Pulsatile Trabecular Meshwork Motion: An Indicator of Intraocular Pressure Control in Primary Open-Angle Glaucoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. PhS-OCT Examination and Data Processing
2.3. Statistical Analysis
3. Results
3.1. Demographic and Baseline Characteristics of the Subjects
3.2. Repeatability and Reliability
3.3. Difference in MV and CDisp between Healthy and POAG Eyes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tham, Y.-C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, H. Causal Inference in Primary Open Angle Glaucoma: Specific Discussion on Intraocular Pressure. Ophthalm. Epidemiol. 2006, 13, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Matlach, J.; Bender, S.; König, J.; Binder, H.; Pfeiffer, N.; Hoffmann, E.M. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin. Ophthalmol. 2018, 13, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, A.L.; Miglior, S. Risk Factors for Glaucoma Onset and Progression. Surv. Ophthalmol. 2008, 53 (Suppl. 1), S3–S10. [Google Scholar] [CrossRef]
- Leidl, M.C.; Choi, C.J.; Syed, Z.A.; Melki, S.A. Intraocular pressure fluctuation and glaucoma progression: What do we know? Br. J. Ophthalmol. 2014, 98, 1315–1319. [Google Scholar] [CrossRef] [Green Version]
- Bhartiya, S.; Gangwani, M.; Kalra, R.B.; Aggarwal, A.; Gagrani, M.; Sirish, K.N. 24-hour Intraocular pressure monitoring: The way ahead. Romanian J. Ophthalmol. 2019, 63, 315–320. [Google Scholar] [CrossRef]
- Acott, T.S.; Kelley, M.J.; Keller, K.E.; Vranka, J.A.; Abu-Hassan, D.W.; Li, X.; Aga, M.; Bradley, J.M. Intraocular pressure homeostasis: Maintaining balance in a high-pressure environment. J. Ocul. Pharmacol. Ther. 2014, 30, 94–101. [Google Scholar] [CrossRef]
- Johnstone, M.; Xin, C.; Tan, J.; Martin, E.; Wen, J.; Wang, R.K. Aqueous outflow regulation – 21st century concepts. Prog. Retin. Eye Res. 2020, 83, 100917. [Google Scholar] [CrossRef]
- Xin, C.; Wang, R.K.; Song, S.; Shen, T.; Wen, J.; Martin, E.; Jiang, Y.; Padilla, S.; Johnstone, M. Aqueous outflow regulation: Optical co-herence tomography implicates pressure-dependent tissue motion. Exp. Eye Res. 2017, 158, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, M.; Martin, E.; Jamil, A. Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes. Exp. Eye Res. 2011, 92, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffault, J.; Labbé, A.; Hamard, P.; Brignole-Baudouin, F.; Baudouin, C. The trabecular meshwork: Structure, function and clinical implications. A review of the literature. J. Fr. Ophtalmol. 2020, 43, e217–e230. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, P.L. Deconstructing aqueous humor outflow—The last 50 years. Exp. Eye Res. 2020, 197, 108105. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Read, A.T.; Sulchek, T.; Ethier, C.R. Trabecular meshwork stiffness in glaucoma. Exp. Eye Res. 2016, 158, 3–12. [Google Scholar] [CrossRef]
- Xin, C.; Song, S.; Johnstone, M.; Wang, N.; Wang, R. Quantification of Pulse-Dependent Trabecular Meshwork Motion in Normal Humans Using Phase-Sensitive OCT. Investig. Opthalmol. Vis. Sci. 2018, 59, 3675–3681. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Johnstone, M.A.; Xin, C.; Song, S.; Padilla, S.; Vranka, J.A.; Acott, T.S.; Zhou, K.; Schwaner, S.A.; Wang, R.; et al. Estimating Human Trabecular Meshwork Stiffness by Numerical Modeling and Advanced OCT Imaging. Investig. Opthalmol. Vis. Sci. 2017, 58, 4809–4817. [Google Scholar] [CrossRef]
- Gao, K.; Song, S.; Johnstone, M.A.; Zhang, Q.; Xu, J.; Zhang, X.; Wang, R.K.; Wen, J.C. Reduced Pulsatile Trabecular Meshwork Motion in Eyes with Primary Open Angle Glaucoma Using Phase-Sensitive Optical Coherence Tomography. Investig. Opthalmol. Vis. Sci. 2020, 61, 21. [Google Scholar] [CrossRef]
- Li, G.; Lee, C.; Agrahari, V.; Wang, K.; Navarro, I.; Sherwood, J.M.; Crews, K.; Farsiu, S.; Gonzalez, P.; Lin, C.-W.; et al. In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model. Proc. Natl. Acad. Sci. USA 2019, 116, 1714–1722. [Google Scholar] [CrossRef] [Green Version]
- Saraswathy, S.; Bogarin, T.; Barron, E.; Francis, B.A.; Tan, J.C.; Weinreb, R.N.; Huang, A.S. Segmental differences found in aqueous angiographic-determined high–And low-flow regions of human trabecular meshwork. Exp. Eye Res. 2020, 196, 108064. [Google Scholar] [CrossRef]
- Swaminathan, S.S.; Oh, D.-J.; Kang, M.H.; Rhee, D.J. Aqueous outflow: Segmental and distal flow. J. Cataract Refract. Surg. 2014, 40, 1263–1272. [Google Scholar] [CrossRef] [Green Version]
- Vranka, J.A.; Bradley, J.M.; Yang, Y.-F.; Keller, K.E.; Acott, T.S. Mapping Molecular Differences and Extracellular Matrix Gene Expression in Segmental Outflow Pathways of the Human Ocular Trabecular Meshwork. PLoS ONE 2015, 10, e0122483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vranka, J.A.; Staverosky, J.A.; Reddy, A.P.; Wilmarth, P.A.; David, L.L.; Acott, T.S.; Russell, P.; Raghunathan, V.K. Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures. Investig. Opthalmol. Vis. Sci. 2018, 59, 246–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherwood, J.M.; Stamer, W.D.; Overby, D.R. A model of the oscillatory mechanical forces in the conventional outflow pathway. J. R. Soc. Interface 2019, 16, 20180652. [Google Scholar] [CrossRef] [PubMed]
Normal | POAG | p-Value | |
---|---|---|---|
Age (years) | 41.3 ± 9.3 | 44.6 ± 9.5 | 0.992 |
Sex (F:M) | 11/9 | 10/20 | 0.154 |
Axial length (mm) | 24.04 ± 0.43 | 24.03 ± 0.28 | 0.069 |
Central corneal thickness (µm) | 527 ± 28 | 540 ± 33 | 0.342 |
Heart rate | 70.3 ± 8.8 | 72.9 ± 9.4 | 0.406 |
Mean arterial pressure (mmHg) | 87.9 ± 7.5 | 90.4 ± 6.2 | 0.445 |
IOP (mmHg) | 15.4 ± 1.6 | 15.3 ± 2.0 | 0.111 |
Mean deviation (dB) | −9.32 ± 1.58 |
IOP Stable | IOP Fluctuant | p-Value | |
---|---|---|---|
Age (years) | 44.6 ± 14.5 | 46.4 ± 15.2 | 0.630 |
Sex (F:M) | 8/12 | 4/6 | 0.833 |
Follow-up (weeks) | 20.8 ± 4.2 | 19.7 ± 2.9 | 0.115 |
Axial length (mm) | 24.34 ± 0.50 | 24.42 ± 0.50 | 0.982 |
Central corneal thickness (µm) | 544 ± 37 | 537 ± 28 | 0.287 |
Heart rate | 72.1 ± 4.6 | 73.5 ± 5.1 | 0.842 |
Mean arterial pressure (mmHg) | 90.8 ± 9.5 | 89.4 ± 11.5 | 0.333 |
IOP (mmHg) | 16.1 ± 3.1 | 16.2 ± 2.5 | 0.471 |
Mean deviation (dB) | −11.03 ± 3.09 | −13.15 ± 4.01 | 0.127 |
Nasal | Temporal | p-Value | |
---|---|---|---|
Normal | |||
EMV, µm/s | 28.5 ± 6.3 | 25.2 ± 6.8 | 0.002 |
IMV, µm/s | 22.8 ± 3.2 | 19.5 ± 3.7 | <0.001 |
ECDisp, µm | 0.341 ± 0.063 | 0.305 ± 0.064 | 0.036 |
ICDisp, µm | 0.271 ± 0.063 | 0.248 ± 0.064 | 0.253 |
POAG | |||
EMV, µm/s | 16.3 ± 2.2 | 15.3 ± 1.6 | 0.085 |
IMV, µm/s | 11.2 ± 1.9 | 9.7 ± 1.2 | 0.01 |
ECDisp, µm | 0.231 ± 0.031 | 0.218 ± 0.021 | 0.037 |
ICDisp, µm | 0.207 ± 0.038 | 0.156 ± 0.034 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, R.; Xin, C.; Xu, J.; Hu, J.; Wang, H.; Wang, N.; Johnstone, M. Pulsatile Trabecular Meshwork Motion: An Indicator of Intraocular Pressure Control in Primary Open-Angle Glaucoma. J. Clin. Med. 2022, 11, 2696. https://doi.org/10.3390/jcm11102696
Du R, Xin C, Xu J, Hu J, Wang H, Wang N, Johnstone M. Pulsatile Trabecular Meshwork Motion: An Indicator of Intraocular Pressure Control in Primary Open-Angle Glaucoma. Journal of Clinical Medicine. 2022; 11(10):2696. https://doi.org/10.3390/jcm11102696
Chicago/Turabian StyleDu, Rong, Chen Xin, Jingjiang Xu, Jianping Hu, Huaizhou Wang, Ningli Wang, and Murray Johnstone. 2022. "Pulsatile Trabecular Meshwork Motion: An Indicator of Intraocular Pressure Control in Primary Open-Angle Glaucoma" Journal of Clinical Medicine 11, no. 10: 2696. https://doi.org/10.3390/jcm11102696
APA StyleDu, R., Xin, C., Xu, J., Hu, J., Wang, H., Wang, N., & Johnstone, M. (2022). Pulsatile Trabecular Meshwork Motion: An Indicator of Intraocular Pressure Control in Primary Open-Angle Glaucoma. Journal of Clinical Medicine, 11(10), 2696. https://doi.org/10.3390/jcm11102696