) | p > z | |
Intercept | 0.23 | 0.10–0.56 | 0.001 | |
Using ACEi | 1.14 | 0.79–1.64 | 0.477 | |
Using ARB | 1.46 | 0.98–2.18 | 0.061 | |
Female | 0.91 | 0.66–1.23 | 0.531 | |
Diabetes | 0.94 | 0.59–1.50 | 0.790 | |
Impaired kidney function | 0.96 | 0.62–1.48 | 0.854 | |
Using NSAIDs | 1.39 | 1.04–1.86 | 0.028 | |
Using steroids | 1.02 | 0.70–1.47 | 0.929 | |
Seropositive RA | 2.09 | 1.46–2.98 | <0.001 | |
CVD | 1.21 | 0.86–1.70 | 0.274 | |
Hypertension | 0.90 | 0.64–1.27 | 0.550 | |
Disease duration | 1.03 | 1.01–1.04 | <0.001 | |
Age | 0.99 | 0.97–1.00 | 0.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sluijsmans, D.M.C.F.; Rohrich, D.C.; Popa, C.D.; van den Bemt, B.J.F. Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study. J. Clin. Med. 2021, 10, 1985. https://doi.org/10.3390/jcm10091985
Sluijsmans DMCF, Rohrich DC, Popa CD, van den Bemt BJF. Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study. Journal of Clinical Medicine. 2021; 10(9):1985. https://doi.org/10.3390/jcm10091985
Chicago/Turabian StyleSluijsmans, Dorien M. C. F., Daphne C. Rohrich, Calin D. Popa, and Bart J. F. van den Bemt. 2021. "Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study" Journal of Clinical Medicine 10, no. 9: 1985. https://doi.org/10.3390/jcm10091985
APA StyleSluijsmans, D. M. C. F., Rohrich, D. C., Popa, C. D., & van den Bemt, B. J. F. (2021). Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study. Journal of Clinical Medicine, 10(9), 1985. https://doi.org/10.3390/jcm10091985