A Review of the Immunologic Pathways Involved in Bullous Pemphigoid and Novel Therapeutic Targets
Abstract
:1. Introduction
2. Immunologic Pathways in BP
2.1. Role of IL-4
2.2. Role of IL-5
2.3. Role of IL-12/23
2.4. Role of IL-13
2.5. Role of IgE and Eosinophils
2.6. Role of Complement
2.7. Drug-Related/Induced BP
3. Conventional Therapies
4. Targeted Therapies
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Amber, K.T.; Murrell, D.F.; Schmidt, E.; Joly, P.; Borradori, L. Autoimmune subepidermal bullous diseases of the skin and mucosae: Clinical features, diagnosis, and management. Clin. Rev. Allergy Immunol. 2018, 54, 26–51. [Google Scholar] [CrossRef] [PubMed]
- Serwin, A.B.; Musialkowska, E.; Piascik, M. Incidence and mortality of bullous pemphigoid in north-east Poland (Podlaskie Province), 1999–2012: A retrospective bicentric cohort study. Int. J. Dermatol. 2014, 53, e432–e437. [Google Scholar] [CrossRef] [PubMed]
- Försti, A.K.; Jokelainen, J.; Timonen, M.; Tasanen, K. Increasing incidence of bullous pemphigoid in Northern Finland: A retrospective database study in Oulu University Hospital. Br. J. Dermatol. 2014, 171, 1223–1226. [Google Scholar] [CrossRef] [PubMed]
- Wertenteil, S.; Garg, A.; Strunk, A.; Alloo, A. Prevalence estimates for pemphigoid in the United States: A sex-adjusted and age-adjusted population analysis. J. Am. Acad. Dermatol. 2019, 80, 655–659. [Google Scholar] [CrossRef]
- Joly, P.; Baricault, S.; Sparsa, A.; Bernard, P.; Bédane, C.; Duvert-Lehembre, S.; Courville, P.; Bravard, P.; Rémond, B.; Doffoel-Hantz, V.; et al. Incidence and mortality of bullous pemphigoid in France. J. Investig. Dermatol. 2012, 132, 1998–2004. [Google Scholar] [CrossRef] [Green Version]
- Di Lernia, V.; Casanova, D.M.; Goldust, M.; Ricci, C. Pemphigus vulgaris and bullous pemphigoid: Update on diagnosis and treatment. Dermatol. Pract. Concept. 2020, 10, e2020050. [Google Scholar] [CrossRef]
- Fania, L.; Salemme, A.; Provini, A.; Pagnanelli, G.; Collina, M.C.; Abeni, D.; Didona, B.; Di Zenzo, G.; Mazzanti, C. Detection and characterization of IgG, IgE, and IgA autoantibodies in patients with bullous pemphigoid associated with dipeptidyl peptidase-4 inhibitors. J. Am. Acad. Dermatol. 2018, 78, 592–595. [Google Scholar] [CrossRef]
- Nishie, W.; Tasanen, K. Gliptin-associated bullous pemphigoid: A valuable model of the mechanism of breakdown of immune tolerance against BP180. J. Investig. Dermatol. 2019, 139, 755–756. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.; Sitaru, C.; Amber, K.; Hertl, M. BP180-and BP230-specific IgG autoantibodies in pruritic disorders of the elderly: A preclinical stage of bullous pemphigoid? Br. J. Dermatol. 2014, 171, 212–219. [Google Scholar] [CrossRef]
- Schmidt, E.; Zillikens, D. Pemphigoid diseases. Lancet 2013, 381, 320–332. [Google Scholar] [CrossRef]
- Della Torre, R.; Combescure, C.; Cortés, B.; Marazza, G.; Beltraminelli, H.; Naldi, L.; Borradori, L. Clinical presentation and diagnostic delay in bullous pemphigoid: A prospective nationwide cohort. Br. J. Dermatol. 2012, 167, 1111–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feliciani, C.; Joly, P.; Jonkman, M.F.; Zambruno, G.; Zillikens, D.; Ioannides, D.; Kowalewski, C.; Jedlickova, H.; Kárpáti, S.; Marinovic, B. Management of bullous pemphigoid: The European Dermatology Forum consensus in collaboration with the European Academy of Dermatology and Venereology. Br. J. Dermatol. 2015, 172, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Kirtschig, G.; Middleton, P.; Bennett, C.; Murrell, D.; Wojnarowska, F.; Khumalo, N. Interventions for bullous pemphigoid: A summarised Cochrane review. Clin. Exp. Dermatol. 2011, 36, 449–450. [Google Scholar]
- Joly, P.; Roujeau, J.-C.; Benichou, J.; Picard, C.; Dreno, B.; Delaporte, E.; Vaillant, L.; D’Incan, M.; Plantin, P.; Bedane, C. A comparison of oral and topical corticosteroids in patients with bullous pemphigoid. N. Engl. J. Med. 2002, 346, 321–327. [Google Scholar] [CrossRef]
- Joly, P.; Roujeau, J.-C.; Benichou, J.; Delaporte, E.; D’incan, M.; Dreno, B.; Bedane, C.; Sparsa, A.; Gorin, I.; Picard, C. A comparison of two regimens of topical corticosteroids in the treatment of patients with bullous pemphigoid: A multicenter randomized study. J. Investig. Dermatol. 2009, 129, 1681–1687. [Google Scholar] [CrossRef] [Green Version]
- Eming, R.; Sticherling, M.; Hofmann, S.C.; Hunzelmann, N.; Kern, J.S.; Kramer, H.; Pfeiffer, C.; Schuster, V.; Zillikens, D.; Goebeler, M. S2k guidelines for the treatment of pemphigus vulgaris/foliaceus and bullous pemphigoid. J. Der Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 2015, 13, 833–844. [Google Scholar] [CrossRef]
- Williams, H.C.; Wojnarowska, F.; Kirtschig, G.; Mason, J.; Godec, T.R.; Schmidt, E.; Chalmers, J.R.; Childs, M.; Walton, S.; Harman, K. Doxycycline versus prednisolone as an initial treatment strategy for bullous pemphigoid: A pragmatic, non-inferiority, randomised controlled trial. Lancet 2017, 389, 1630–1638. [Google Scholar] [CrossRef] [Green Version]
- Yamagami, J. Recent advances in the understanding and treatment of pemphigus and pemphigoid. F1000Research 2018, 7, 1360. [Google Scholar] [CrossRef] [Green Version]
- Sticherling, M.; Franke, A.; Aberer, E.; Glaeser, R.; Hertl, M.; Pfeiffer, C.; Rzany, B.; Schneider, S.; Shimanovich, I.; Werfel, T. An open, multicentre, randomized clinical study in patients with bullous pemphigoid comparing methylprednisolone and azathioprine with methylprednisolone and dapsone. Br. J. Dermatol. 2017, 177, 1299–1305. [Google Scholar] [CrossRef]
- Kremer, N.; Snast, I.; Cohen, E.S.; Hodak, E.; Mimouni, D.; Lapidoth, M.; Mazor, S.; Levi, A. Rituximab and omalizumab for the treatment of bullous pemphigoid: A systematic review of the literature. Am. J. Clin. Dermatol. 2019, 20, 209–216. [Google Scholar] [CrossRef]
- Zhou, T.; Peng, B.; Geng, S. Emerging Biomarkers and Therapeutic Strategies for Refractory Bullous Pemphigoid. Front. Immunol. 2021, 12, 3376. [Google Scholar] [CrossRef]
- Amagai, M.; Ikeda, S.; Hashimoto, T.; Mizuashi, M.; Fujisawa, A.; Ihn, H.; Matsuzaki, Y.; Ohtsuka, M.; Fujiwara, H.; Furuta, J. A randomized double-blind trial of intravenous immunoglobulin for bullous pemphigoid. J. Dermatol. Sci. 2017, 85, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bernard, P.; Antonicelli, F. Bullous pemphigoid: A review of its diagnosis, associations and treatment. Am. J. Clin. Dermatol. 2017, 18, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, Q.; Wang, G. The role of T cells in pemphigus vulgaris and bullous pemphigoid. Autoimmun. Rev. 2020, 19, 102661. [Google Scholar] [CrossRef]
- Iwata, Y.; Komura, K.; Kodera, M.; Usuda, T.; Yokoyama, Y.; Hara, T.; Muroi, E.; Ogawa, F.; Takenaka, M.; Sato, S. Correlation of IgE autoantibody to BP180 with a severe form of bullous pemphigoid. Arch. Dermatol. 2008, 144, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Messingham, K.N.; Crowe, T.P.; Fairley, J.A. The intersection of IgE autoantibodies and eosinophilia in the pathogenesis of bullous pemphigoid. Front. Immunol. 2019, 10, 2331. [Google Scholar] [CrossRef]
- Mohanan, S.; Criton, S.; Abraham, U.M. Mixed immunobullous disease in infants: Falls in bullous pemphigoid-linear IgA spectrum? Indian J. Paediatr. Dermatol. 2020, 21, 310. [Google Scholar]
- Tabatabaei-Panah, P.-S.; Moravvej, H.; Alirajab, M.; Etaaty, A.; Geranmayeh, M.; Hosseine, F.; Khansari, A.; Mahdian, M.; Mirhashemi, M.; Parvizi, S. Association between TH2 Cytokine Gene Polymorphisms and Risk of Bullous Pemphigoid. Immunol. Investig. 2020, 51, 343–356. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, H.; Shen, S.; Dang, E.; Li, Q.; Qiao, P.; Qiao, H.; Wang, G. Identification of Immunodominant Th2-Cell Epitopes in Chinese Patients with Bullous Pemphigoid. J. Investig. Dermatol. 2018, 138, 1917–1924. [Google Scholar] [CrossRef] [Green Version]
- Pickford, W.J.; Gudi, V.; Haggart, A.M.; Lewis, B.J.; Herriot, R.; Barker, R.N.; Ormerod, A.D. T cell participation in autoreactivity to NC16a epitopes in bullous pemphigoid. Clin. Exp. Immunol. 2015, 180, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.; Cozzani, E.; Gasparini, G.; Parodi, A. Targeting interleukin 4 receptor α: A new approach to the treatment of cutaneous autoimmune bullous diseases? Dermatol. Ther. 2020, 33, e13190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giomi, B.; Caproni, M.; Calzolari, A.; Bianchi, B.; Fabbri, P. Th1, Th2 and Th3 cytokines in the pathogenesis of bullous pemphigoid. J. Dermatol. Sci. 2002, 30, 116–128. [Google Scholar] [CrossRef]
- Feliciani, C.; Toto, P.; Mohammad Pour, S.; Coscione, G.; Amerio, P. A Th2-like cytokine response is involved in bullous pemphigoid. the role of IL-4 and IL-5 in the pathogenesis of the disease. Int. J. Immunopathol. Pharmacol. 1999, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Spencer, L.A.; Szela, C.T.; Perez, S.A.; Kirchhoffer, C.L.; Neves, J.S.; Radke, A.L.; Weller, P.F. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 2009, 85, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’auria, L.; Pietravalle, M.; Mastroianni, A.; Ferraro, C.; Mussi, A.; Bonifati, C.; Giacalone, B.; Ameglio, F. IL-5 levels in the serum and blister fluid of patients with bullous pemphigoid: Correlations with eosinophil cationic protein, RANTES, IgE and disease severity. Arch. Dermatol. Res. 1998, 290, 25–27. [Google Scholar] [CrossRef]
- Plée, J.; Le Jan, S.; Giustiniani, J.; Barbe, C.; Joly, P.; Bedane, C.; Vabres, P.; Truchetet, F.; Aubin, F.; Antonicelli, F. Integrating longitudinal serum IL-17 and IL-23 follow-up, along with autoantibodies variation, contributes to predict bullous pemphigoid outcome. Sci. Rep. 2015, 5, 18001. [Google Scholar] [CrossRef] [PubMed]
- Giusti, D.; Bini, E.; Terryn, C.; Didier, K.; Le Jan, S.; Gatouillat, G.; Durlach, A.; Nesmond, S.; Muller, C.; Bernard, P. NET formation in bullous pemphigoid patients with relapse is modulated by IL-17 and IL-23 interplay. Front. Immunol. 2019, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Marin, M.; Alzueta, N.; Castresana, M.; Gascón, A.; Pío, M. Bullous pemphigoid induced by ustekinumab: A case report. Eur. J. Hosp. Pharm. 2021, 28, 47–49. [Google Scholar] [CrossRef]
- Onsun, N.; Sallahoglu, K.; Dizman, D.; Su, Ö.; Tosuner, Z. Bullous pemphigoid during ustekinumab therapy in a psoriatic patient. Eur. J. Dermatol. 2017, 27, 81–82. [Google Scholar] [CrossRef]
- Le Guern, A.; Alkeraye, S.; Vermersch-Langlin, A.; Coupe, P.; Vonarx, M. Bullous pemphigoid during ustekinumab therapy. JAAD Case Rep. 2015, 1, 359. [Google Scholar] [CrossRef] [Green Version]
- Moyle, M.; Cevikbas, F.; Harden, J.L.; Guttman-Yassky, E. Understanding the immune landscape in atopic dermatitis: The era of biologics and emerging therapeutic approaches. Exp. Dermatol. 2019, 28, 756–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, S.M.; Heller, N.M. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015, 75, 38–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Hwang, B.J.; Culton, D.A.; Li, N.; Burette, S.; Koller, B.H.; Messingham, K.A.; Fairley, J.A.; Lee, J.J.; Hall, R.P.; et al. Eosinophils Mediate Tissue Injury in the Autoimmune Skin Disease Bullous Pemphigoid. J. Investig. Dermatol. 2018, 138, 1032–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalowska, M.; Ciepiela, O.; Kowalewski, C.; Demkow, U.; Schwartz, R.A.; Wozniak, K. Enzyme-linked Immunoassay Index for Anti-NC16a IgG and IgE Auto-antibodies Correlates with Severity and Activity of Bullous Pemphigoid. Acta Derm. Venereol. 2016, 96, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Beek, N.; Lüttmann, N.; Huebner, F.; Recke, A.; Karl, I.; Schulze, F.S.; Zillikens, D.; Schmidt, E. Correlation of serum levels of IgE autoantibodies against BP180 with bullous pemphigoid disease activity. JAMA Dermatol. 2017, 153, 30–38. [Google Scholar] [CrossRef]
- Amber, K.T.; Valdebran, M.; Kridin, K.; Grando, S.A. The role of eosinophils in bullous pemphigoid: A developing model of eosinophil pathogenicity in mucocutaneous disease. Front. Med. 2018, 5, 201. [Google Scholar] [CrossRef]
- Kridin, K. Peripheral eosinophilia in bullous pemphigoid: Prevalence and influence on the clinical manifestation. Br. J. Dermatol. 2018, 179, 1141–1147. [Google Scholar] [CrossRef]
- Giusti, D.; Gatouillat, G.; Le Jan, S.; Plée, J.; Bernard, P.; Antonicelli, F.; Pham, B.N. Eosinophil Cationic Protein (ECP), a predictive marker of bullous pemphigoid severity and outcome. Sci. Rep. 2017, 7, 4833. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, C.; Nakamizo, S.; Honda, Y.; Dainichi, T.; Kabashima, K. Combination therapy of prednisolone and iv immunoglobulin treatment decreases circulating interleukin-5 and eosinophils in a patient with bullous pemphigoid. J. Dermatol. 2017, 44, 101–102. [Google Scholar] [CrossRef] [Green Version]
- Verraes, S.; Hornebeck, W.; Bernard, P.; Polette, M.; Borradori, L. Respective contribution of neutrophil elastase and matrix metalloproteinase 9 in the degradation of BP180 (type XVII collagen) in human bullous pemphigoid. J. Investig. Dermatol. 2001, 117, 1091–1096. [Google Scholar] [CrossRef]
- Wiehler, S.; Cuvelier, S.L.; Chakrabarti, S.; Patel, K.D. p38 MAP kinase regulates rapid matrix metalloproteinase-9 release from eosinophils. Biochem. Biophys. Res. Commun. 2004, 315, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Borrego, L.; Maynard, B.; Peterson, E.A.; George, T.; Iglesias, L.; Peters, M.S.; Newman, W.; Gleich, G.J.; Leiferman, K.M. Deposition of eosinophil granule proteins precedes blister formation in bullous pemphigoid. Comparison with neutrophil and mast cell granule proteins. Am. J. Pathol. 1996, 148, 897. [Google Scholar]
- Cortjens, B.; van Woensel, J.; Bem, R. Neutrophil extracellular traps in respiratory disease: Guided anti-microbial traps or toxic webs? Paediatr. Respir. Rev. 2017, 21, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.; Hoesli, S.; Roth, N.; Staedler, S.; Yousefi, S.; Simon, H.-U. Eosinophil extracellular DNA traps in skin diseases. J. Allergy Clin. Immunol. 2011, 127, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Abdelilah, S.G.; Wellemans, V.; Agouli, M.; Guenounou, M.; Hamid, Q.; Beck, L.A.; Lamkhioued, B. Increased expression of Th2-associated chemokines in bullous pemphigoid disease. Role of eosinophils in the production and release of these chemokines. Clin. Immunol. 2006, 120, 220–231. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Chen, X.; Jin, H.; Li, L. Factors associated with the activity and severity of bullous pemphigoid: A review. Ann. Med. 2020, 52, 55–62. [Google Scholar] [CrossRef]
- Günther, C.; Wozel, G.; Meurer, M.; Pfeiffer, C. Up-regulation of CCL11 and CCL26 is associated with activated eosinophils in bullous pemphigoid. Clin. Exp. Immunol. 2011, 166, 145–153. [Google Scholar] [CrossRef]
- Lee, J.; Werth, V.P.; Hall, R.P., III; Eming, R.; Fairley, J.A.; Fajgenbaum, D.C.; Harman, K.E.; Jonkman, M.F.; Korman, N.J.; Ludwig, R.J. Perspective from the 5th international pemphigus and pemphigoid foundation scientific conference. Front. Med. 2018, 5, 306. [Google Scholar] [CrossRef]
- Sezin, T.; Murthy, S.; Attah, C.; Seutter, M.; Holtsche, M.M.; Hammers, C.M.; Schmidt, E.; Meshrkey, F.; Mousavi, S.; Zillikens, D. Dual inhibition of complement factor 5 and leukotriene B4 synergistically suppresses murine pemphigoid disease. JCI Insight 2019, 4, e128239. [Google Scholar] [CrossRef]
- Kawana, S.; Ueno, A.; Nishiyama, S. Increased levels of immunoreactive leukotriene B4 in blister fluids of bullous pemphigoid patients and effects of a selective 5-lipoxygenase inhibitor on experimental skin lesions. Acta Derm.Venereol. 1990, 70, 281–285. [Google Scholar]
- Diaz-Perez, J.L.; Jordon, R.E. The complement system in bullous pemphigoid: IV. Chemotactic activity in blister fluid. Clin. Immunol. Immunopathol. 1976, 5, 360–370. [Google Scholar] [CrossRef]
- Dahl, M.V.; Falk, R.J.; Carpenter, R.; Michael, A.F. Deposition of the membrane attack complex of complement in bullous pemphigoid. J. Investig. Dermatol. 1984, 82, 132–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimbach, L.; Li, Z.; Berkowitz, P.; Zhao, M.; Li, N.; Rubenstein, D.S.; Diaz, L.A.; Liu, Z. The C5a receptor on mast cells is critical for the autoimmune skin-blistering disease bullous pemphigoid. J. Biol. Chem. 2011, 286, 15003–15009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Ujiie, H.; Shibaki, A.; Wang, G.; Moriuchi, R.; Qiao, H.-J.; Morioka, H.; Shinkuma, S.; Natsuga, K.; Long, H.A. Human IgG1 monoclonal antibody against human collagen 17 noncollagenous 16A domain induces blisters via complement activation in experimental bullous pemphigoid model. J. Immunol. 2010, 185, 7746–7755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Inoue, N.; Masuda, R.; Fujimori, A.; Saito, T.; Imajoh-Ohmi, S.; Shinkai, H.; Sakiyama, H. Cloning of hamster type XVII collagen cDNA, and pathogenesis of anti-type XVII collagen antibody and complement in hamster bullous pemphigoid. J. Investig. Dermatol. 2002, 118, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Giudice, G.J.; Swartz, S.J.; Fairley, J.A.; Till, G.O.; Troy, J.L.; Diaz, L.A. The role of complement in experimental bullous pemphigoid. J. Clin. Investig. 1995, 95, 1539–1544. [Google Scholar] [CrossRef] [Green Version]
- Qiao, P.; Luo, Y.-X.; Zhi, D.-L.; Wang, G.; Dang, E.-L. Blockade of complement activation in bullous pemphigoid by using recombinant CD55-CD46 fusion protein. Chin. Med. J. 2021, 134, 864. [Google Scholar] [CrossRef]
- Dainichi, T.; Nishie, W.; Yamagami, Y.; Sonobe, H.; Ujiie, H.; Kaku, Y.; Kabashima, K. Bullous pemphigoid suggestive of complement-independent blister formation with anti-BP 180 IgG4 autoantibodies. Br. J. Dermatol. 2016, 175, 187–190. [Google Scholar] [CrossRef]
- Izumi, K.; Nishie, W.; Mai, Y.; Wada, M.; Natsuga, K.; Ujiie, H.; Iwata, H.; Yamagami, J.; Shimizu, H. Autoantibody profile differentiates between inflammatory and noninflammatory bullous pemphigoid. J. Investig. Dermatol. 2016, 136, 2201–2210. [Google Scholar] [CrossRef] [Green Version]
- Ujiie, H.; Muramatsu, K.; Mushiroda, T.; Ozeki, T.; Miyoshi, H.; Iwata, H.; Nakamura, A.; Nomoto, H.; Cho, K.Y.; Sato, N. HLA-DQB1* 03: 01 as a biomarker for genetic susceptibility to bullous pemphigoid induced by DPP-4 inhibitors. J. Investig. Dermatol. 2018, 138, 1201–1204. [Google Scholar] [CrossRef] [Green Version]
- Bellinato, F.; Maurelli, M.; Schena, D.; Gisondi, P.; Girolomoni, G. Clinical and immunological profile of patients with dipeptidyl peptidase-4 inhibitor-associated bullous pemphigoid. Ital. J. Dermatol. Venerol. 2020, 156, 455–459. [Google Scholar] [CrossRef]
- Lankas, G.R.; Leiting, B.; Roy, R.S.; Eiermann, G.J.; Beconi, M.G.; Biftu, T.; Chan, C.-C.; Edmondson, S.; Feeney, W.P.; He, H. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: Potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005, 54, 2988–2994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimoyama, M.; Kawai, M.; Nasu, S.; Shioji, K.; Hoshi, Y. Inhibition of adenosine 3′, 5′-monophosphate phosphodiesterase by nicotinamide and its homologues in vitro. Physiol. Chem. Phys. 1975, 7, 125–132. [Google Scholar] [PubMed]
- Beissert, S.; Werfel, T.; Frieling, U.; Böhm, M.; Sticherling, M.; Stadler, R.; Zillikens, D.; Rzany, B.; Hunzelmann, N.; Meurer, M. A comparison of oral methylprednisolone plus azathioprine or mycophenolate mofetil for the treatment of bullous pemphigoid. Arch. Dermatol. 2007, 143, 1536–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirtschig, G.; Khumalo, N.P. Management of bullous pemphigoid. Am. J. Clin. Dermatol. 2004, 5, 319–326. [Google Scholar] [CrossRef]
- Khalid, S.N.; Khan, Z.A.; Ali, M.H.; Almas, T.; Khedro, T.; Nagarajan, V.R. A blistering new era for bullous pemphigoid: A scoping review of current therapies, ongoing clinical trials, and future directions. Ann. Med. Surg. 2021, 70, 102799. [Google Scholar] [CrossRef]
- Simpson, E.L.; Akinlade, B.; Ardeleanu, M. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N. Engl. J. Med. 2017, 376, 1090–1091. [Google Scholar] [CrossRef]
- Kaye, A.; Gordon, S.C.; Deverapalli, S.C.; Her, M.J.; Rosmarin, D. Dupilumab for the treatment of recalcitrant bullous pemphigoid. JAMA Dermatol. 2018, 154, 1225–1226. [Google Scholar] [CrossRef]
- Seyed Jafari, S.M.; Feldmeyer, L.; Bossart, S.; Simon, D.; Schlapbach, C.; Borradori, L. Case Report: Combination of Omalizumab and Dupilumab for Recalcitrant Bullous Pemphigoid. Front. Immunol. 2020, 11, 611549. [Google Scholar] [CrossRef]
- Abdat, R.; Waldman, R.A.; de Bedout, V.; Czernik, A.; Mcleod, M.; King, B.; Gordon, S.; Ahmed, R.; Nichols, A.; Rothe, M.; et al. Dupilumab as a novel therapy for bullous pemphigoid: A multicenter case series. J. Am. Acad. Dermatol. 2020, 83, 46–52. [Google Scholar] [CrossRef]
- Fargnoli, M.; Esposito, M.; Ferrucci, S.; Girolomoni, G.; Offidani, A.; Patrizi, A.; Peris, K.; Costanzo, A.; Malara, G.; Pellacani, G. Real-life experience on effectiveness and safety of dupilumab in adult patients with moderate-to-severe atopic dermatitis. J. Dermatol. Treat. 2019, 32, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef]
- Simon, D.; Yousefi, S.; Cazzaniga, S.; Bürgler, C.; Radonjic, S.; Houriet, C.; Heidemeyer, K.; Klötgen, H.W.; Kozlowski, E.; Borradori, L.; et al. Mepolizumab failed to affect bullous pemphigoid: A randomized, placebo-controlled, double-blind phase 2 pilot study. Allergy 2020, 75, 669–672. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef]
- Yu, K.K.; Crew, A.B.; Messingham, K.A.; Fairley, J.A.; Woodley, D.T. Omalizumab therapy for bullous pemphigoid. J. Am. Acad. Dermatol. 2014, 71, 468–474. [Google Scholar] [CrossRef]
- Fairley, J.A.; Burnett, C.T.; Fu, C.L.; Larson, D.L.; Fleming, M.G.; Giudice, G.J. A pathogenic role for IgE in autoimmunity: Bullous pemphigoid IgE reproduces the early phase of lesion development in human skin grafted to nu/nu mice. J. Investig. Dermatol. 2007, 127, 2605–2611. [Google Scholar] [CrossRef] [Green Version]
- Fairley, J.A.; Baum, C.L.; Brandt, D.S.; Messingham, K.A. Pathogenicity of IgE in autoimmunity: Successful treatment of bullous pemphigoid with omalizumab. J. Allergy Clin. Immunol. 2009, 123, 704–705. [Google Scholar] [CrossRef] [Green Version]
- London, V.A.; Kim, G.H.; Fairley, J.A.; Woodley, D.T. Successful treatment of bullous pemphigoid with omalizumab. Arch. Dermatol. 2012, 148, 1241–1243. [Google Scholar] [CrossRef]
- Lonowski, S.; Sachsman, S.; Patel, N.; Truong, A.; Holland, V. Increasing evidence for omalizumab in the treatment of bullous pemphigoid. JAAD Case Rep. 2020, 6, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Fiorino, A.S.; Baum, S.; Czernik, A.; Hall, R.; Zeeli, T.; Baniel, A.; Sinha, A.A.; Seiffert-Sinha, K.; Kolatch, B.; Zhang, Z.; et al. 570 Safety and efficacy of bertilimumab, a human anti-eotaxin-1 monoclonal antibody, in bullous pemphigoid in a phase 2a study. J. Investig. Dermatol. 2019, 139, S98. [Google Scholar] [CrossRef] [Green Version]
- Rossi, K. FDA Grants Fast Track Designation to Bullous Pemphigoid Treatment, Bertilimumab. Available online: https://www.hcplive.com/view/fda-grants-fast-track-designation-bullous-pemphigoid-treatment-bertilimumab (accessed on 22 March 2022).
- Pharmaceuticals, I. Immune Pharmaceuticals Files for Chapter 11 Protection. 2019. Available online: https://www.globenewswire.com/news-release/2019/02/19/1734168/0/en/Immune-Pharmaceuticals-Files-for-Chapter-11-Protection.html (accessed on 27 May 2021).
- Majima, Y.; Yagi, H.; Tateishi, C.; Groth, S.; Schmidt, E.; Zillikens, D.; Koga, H.; Hashimoto, T.; Tokura, Y. A successful treatment with ustekinumab in a case of antilaminin-γ1 pemphigoid associated with psoriasis. Br. J. Dermatol. 2013, 168, 1367–1369. [Google Scholar] [CrossRef] [PubMed]
- Loget, J.; Plée, J.; Antonicelli, F.; Bernard, P. A successful treatment with ustekinumab in a case of relapsing bullous pemphigoid associated with psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e228–e230. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, P.A.; Rose, E.L.; Byun, T.S.; Parry, G.C.; Panicker, S. C1s Inhibition by BIVV009 (Sutimlimab) Prevents Complement-Enhanced Activation of Autoimmune Human B Cells In Vitro. J. Immunol. 2019, 202, 1200–1209. [Google Scholar] [CrossRef]
- Bartko, J.; Schoergenhofer, C.; Schwameis, M.; Firbas, C.; Beliveau, M.; Chang, C.; Marier, J.F.; Nix, D.; Gilbert, J.C.; Panicker, S.; et al. A Randomized, First-in-Human, Healthy Volunteer Trial of sutimlimab, a Humanized Antibody for the Specific Inhibition of the Classical Complement Pathway. Clin. Pharmacol. Ther. 2018, 104, 655–663. [Google Scholar] [CrossRef]
- Freire, P.C.; Muñoz, C.H.; Derhaschnig, U.; Schoergenhofer, C.; Firbas, C.; Parry, G.C.; Panicker, S.; Gilbert, J.C.; Stingl, G.; Jilma, B. Specific inhibition of the classical complement pathway prevents C3 deposition along the dermal-epidermal junction in bullous pemphigoid. J. Investig. Dermatol. 2019, 139, 2417–2424.e2412. [Google Scholar] [CrossRef]
- Kushner, C.J.; Payne, A.S. Increasing the complement of therapeutic options in bullous pemphigoid. J. Investig. Dermatol. 2018, 138, 246–248. [Google Scholar] [CrossRef] [Green Version]
- Karsten, C.M.; Beckmann, T.; Holtsche, M.M.; Tillmann, J.; Tofern, S.; Schulze, F.S.; Heppe, E.N.; Ludwig, R.J.; Zillikens, D.; König, I.R. Tissue destruction in bullous pemphigoid can be complement independent and may be mitigated by C5aR2. Front. Immunol. 2018, 9, 488. [Google Scholar] [CrossRef]
- Sezin, T.; Krajewski, M.; Wutkowski, A.; Mousavi, S.; Chakievska, L.; Bieber, K.; Ludwig, R.J.; Dahlke, M.; Rades, D.; Schulze, F.S. The leukotriene B4 and its receptor BLT1 act as critical drivers of neutrophil recruitment in murine bullous pemphigoid-like epidermolysis bullosa acquisita. J. Investig. Dermatol. 2017, 137, 1104–1113. [Google Scholar] [CrossRef]
- Edwards, G.; Diercks, G.F.; Seelen, M.A.; Horvath, B.; Van Doorn, M.; Damman, J. Complement activation in autoimmune bullous dermatoses: A comprehensive review. Front. Immunol. 2019, 10, 1477. [Google Scholar] [CrossRef] [Green Version]
- Nunn, M.; Fettiplace, J.; Khindri, S. Disease Remission During a Short-term Treatment Phase II Study of Nomacopan in Mild-to-moderate Bullous Pemphigoid—With Final Plan for Phase III Trial. J. Am. Acad. Dermatol. 2021, 85, AB54. [Google Scholar] [CrossRef]
- Plc, A.T. Akari Therapeutics Receives FDA Fast Track Designation for Nomacopan for the Treatment of Bullous Pemphigoid. 2021. Available online: https://www.globenewswire.com/news-release/2021/04/28/2218574/0/en/Akari-Therapeutics-Receives-FDA-Fast-Track-Designation-for-Nomacopan-for-the-Treatment-of-Bullous-Pemphigoid.html (accessed on 6 June 2021).
Therapeutic Target | Medication | Phase of Study |
---|---|---|
IL4 | Dupilumab | Phase 2/3 underway |
IgE | Omalizumab | Previous case series |
IL5 | Mepolizumab | Failed phase 2 completed |
Benralizumab | Phase 3 underway | |
Eotaxin-1 | Bertilimumab | Positive phase 2 completed |
IL12/IL23 | Ustekinumab | Phase 2 underway |
IL-23 | Tildrakizumab | Phase 1 underway |
C1s | Sutimlimab | Positive phase 1 completed |
C5aR1 | Avdoralimab | Phase 2 underway |
C5/LTB4 | Nomacopan | Positive phase 2 completed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afarideh, M.; Borucki, R.; Werth, V.P. A Review of the Immunologic Pathways Involved in Bullous Pemphigoid and Novel Therapeutic Targets. J. Clin. Med. 2022, 11, 2856. https://doi.org/10.3390/jcm11102856
Afarideh M, Borucki R, Werth VP. A Review of the Immunologic Pathways Involved in Bullous Pemphigoid and Novel Therapeutic Targets. Journal of Clinical Medicine. 2022; 11(10):2856. https://doi.org/10.3390/jcm11102856
Chicago/Turabian StyleAfarideh, Mohsen, Robert Borucki, and Victoria P. Werth. 2022. "A Review of the Immunologic Pathways Involved in Bullous Pemphigoid and Novel Therapeutic Targets" Journal of Clinical Medicine 11, no. 10: 2856. https://doi.org/10.3390/jcm11102856
APA StyleAfarideh, M., Borucki, R., & Werth, V. P. (2022). A Review of the Immunologic Pathways Involved in Bullous Pemphigoid and Novel Therapeutic Targets. Journal of Clinical Medicine, 11(10), 2856. https://doi.org/10.3390/jcm11102856