Mortality Predictors in Severe COVID-19 Patients from an East European Tertiary Center: A Never-Ending Challenge for a No Happy Ending Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population Characteristics and Laboratory Investigations
2.2. Statistical Analysis
2.3. Ethics
3. Results
3.1. Baseline Characteristics
3.2. Laboratory and Imagistic Findings
3.3. Therapeutic Approach and Complications
3.4. Role of Biomarkers in the Assessment of COVID-19 Forms
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peeri, N.C.; Shrestha, N.; Rahman, M.S.; Zaki, R.; Tan, Z.; Bibi, S.; Baghbanzadeh, M.; Aghamohammadi, N.; Zhang, W.; Haque, U. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol. 2020, 49, 717–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worldometer Coronavirus Update: Cases and Deaths from COVID-19 Virus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 3 December 2021).
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Dorjee, K.; Kim, H.; Bonomo, E.; Dolma, R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS ONE 2020, 15, e0243191. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.J. Thoughts on the alveolar phase of COVID-19. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 319, L115–L120. [Google Scholar] [CrossRef] [PubMed]
- Botta, M.; Tsonas, A.M.; Pillay, J.; Boers, L.S.; Algera, A.G.; Bos, L.; Dongelmans, D.A.; Hollmann, M.W.; Horn, J.; Vlaar, A.; et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): A national, multicentre, observational cohort study. Lancet Respir. Med. 2021, 9, 139–148. [Google Scholar] [CrossRef]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S.; et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. 2020, 81, e16–e25. [Google Scholar] [CrossRef] [PubMed]
- Chidambaram, V.; Tun, N.L.; Haque, W.Z.; Majella, M.G.; Sivakumar, R.K.; Kumar, A.; Hsu, A.T.; Ishak, I.A.; Nur, A.A.; Ayeh, S.K.; et al. Factors associated with disease severity and mortality among patients with COVID-19: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0241541. [Google Scholar] [CrossRef]
- Severe Covid-19 GWAS Group; Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr.; Nahid, M.; Ringel, J.B.; et al. Clinical characteristics of covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef]
- Hyman, J.B.; Leibner, E.S.; Tandon, P.; Egorova, N.N.; Bassily-Marcus, A.; Kohli-Seth, R.; Arvind, V.; Chang, H.L.; Lin, H.M.; Levin, M.A. Timing of Intubation and In-Hospital Mortality in Patients With Coronavirus Disease 2019. Crit. Care Explor. 2020, 2, e0254. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Romieu, A.C.; Adelman, M.W.; Hockstein, M.A.; Robichaux, C.J.; Edwards, J.A.; Fazio, J.C.; Blum, J.M.; Jabaley, C.S.; Caridi-Scheible, M.; Martin, G.S.; et al. Timing of Intubation and Mortality Among Critically Ill Coronavirus Disease 2019 Patients: A Single-Center Cohort Study. Crit. Care Med. 2020, 48, e1045–e1053. [Google Scholar] [CrossRef] [PubMed]
- ARDS Definition Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron. Clin. Pr. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Huang, Y.; Lyu, X.; Li, D.; Wang, L.; Wang, Y.; Zou, W.; Wei, Y.; Wu, X. A cohort study of 676 patients indicates D-dimer is a critical risk factor for the mortality of COVID-19. PLoS ONE 2020, 15, e0242045. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef]
- Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why does COVID-19 disproportionately affect older people? Aging 2020, 12, 9959–9981. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.M.; Yang, C.X.; Tam, A.; Shaipanich, T.; Hackett, T.L.; Singhera, G.K.; Dorscheid, D.R.; Sin, D.D. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur. Resp. J. 2020, 55, 2000688. [Google Scholar] [CrossRef] [Green Version]
- Bansod, S.; Ahirwar, A.K.; Sakarde, A.; Asia, P.; Gopal, N.; Alam, S.; Kaim, K.; Ahirwar, P.; Sorte, S.R. COVID-19 and geriatric population: From pathophysiology to clinical perspectives. Horm. Mol. Biol Clin. Investig. 2021, 42, 87–98. [Google Scholar] [CrossRef]
- Petrovic, V.; Radenkovic, D.; Radenkovic, G.; Djordjevic, V.; Banach, M. Pathophysiology of Cardiovascular Complications in COVID-19. Front. Physiol. 2020, 11, 575600. [Google Scholar] [CrossRef]
- Long, B.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020, 38, 1504–1507. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1038. [Google Scholar] [CrossRef]
- Miftode, R.S.; Petriș, A.O.; Onofrei Aursulesei, V.; Cianga, C.; Costache, I.I.; Mitu, O.; Miftode, I.L.; Șerban, I.L. The Novel Perspectives Opened by ST2 in the Pandemic: A Review of Its Role in the Diagnosis and Prognosis of Patients with Heart Failure and COVID-19. Diagnostics 2021, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Miftode, R.S.; Constantinescu, D.; Cianga, C.M.; Petris, A.O.; Timpau, A.S.; Crisan, A.; Costache, I.I.; Mitu, O.; Anton-Paduraru, D.T.; Miftode, I.L.; et al. A Novel Paradigm Based on ST2 and Its Contribution towards a Multimarker Approach in the Diagnosis and Prognosis of Heart Failure: A Prospective Study during the Pandemic Storm. Life 2021, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Sakr, Y.; Giovini, M.; Leone, M.; Pizzilli, G.; Kortgen, A.; Bauer, M.; Tonetti, T.; Duclos, G.; Zieleskiewicz, L.; Buschbeck, S.; et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: A narrative review. Ann. Intensive Care 2020, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128–136.e4. [Google Scholar] [CrossRef]
- Stringer, D.; Braude, P.; Myint, P.K.; Evans, L.; Collins, J.T.; Verduri, A.; Quinn, T.J.; Vilches-Moraga, A.; Stechman, M.J.; Pearce, L.; et al. The role of C-reactive protein as a prognostic marker in COVID-19. Int. J. Epidemiol. 2021, 50, 420–429. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef]
- Thoreau, B.; Galland, J.; Delrue, M.; Neuwirth, M.; Stepanian, A.; Chauvin, A.; Dellal, A.; Nallet, O.; Roriz, M.; Devaux, M.; et al. D-Dimer Level and Neutrophils Count as Predictive and Prognostic Factors of Pulmonary Embolism in Severe Non-ICU COVID-19 Patients. Viruses 2021, 13, 758. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Islam, A.; Rafiq, S.; Laher, I. The COVID-19 Pandemic: Disproportionate Thrombotic Tendency and Management Recommendations. Trop. Med. Infect. Dis. 2021, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J. Transl. Med. 2020, 18, 206. [Google Scholar] [CrossRef]
- Simadibrata, D.M.; Calvin, J.; Wijaya, A.D.; Ibrahim, N. Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COVID-19 patients: A meta-analysis. Am. J. Emerg. Med. 2021, 42, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 2011, 17, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Joppich, M.; Hoffknecht, M.L.; Gold, C.; Engel, A.; Polewka, V.; Muenchhoff, M.; et al. Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. J. Thromb. Haemost. 2021, 19, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Meizlish, M.L.; Pine, A.B.; Bishai, J.D.; Goshua, G.; Nadelmann, E.R.; Simonov, M.; Chang, C.H.; Zhang, H.; Shallow, M.; Bahel, P.; et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021, 5, 1164–1177. [Google Scholar] [CrossRef]
- Chao, W.C.; Wu, C.L.; Huang, J.A.; Chai, J.W.; Teng, C.L.; Lee, W.L.; Fu, Y.C.; Chen, S.A. Association between Early Absolute Neutrophil Count and Level of D-Dimer among Patients with COVID-19 Infection in Central Taiwan. J. Clin. Med. 2021, 10, 3891. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Coppola, S.; Santus, P.; Sotgiu, G.; Mondoni, M.; Gandola, A.; Saad, M.; Sferrazza Papa, G.F.; Centanni, S.; Saderi, L.; Chiumello, D.A.; et al. Feasibility and Clinical Outcomes of a Step Up Noninvasive Respiratory Support Strategy in Patients with Severe COVID-19 Pneumonia. J. Clin. Med. 2021, 10, 5444. [Google Scholar] [CrossRef]
- Grasselli, G.; Tonetti, T.; Protti, A.; Langer, T.; Girardis, M.; Bellani, G.; Laffey, J.; Carrafiello, G.; Carsana, L.; Rizzuto, C.; et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. Lancet Respir. Med. 2020, 8, 1201–1208. [Google Scholar] [CrossRef]
- Bonnesen, B.; Jensen, J.U.S.; Jeschke, K.N.; Mathioudakis, A.G.; Corlateanu, A.; Hansen, E.F.; Weinreich, U.M.; Hilberg, O.; Sivapalan, P. Management of COVID-19-Associated Acute Respiratory Failure with Alternatives to Invasive Mechanical Ventilation: High-Flow Oxygen, Continuous Positive Airway Pressure, and Noninvasive Ventilation. Diagnostics 2021, 11, 2259. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Sasaki, K.; Karkar, A.; Sharif, S.; Lewis, K.; Mammen, M.J.; Alexander, P.; Ye, Z.; Lozano, L.; Munch, M.W.; et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: A systematic review and meta-analysis. Intensive Care Med. 2021, 47, 521–537. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Rochwerg, B.; Agarwal, A.; Siemieniuk, R.A.; Agoritsas, T.; Lamontagne, F.; Askie, L.; Lytvyn, L.; Leo, Y.S.; Macdonald, H.; Zeng, L.; et al. A living WHO guideline on drugs for Covid-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef]
- Dequin, P.F.; Heming, N.; Meziani, F.; Plantefève, G.; Voiriot, G.; Badié, J.; François, B.; Aubron, C.; Ricard, J.D.; Ehrmann, S.; et al. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Koutsakos, M.; Kedzierskas, K. A race to determine what drives COVID-19 severity. Nature 2020, 583, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, P.; Zhao, Y.; Zhuang, Z.; Wang, Z.; Song, R.; Zhang, J.; Liu, C.; Gao, Q.; Xu, Q.; et al. Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune Response Landscapes of COVID-19 and Influenza Patients. Immunity 2020, 53, 685–696.e3. [Google Scholar] [CrossRef]
- Van den Eynde, E.; Gasch, O.; Oliva, J.C.; Prieto, E.; Calzado, S.; Gomila, A.; Machado, M.L.; Falgueras, L.; Ortonobes, S.; Morón, A.; et al. Corticosteroids and tocilizumab reduce in-hospital mortality in severe COVID-19 pneumonia: A retrospective study in a Spanish hospital. Infect. Dis. 2021, 53, 291–302. [Google Scholar] [CrossRef]
- Miftode, E.; Miftode, L.; Coman, I.; Prepeliuc, C.; Obreja, M.; Stămăteanu, O.; Părângă, T.G.; Leca, D.; Pleşca, C.E. Diabetes Mellitus-A Risk Factor for Unfavourable Outcome in COVID-19 Patients-The Experience of an Infectious Diseases Regional Hospital. Healthcare 2021, 9, 788. [Google Scholar] [CrossRef]
- Miftode, E.; Luca, C.; Manciuc, C.; Vâță, A.; Hunea, I.; Miftode, L.; Bădescu, A.; Dorneanu, O. Covid-19: A Course Through Stormy Waters. Med. Surg. J. Rev. Med. Chir. 2020, 124, 351–362. [Google Scholar]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D.; Northwell COVID-19 Research Consortium; et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef] [PubMed]
Demographics and Clinical Characteristics | ||||
---|---|---|---|---|
Total | Survivors | Non-Survivors | ||
(n = 150) | (n = 50) | (n = 100) | p Value | |
Age (years) | 66.4 (13.3) | 61.2 (13.5) | 69 (12.5) | 0.002 |
30–39 | 5 (3.3%) | 4 (8%) | 1 (1%) | |
40–49 | 17 (11.3%) | 10 (20%) | 7 (7%) | |
50–59 | 15 (10%) | 0 | 15 (15%) | |
60–69 | 48 (32%) | 22 (44%) | 26 (26%) | |
70–79 | 38 (25.3%) | 12 (24%) | 26 (26%) | |
>80 | 27 (18%) | 2 (4%) | 25 (25%) | |
Sex | 0.117 | |||
Female | 58 (38.7%) | 15 (30%) | 43 (43%) | |
Male | 92 (61.3%) | 35 (70%) | 57 (57%) | |
Current smoker | 46 (30.7%) | 18 (36%) | 28 (28%) | 0.320 |
Obesity | 63 (42%) | 16 (32%) | 47 (47%) | 0.075 |
Temperature (°C) | <0.01 | |||
<37.5 °C | 74 (49.3%) | 35 (70%) | 40 (40%) | |
37.5–38.0 °C | 24 (16%) | 8 (16%) | 15 (15%) | |
38.1–39.0 °C | 41 (27.3%) | 7 (14%) | 34 (34%) | |
>39.0 °C | 11 (7.3%) | 0 | 11 (11%) | |
Systolic blood pressure <90 mmHg | 2 (1.3%) | 0 | 2 (1.33%) | 0.085 |
Diastolic blood pressure <60 mmHg | 14 (9.3%) | 1 (2%) | 13 (13%) | 0.144 |
Peripheral oxygen saturation <93% | 125 (83%) | 39 (78%) | 86 (86%) | <0.01 |
Heart rate >100 beats/minute | 30 (20%) | 6 (12%) | 24 (24%) | 0.022 |
Dyspnea | 102 (68%) | 71 (71%) | 31 (62%) | 0.281 |
Cough | 97 (64.7%) | 60 (60%) | 37 (74%) | 0.082 |
Sputum | 52 (34.7%) | 14 (28%) | 38 (38%) | 0.217 |
Chills | 51 (34%) | 11 (22%) | 40 (40%) | 0.021 |
Headache | 52 (34.7%) | 17 (34%) | 35 (35%) | 0.904 |
Fatigue | 101 (67.3%) | 27 (54%) | 74 (74%) | 0.019 |
Gastrointestinal symptoms | 28 (18.7%) | 9 (19%) | 19 (19%) | 0.883 |
Myalgia | 55 (36.7%) | 14 (28%) | 41 (41%) | 0.121 |
Rash | 3 (2%) | 0 | 3 (2%) | 0.083 |
Duration from onset of symptoms to hospital admission (days) | 4 (3–6) | 4 (3–6) | 4 (3–6) | 0.859 |
Length of stay in hospital (days) | 12 (8–16) | 15 (13–19) | 10 (6–14) | <0.001 |
Duration from ICU admission to death(days) | 6.5 (3–8) | - | 6.5 (3–8) | - |
Pathology | Total (n = 150) | Survivors (n = 50) | Non-Survivors (n = 100) | p Value |
---|---|---|---|---|
Chronic obstructive pulmonary disease | 24 (16%) | 5 (10%) | 19 (19%) | 0.125 |
Diabetes | 58 (38.7%) | 18 (36%) | 40 (40%) | 0.683 |
Arterial hypertension | 91 (60.7%) | 22 (44%) | 69 (69%) | 0.004 |
Coronary heart disease | 46 (30.7%) | 10 (20%) | 36 (36%) | 0.045 |
Atrial fibrillation | 25 (16.7%) | 4 (8%) | 21 (21%) | 0.023 |
Cerebrovascular diseases | 18 (12%) | 5 (10%) | 13 (13%) | 0.597 |
Chronic heart failure | 62 (41.3%) | 15 (30%) | 47 (47%) | 0.042 |
Chronic liver diseases | 12 (8%) | 3 (6%) | 9 (9%) | 0.526 |
Chronic renal diseases | 24 (16%) | 1 (2%) | 23 (23%) | <0.001 |
Malignancy | 20 (13.3%) | 7 (14%) | 13 (13%) | 0.866 |
Immunodeficiency | 28 (18.7%) | 10 (20%) | 18 (18%) | 0.769 |
Parameter | Total (n = 150) | Survivors (n = 50) | Non-Survivors (n = 100) | p Value |
---|---|---|---|---|
White blood cell count, ×109/L | 0.002 | |||
<4 | 12 (8%) | 6 (12%) | 6 (6%) | |
4–10 | 87 (58%) | 35 (70%) | 52 (52%) | |
>10 | 51 (34%) | 9 (18%) | 42 (42%) | |
Neutrophil to lymphocyte ratio | 8.3 | 7.7 | 8.4 | 0.022 |
Platelet count, ×109/L | 177 | 169 | 187 | 0.419 |
<150 | 102 (68%) | 38 (76%) | 64 (64%) | |
Hemoglobin, g/dl | 12 | 13 | 12 | 0.026 |
<12 | 71 (47.3%) | 28 (56%) | 43 (43%) | |
C-reactive protein, mg/L | 95.5 | 102 | 93 | 0.893 |
>5 | 144 (96%) | 50 (100%) | 94 (94%) | |
D-dimer, mg/L | 0.8 | 0.4 | 1.7 | <0.001 |
>0.5 | 98 (63.5%) | 21 (42%) | 77 (77%) | |
Interleukin-6, pg/mL | 102 | 87 | 124 | 0.005 |
>1.8 | 150 (100%) | 50 (100%) | 100 (100%) | |
Ferritin, ng/mL | 568 | 471.5 | 682 | <0.001 |
>350 | 126 (84%) | 35 (70%) | 85 (85%) | |
Lactate dehydrogenase, | 430 | 404.5 | 445 | 0.085 |
>430 U/L | 75 (50%) | 19 (38%) | 56 (56%) | |
Aspartate aminotransferase, U/L | 43 | 42 | 43 | 0.203 |
>37 | 94 (62.7%) | 32 (64%) | 62 (62%) | |
Alanine aminotransferase, U/L | 38.5 | 41 | 38 | 0.193 |
>40 | 74 (49.3%) | 27 (54%) | 46 (46%) | |
Total bilirubin, mg/dl | 0.8 | 0.7 | 0.8 | 0.227 |
>1 | 49 (32.7%) | 12 (24%) | 37 (37%) | |
Creatinine, mg/dl | 0.9 | 0.9 | 1 | 0.011 |
>1.1 | 48 (32%) | 11 (22%) | 37 (37%) | |
Urea, mg/dl | 56 | 44 | 62.5 | <0.01 |
>50 | 93 (62%) | 18 (36%) | 75 (75%) | |
Blood sugar, mg/dL | 137.5 | 137 | 140.5 | 0.973 |
>115 | 112 (74.7%) | 40 (80%) | 72 (72%) | |
INR | 1.1 | 1.1 | 1.1 | 0.011 |
>1.2 | 36 (24%) | 4 (8%) | 32 (32%) | |
Imaging findings | ||||
Ground-glass opacities | 103 (68.7%) | 30 (60%) | 73 (73%) | 0.121 |
Focal pulmonary infiltration | 31 (20.7%) | 16 (32%) | 15 (15%) | 0.028 |
Diffuse andbilateral pulmonary infiltration | 50 (33.3%) | 7 (14%) | 43 (43%) | <0.001 |
Total (n = 150) | Survivors (n = 50) | Non-Survivors (n = 100) | p Value | |
---|---|---|---|---|
Treatments | ||||
Mechanical ventilation | ||||
Non-invasive | 61 (40.7%) | 9 (18%) | 52 (52%) | <0.001 |
Invasive | 105 (70%) | 5 (10%) | 100 (100%) | <0.001 |
Antiviral agents | 136 (90.7%) | 47 (94%) | 89 (89%) | 0.282 |
Antibiotics | 139 (92.7%) | 46 (92%) | 93 (93%) | 0.826 |
Glucocorticoids | 127 (84.7) | 46 (92%) | 81 (81%) | 0.049 |
Tocilizumab | 125 (83.3%) | 47 (94%) | 78 (78%) | 0.003 |
Complications | ||||
Acute respiratory distress syndrome | 116 (77.3%) | 23 (46%) | 93 (93%) | <0.001 |
Acute heart failure | 12 (8%) | 0 | 12 (8%) | <0.001 |
Acute kidney failure | 29 (19.3%) | 1 (2%) | 28 (28%) | <0.001 |
Septic shock | 7 (4.7%) | 0 | 7 (7%) | 0.008 |
Multiple organ dysfunction syndrome | 39 (26%) | 0 | 39 (26%) | <0.001 |
Parameter | B | S.E. | Wald | p | Exp (B) | 95.0% C.I. for EXP(B) | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
CRP | 0.081 | 0.025 | 10.670 | 0.001 | 1.085 | 1.033 | 1.139 |
D-Dimer | 2.262 | 0.732 | 9.546 | 0.002 | 9.603 | 2.287 | 40.325 |
Heart rate | 0.230 | 0.072 | 10.091 | 0.001 | 1.259 | 1.092 | 1.451 |
D-Dimer | C-Reactive Protein | |||
---|---|---|---|---|
Parameter | r | p | r | p |
Multiple organ dysfunction syndrome | 0.198 | 0.015 | 0.199 | 0.015 |
Non-invasive mechanical ventilation | 0.059 | 0.472 | 0.237 | 0.004 |
Invasive mechanical ventilation | 0.366 | <0.001 | 0.252 | 0.002 |
Use of glucocorticoids | −0.007 | 0.934 | −0.054 | 0.513 |
Use of Tocilizumab | 0.086 | 0.297 | 0.019 | 0.814 |
Admission to ICU | 0.389 | <0.001 | 0.335 | <0.001 |
C-reactive protein | 0.238 | 0.003 | 1 | - |
D-Dimer | 1 | - | 0.238 | 0.003 |
Area Under the Curve | |||||
---|---|---|---|---|---|
Test Result Variable(s) | Area | Std. Error | Asymptotic Sig. | Asymptotic 95% Confidence Interval | |
Lower Bound | Upper Bound | ||||
C-reactive protein | 0.707 | 0.042 | <0.0001 | 0.624 | 0.790 |
D-Dimer | 0.741 | 0.041 | <0.0001 | 0.660 | 0.821 |
Criterion | D-Dimer Cut-Off (mg/L) | Se | Sp | C-Reactive Protein Cut-Off (mg/L) | Se | Sp |
---|---|---|---|---|---|---|
Se = Sp | 0.74 | 65.7% | 70.8% | 48.5 | 61.8% | 62.5% |
Youden’s index (Maximum Se + Sp) | 2.05 | 47.1% | 92.7% | 68.5 | 56.9% | 85.7% |
High-risk profile | 0.41 | 80.4% | 52.1% | 23 | 80.1% | 51.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timpau, A.-S.; Miftode, R.-S.; Petris, A.O.; Costache, I.-I.; Miftode, I.-L.; Rosu, F.M.; Anton-Paduraru, D.-T.; Leca, D.; Miftode, E.G. Mortality Predictors in Severe COVID-19 Patients from an East European Tertiary Center: A Never-Ending Challenge for a No Happy Ending Pandemic. J. Clin. Med. 2022, 11, 58. https://doi.org/10.3390/jcm11010058
Timpau A-S, Miftode R-S, Petris AO, Costache I-I, Miftode I-L, Rosu FM, Anton-Paduraru D-T, Leca D, Miftode EG. Mortality Predictors in Severe COVID-19 Patients from an East European Tertiary Center: A Never-Ending Challenge for a No Happy Ending Pandemic. Journal of Clinical Medicine. 2022; 11(1):58. https://doi.org/10.3390/jcm11010058
Chicago/Turabian StyleTimpau, Amalia-Stefana, Radu-Stefan Miftode, Antoniu Octavian Petris, Irina-Iuliana Costache, Ionela-Larisa Miftode, Florin Manuel Rosu, Dana-Teodora Anton-Paduraru, Daniela Leca, and Egidia Gabriela Miftode. 2022. "Mortality Predictors in Severe COVID-19 Patients from an East European Tertiary Center: A Never-Ending Challenge for a No Happy Ending Pandemic" Journal of Clinical Medicine 11, no. 1: 58. https://doi.org/10.3390/jcm11010058
APA StyleTimpau, A. -S., Miftode, R. -S., Petris, A. O., Costache, I. -I., Miftode, I. -L., Rosu, F. M., Anton-Paduraru, D. -T., Leca, D., & Miftode, E. G. (2022). Mortality Predictors in Severe COVID-19 Patients from an East European Tertiary Center: A Never-Ending Challenge for a No Happy Ending Pandemic. Journal of Clinical Medicine, 11(1), 58. https://doi.org/10.3390/jcm11010058