Procedural Feasibility and Long-Term Efficacy of Catheter Ablation of Atypical Atrial Flutters in a Wide Spectrum of Heart Diseases: An Updated Clinical Overview
Abstract
:1. Introduction
2. Clinical Settings Associated with Atypical Atrial Flutters
2.1. Surgical Correction for Congenital Heart Disease
2.2. Cardiac Surgery for Acquired Heart Disease
2.3. Non-Surgical Pulmonary Vein Isolation
2.4. Absence of Manifest Structural Heart Disease
3. Materials and Methods: Identification of Studies Exploring the Feasibility of Catheter Ablation of Atypical Atrial Flutter in a Wide Spectrum of Heart Diseases
4. Overall Peri-Procedure Feasibility: Short-Term Efficacy and Safety
5. Maintenance of Sinus Rhythm after a Successful Procedure: Problems Related to the Mid- and Long-Term Clinical Outcome
6. The Winding Path to Improve the Procedure and the Overall Clinical Outcome: Between Technical and Clinical Aspects
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Bun, S.-S.; Latcu, D.G.; Marchlinski, F.; Saoudi, N. Atrial flutter: More than just one of a kind. Eur. Heart J. 2015, 36, 2356–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twomey, D.; Sanders, P.; Roberts-Thomson, K.C. Atrial Macroreentry in Congenital Heart Disease. Curr. Cardiol. Rev. 2015, 11, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enriquez, A.; Santangeli, P.; Zado, E.S.; Liang, J.; Castro, S.; Garcia, F.C.; Schaller, R.D.; Supple, G.E.; Frankel, D.S.; Callans, D.J.; et al. Postoperative atrial tachycardias after mitral valve surgery: Mechanisms and outcomes of catheter ablation. Heart Rhythm 2017, 14, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Deisenhofer, I.; Estner, H.; Zrenner, B.; Schreieck, J.; Weyerbrock, S.; Hessling, G.; Scharf, K.; Karch, M.R.; Schmitt, C. Left atrial tachycardia after circumferential pulmonary vein ablation for atrial fibrillation: Incidence, electrophysiological characteristics, and results of radiofrequency ablation. Europace 2006, 8, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Fiala, M.; Chovančík, J.; Neuwirth, R.; Nevřalová, R.; Jiravský, O.; Škňouřil, L.; Dorda, M.; Januška, J.; Vodzinská, A.; Černý, J.; et al. Atrial macroreentry tachycardia in patients without obvious structural heart disease or previous cardiac surgical or catheter intervention: Characterization of arrhythmogenic substrates, reentry circuits, and results of catheter ablation. J. Cardiovasc. Electrophysiol. 2007, 18, 824–832. [Google Scholar] [CrossRef]
- Natale, A.; Newby, K.H.; Pisanó, E.; Leonelli, F.; Fanelli, R.; Potenza, D.; Beheiry, S.; Tomassoni, G. Prospective randomized comparison of antiarrhythmic therapy versus first- line radiofrequency ablation in patients with atrial flutter. J. Am. Coll. Cardiol. 2000, 35, 1898–1904. [Google Scholar] [CrossRef] [Green Version]
- Derval, N.; Takigawa, M.; Frontera, A.; Mahida, S.; Konstantinos, V.; Denis, A.; Duchateau, J.; Pillois, X.; Yamashita, S.; Berte, B.; et al. Characterization of Complex Atrial Tachycardia in Patients with Previous Atrial Interventions Using High-Resolution Mapping. JACC Clin. Electrophysiol. 2020, 6, 815–826. [Google Scholar] [CrossRef]
- Pap, R.; Kohári, M.; Makai, A.; Bencsik, G.; Traykov, V.B.; Gallardo, R.; Klausz, G.; Zsuzsanna, K.; Forster, T.; Sághy, L. Surgical technique and the mechanism of atrial tachycardia late after open heart surgery. J. Interv. Card. Electrophysiol. 2012, 35, 127–135. [Google Scholar] [CrossRef]
- Scaglione, M.; Caponi, D.; Ebrille, E.; Di Donna, P.; Di Clemente, F.; Battaglia, A.; Raimondo, C.; Appendino, M.; Gaita, F. Very long-term results of electroanatomic-guided radiofrequency ablation of atrial arrhythmias in patients with surgically corrected atrial septal defect. Europace 2014, 16, 1800–1807. [Google Scholar] [CrossRef] [Green Version]
- Kalman, J.M.; VanHare, G.F.; Olgin, J.E.; Saxon, L.A.; Stark, S.I.; Lesh, M.D. Ablation of ‘Incisional’ Reentrant Atrial Tachycardia Complicating Surgery for Congenital Heart Disease. Circulation 1996, 93, 502–512. [Google Scholar] [CrossRef]
- Abrams, D.; Schilling, R. Mechanism and mapping of atrial arrhythmia in the modified Fontan circulation. Heart Rhythm 2005, 2, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fan, Q.; Hirata, Y.; Ono, M.; An, Q. Arrhythmias After Fontan Operation with Intra-atrial Lateral Tunnel Versus Extra-cardiac Conduit: A Systematic Review and Meta-analysis. Pediatr. Cardiol. 2017, 8, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, S.M.; Brodman, R.F.; Stein, K.M.; Mittal, S.; Slotwiner, D.J.; Iwai, S.; Das, M.K.; Lerman, B.B. Lesional tachycardias related to mitral valve surgery. J. Am. Coll. Cardiol. 2002, 39, 1973–1983. [Google Scholar] [CrossRef] [Green Version]
- Marazzato, J.; Cappabianca, G.; Angeli, F.; Crippa, M.; Golino, M.; Ferrarese, S.; Beghi, C.; De Ponti, R. Catheter ablation of atrial tachycardias after mitral valve surgery: A systematic review and meta-analysis. J. Cardiovasc. Electrophysiol. 2020, 31, 2632–2641. [Google Scholar] [CrossRef]
- Marazzato, J.; Cappabianca, G.; Angeli, F.; Crippa, M.; Golino, M.; Ferrarese, S.; Beghi, C.; De Ponti, R. Ablation of atrial tachycardia in the setting of prior mitral valve surgery. Minerva Cardiol. Angiol. 2021, 69, 94–101. [Google Scholar] [CrossRef]
- Winkle, R.A.; Fleming, W.; Mead, R.H.; Engel, G.; Kong, M.H.; Salcedo, J.; Patrawala, R.A.; Castro, L.; Gaudiani, V. Catheter ablation for failed surgical maze: Comparison of cut and sew vs. non-cut and sew maze. J. Interv. Card. Electrophysiol. 2019, 55, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Gillinov, A.M.; Gelijns, A.C.; Parides, M.K.; Derose, J.J.; Moskowitz, A.; Voisine, P.; Ailawadi, G.; Bouchard, D.; Smith, P.K.; Mack, M.J.; et al. Surgical Ablation of Atrial Fibrillation during Mitral-Valve Surgery. N. Engl. J. Med. 2015, 372, 1399–1409. [Google Scholar] [CrossRef] [Green Version]
- Morady, F.; Oral, H.; Chugh, A. Diagnosis and ablation of atypical atrial tachycardia and flutter complicating atrial fibrillation ablation. Heart Rhythm 2009, 6 (Suppl. 8), S29–S32. [Google Scholar] [CrossRef]
- Akerström, F.; Bastani, H.; Insulander, P.; Schwieler, J.; Arias, M.A.; Jensen-Urstad, M. Comparison of Regular Atrial Tachycardia Incidence After Circumferential Radiofrequency versus Cryoballoon Pulmonary Vein Isolation in Real-Life Practice. J. Cardiovasc. Electrophysiol. 2014, 25, 948–952. [Google Scholar] [CrossRef]
- Ciconte, G.; Baltogiannis, G.; De Asmundis, C.; Sieira, J.; Conte, G.; Di Giovanni, G.; Saitoh, Y.; Irfan, G.; Mugnai, G.; Hunuk, B.; et al. Circumferential pulmonary vein isolation as index procedure for persistent atrial fibrillation: A comparison between radiofrequency catheter ablation and second-generation cryoballoon ablation. Europace 2015, 17, 559–565. [Google Scholar] [CrossRef]
- Wasmer, K.; Mönnig, G.; Bittner, A.; Dechering, D.; Zellerhoff, S.; Milberg, P.; Köbe, J.; Eckardt, L. Incidence, characteristics, and outcome of left atrial tachycardias after circumferential antral ablation of atrial fibrillation. Heart Rhythm 2012, 9, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Leitz, P.; Wasmer, K.; Andresen, C.; Güner, F.; Köbe, J.; Rath, B.; Reinke, F.; Wolfes, J.; Lange, P.S.; Ellermann, C.; et al. The Incidence, Electrophysiological Characteristics and Ablation Outcome of Left Atrial Tachycardias after Pulmonary Vein Isolation Using Three Different Ablation Technologies. J. Cardiovasc. Dev. Dis. 2022, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Pappone, C.; Oreto, G.; Rosanio, S.; Vicedomini, G.; Tocchi, M.; Gugliotta, F.; Salvati, A.; Dicandia, C.; Calabrò, M.P.; Mazzone, P.; et al. Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: Efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation 2001, 104, 2539–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satomi, K.; Bänsch, D.; Tilz, R.; Chun, J.; Ernst, S.; Antz, M.; Greten, H.; Kuck, K.H.; Ouyang, F. Left atrial and pulmonary vein macroreentrant tachycardia associated with double conduction gaps: A novel type of man-made tachycardia after circumferential pulmonary vein isolation. Heart Rhythm 2008, 5, 43–51. [Google Scholar] [CrossRef]
- Gerstenfeld, E.P.; Callans, D.J.; Dixit, S.; Russo, A.M.; Nayak, H.; Lin, D.; Pulliam, W.; Siddique, S.; Marchlinski, F. Mechanisms of organized left atrial tachycardias occurring after pulmonary vein isolation. Circulation 2004, 110, 1351–1357. [Google Scholar] [CrossRef]
- Luther, V.; Sikkel, M.; Bennett, N.; Guerrero, F.; Leong, K.; Qureshi, N.; Ng, F.S.; Hayat, S.A.; Sohaib, S.A.; Malcolme-Lawes, L.; et al. Visualizing Localized Reentry with Ultra-High Density Mapping in Iatrogenic Atrial Tachycardia. Circ. Arrhythmia Electrophysiol. 2017, 10, e004724. [Google Scholar] [CrossRef]
- Frontera, A.; Mahajan, R.; Dallet, C.; Vlachos, K.; Kitamura, T.; Takigawa, M.; Cheniti, G.; Martin, C.; Duchateau, J.; Lam, A.; et al. Characterizing localized reentry with high-resolution mapping: Evidence for multiple slow conducting isthmuses within the circuit. Heart Rhythm 2019, 16, 679–685. [Google Scholar] [CrossRef]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2017, 14, e275–e444. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Chen, M.; Yang, B.; Liu, Q.; Zhang, Z.; Zhang, F.; Ju, W.; Li, M.; Sheng, X.; Sun, Y.; et al. Intraprocedural endpoints to predict durable pulmonary vein isolation: A randomized trial of four post-ablation techniques. Europace 2020, 22, 567–575. [Google Scholar] [CrossRef]
- Tai, C.-T.; Huang, J.-L.; Lin, Y.-K.; Hsieh, M.-H.; Lee, P.-C.; Ding, Y.-A.; Chang, M.-S.; Chen, S.-A. Noncontact three-dimensional mapping and ablation of upper loop re-entry originating in the right atrium. J. Am. Coll. Cardiol. 2002, 40, 746–753. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, I.H.; Kistler, P.M.; Spence, S.J.; Vohra, J.K.; Sparks, P.B.; Morton, J.B.; Kalman, J.M. Scar-related right atrial macroreentrant tachycardia in patients without prior atrial surgery: Electroanatomic characterization and ablation outcome. Heart Rhythm 2005, 2, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Marrouche, N.F.; Natale, A.; Wazni, O.M.; Cheng, J.; Yang, Y.; Pollack, H.; Verma, A.; Ursell, P.; Scheinman, M.M. Left septal atrial flutter: Electrophysiology, anatomy, and results of ablation. Circulation 2004, 109, 2440–2447. [Google Scholar] [CrossRef] [PubMed]
- Kharbanda, R.K.; Özdemir, E.H.; Taverne, Y.J.; Kik, C.; Bogers, A.J.; de Groot, N.M. Current Concepts of Anatomy, Electrophysiology, and Therapeutic Implications of the Interatrial Septum. JACC Clin. Electrophysiol. 2019, 5, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.M.; Lindsay, B.D.; Bromberg, B.I.; Frazier, D.W.; Cain, M.E.; Smith, J.M. Catheter ablation of clinical intraatrial reentrant tachycardias resulting from previous atrial surgery: Localizing and transecting the critical isthmus. J. Am. Coll. Cardiol. 1996, 28, 411–417. [Google Scholar] [CrossRef]
- Triedman, J.K.; Bergau, D.M.; Saul, J.; Epstein, M.R.; Walsh, E.P. Efficacy of Radiofrequency Ablation for Control of Intraatrial Reentrant Tachycardia in Patients with Congenital Heart Disease. J. Am. Coll. Cardiol. 1997, 30, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
- Jaïs, P.; Shah, D.C.; Haïssaguerre, M.; Hocini, M.; Peng, J.T.; Takahashi, A.; Garrigue, S.; Le Métayer, P.; Clémenty, J. Mapping and ablation of left atrial flutters. Circulation 2000, 101, 2928–2934. [Google Scholar] [CrossRef] [Green Version]
- Delacretaz, E.; Ganz, L.I.; Soejima, K.; Friedman, P.L.; Walsh, E.P.; Triedman, J.K.; Sloss, L.J.; Landzberg, M.J.; Stevenson, W.G. Multi atrial maco-re-entry circuits in adults with repaired congenital heart disease: Entrainment mapping combined with three-dimensional electroanatomic mapping. J. Am. Coll. Cardiol. 2001, 37, 1665–1676. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, H.; Shah, N.; Matsudaira, K.; Overholt, E.; Chandrasekaran, K.; Beckman, K.J.; Spector, P.; Calame, J.D.; Rao, A.; Hasdemir, C.; et al. Characterization of reentrant circuit in macroreentrant right atrial tachycardia after surgical repair of congenital heart disease: Isolated channels between scars allow “focal″ ablation. Circulation 2001, 103, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, F.; Ernst, S.; Vogtmann, T.; Goya, M.; Volkmer, M.; Schaumann, A.; Bänsch, D.; Antz, M.; Kuck, K.H. Characterization of reentrant circuits in left atrial macroreentrant tachycardia: Critical isthmus block can prevent atrial tachycardia recurrence. Circulation 2002, 105, 1934–1942. [Google Scholar] [CrossRef] [Green Version]
- Zrenner, B.; Dong, J.U.N.; Schreieck, J.; Ndrepepa, G.; Meisner, H.; Kaemmerer, H.; Schömig, A.; Hess, J.; Schmitt, C. Delineation of intra-atrial reentrant tachycardia circuits after mustard operation for transposition of the great arteries using biatrial electroanatomic mapping and entrainment mapping. J. Cardiovasc. Electrophysiol. 2003, 14, 1302–1310. [Google Scholar] [CrossRef]
- Tai, C.-T.; Liu, T.-Y.; Lee, P.-C.; Lin, Y.-J.; Chang, M.-S.; Chen, S.-A. Non-contact mapping to guide radiofrequency ablation of atypical right atrial flutter. J. Am. Coll. Cardiol. 2004, 44, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, H.; Lukac, P.; Schwick, N.; Fuhrer, J.; Pedersen, A.K.; Jansen, P.S.; Delacretaz, E. Irrigated-tip catheter ablation of intraatrial reentrant tachycardia in patients late after surgery of congenital heart disease. Heart Rhythm 2004, 1, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Lukac, P.; Pedersen, A.K.; Mortensen, P.T.; Jensen, H.K.; Hjortdal, V.; Hansen, P.S. Ablation of atrial tachycardia after surgery for congenital and acquired heart disease using an electroanatomic mapping system: Which circuits to expect in which substrate? Heart Rhythm 2005, 2, 64–72. [Google Scholar] [CrossRef]
- Magnin-Poull, I.; De Chillou, C.; Miljoen, H.; Andronache, M.; Aliot, E. Mechanisms of Right Atrial Tachycardia Occurring Late After Surgical Closure of Atrial Septal Defects. J. Cardiovasc. Electrophysiol. 2005, 16, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Seiler, J.; Schmid, D.K.; Irtel, T.A.; Tanner, H.; Rotter, M.; Schwick, N.; Delacrétaz, E. Dual-loop circuits in postoperative atrial macro re-entrant tachycardias. Heart 2007, 93, 325–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ponti, R.; Verlato, R.; Bertaglia, E.; Del Greco, M.; Fusco, A.; Bottoni, N.; Drago, F.; Sciarra, L.; Ometto, R.; Mantovan, R.; et al. Treatment of macro-re-entrant atrial tachycardia based on electroanatomic mapping: Identification and ablation of the mid-diastolic isthmus. Europace 2007, 9, 449–457. [Google Scholar] [CrossRef]
- Bai, R.; Fahmy, T.S.; Patel, D.; Di Biase, L.; Riedlbauchova, L.; Wazni, O.M.; Schweikert, R.A.; Burkhardt, J.D.; Saliba, W.; Natale, A. Radiofrequency ablation of atypical atrial flutter after cardiac surgery or atrial fibrillation ablation: A randomized comparison of open-irrigation-tip and 8-mm-tip catheters. Heart Rhythm 2007, 4, 1489–1496. [Google Scholar] [CrossRef]
- Chae, S.; Oral, H.; Good, E.; Dey, S.; Wimmer, A.; Crawford, T.; Wells, D.; Sarrazin, J.-F.; Chalfoun, N.; Kühne, M.; et al. Atrial Tachycardia After Circumferential Pulmonary Vein Ablation of Atrial Fibrillation: Mechanistic Insights, Results of Catheter Ablation, and Risk Factors for Recurrence. J. Am. Coll. Cardiol. 2007, 50, 1781–1787. [Google Scholar] [CrossRef] [Green Version]
- Esato, M.; Hindricks, G.; Sommer, P.; Arya, A.; Gaspar, T.; Bode, K.; Bollmann, A.; Wetzel, U.; Hilbert, S.; Kircher, S.; et al. Color-coded three-dimensional entrainment mapping for analysis and treatment of atrial macroreentrant tachycardia. Heart Rhythm 2009, 6, 349–358. [Google Scholar] [CrossRef]
- Yap, S.-C.; Harris, L.; Silversides, C.K.; Downar, E.; Chauhan, V.S. Outcome of Intra-Atrial Re-Entrant Tachycardia Catheter Ablation in Adults with Congenital Heart Disease: Negative Impact of Age and Complex Atrial Surgery. J. Am. Coll. Cardiol. 2010, 56, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- De Ponti, R.; Marazzi, R.; Zoli, L.; Caravati, F.; Ghiringhelli, S.; Salerno-Uriarte, J.A. Electroanatomic mapping and ablation of macroreentrant atrial tachycardia: Comparison between successfully and unsuccessfully treated cases. J. Cardiovasc. Electrophysiol. 2010, 21, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Russo, M.S.; Marazzi, R.; Salerno-Uriarte, J.A.; Silvetti, M.S.; De Ponti, R. Atrial tachycardias in patients with congenital heart disease: A minimally invasive simplified approach in the use of three-dimensional electroanatomic mapping. Europace 2011, 13, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tang, C.; Zhang, Y.; Han, H.; Li, Z.; Su, X. Electroanatomic Characterization and Ablation Outcome of Nonlesion Related Left Atrial Macroreentrant Tachycardia in Patients without Obvious Structural Heart Disease. J. Cardiovasc. Electrophysiol. 2012, 24, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Anter, E.; McElderry, T.H.; Contreras-Valdes, F.M.; Li, J.; Tung, P.; Leshem, E.; Haffajee, C.I.; Nakagawa, H.; Josephson, M.E. Evaluation of a novel high-resolution mapping technology for ablation of recurrent scar-related atrial tachycardias. Heart Rhythm 2016, 13, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Grubb, C.S.; Lewis, M.; Whang, W.; Biviano, A.; Hickey, K.; Rosenbaum, M.; Garan, H. Catheter Ablation for Atrial Tachycardia in Adults with Congenital Heart Disease: Electrophysiological Predictors of Acute Procedural Success and Post-Procedure Atrial Tachycardia Recurrence. JACC Clin. Electrophysiol. 2019, 5, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Balt, J.C.; Klaver, M.N.; Mahmoodi, B.K.; van Dijk, V.F.; Wijffels, M.C.E.F.; Boersma, L.V.A. High-density versus low-density mapping in ablation of atypical atrial flutter. J. Interv. Card. Electrophysiol. 2021, 62, 587–599. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Y.; Lee, P.; Vicera, J.J.; Chang, S.; Lo, L.; Hu, Y.; Chung, F.; Tuan, T.; Chao, T.; et al. The isthmus characteristics of scar-related macroreentrant atrial tachycardia in patients with and without cardiac surgery. J. Cardiovasc. Electrophysiol. 2021, 32, 1921–1930. [Google Scholar] [CrossRef]
- Vlachos, K.; Efremidis, M.; Derval, N.; Martin, C.A.; Takigawa, M.; Bazoukis, G.; Frontera, A.; Gkalapis, C.; Duchateau, J.; Nakashima, T.; et al. Use of high-density activation and voltage mapping in combination with entrainment to delineate gap-related atrial tachycardias post atrial fibrillation ablation. Europace 2021, 23, 1052–1062. [Google Scholar] [CrossRef]
- Maheshwari, A.; Shirai, Y.; Hyman, M.C.; Arkles, J.S.; Santangeli, P.; Schaller, R.D.; Supple, G.E.; Nazarian, S.; Lin, D.; Dixit, S.; et al. Septal Versus Lateral Mitral Isthmus Ablation for Treatment of Mitral Annular Flutter. JACC Clin. Electrophysiol. 2019, 5, 1292–1299. [Google Scholar] [CrossRef]
- de Groot, N.M.; Atary, J.Z.; Blom, N.A.; Schalij, M.J. Long-term outcome after ablative therapy of postoperative atrial tachyarrhythmia in patients with congenital heart disease and characteristics of atrial tachyarrhythmia recurrences. Circ. Arrhythmia Electrophysiol 2010, 3, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Bogun, F.; Bender, B.; Li, Y.-G.; Hohnloser, S.H. Ablation of atypical atrial flutter guided by the use of concealed entrainment in patients without prior cardiac surgery. J. Cardiovasc. Electrophysiol. 2000, 11, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Sroubek, J.; Rottmann, M.; Barkagan, M.; Leshem, E.; Shapira-Daniels, A.; Brem, E.; Bs, C.F.; Bs, J.M.; Basu, S.; Bar-Tal, M.; et al. A novel octaray multielectrode catheter for high-resolution atrial mapping: Electrogram characterization and utility for mapping ablation gaps. J. Cardiovasc. Electrophysiol. 2019, 30, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Sarkozy, A.; Vijgen, J.; De Potter, T.; Schilling, R.; Markides, V. An early multicenter experience of the novel high-density star-shaped mapping catheter in complex arrhythmias. J. Interv. Card. Electrophysiol. 2022, in press. [Google Scholar] [CrossRef]
- Rillo, M.; Palamà, Z.; Punzi, R.; Vitanza, S.; Aloisio, A.; Polini, S.; Tucci, A.; Msc, A.P.; Zonno, F.; Anastasia, A.; et al. A new interpretation of nonpulmonary vein substrates of the left atrium in patients with atrial fibrillation. J. Arrhythmia 2021, 37, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y.; Anderson, R.H.; Sanchez-Quintana, D. Atrial structure and fibres: Morphologic bases of atrial conduction. Cardiovasc. Res. 2002, 54, 325–336. [Google Scholar] [CrossRef]
- Pambrun, T.; Duchateau, J.; Delgove, A.; Denis, A.; Constantin, M.; Ramirez, F.D.; Chauvel, R.; Tixier, R.; Welte, N.; André, C.; et al. Epicardial course of the septopulmonary bundle: Anatomical considerations and clinical implications for roof line completion. Heart Rhythm 2021, 18, 349–357. [Google Scholar] [CrossRef]
- Naniwadekar, A.; Koruth, J. Impact of Technique and Technology on Mitral Isthmus Ablation. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 46. [Google Scholar] [CrossRef]
- Pathik, B.; Choudry, S.; Whang, W.; D’Avila, A.; Koruth, J.; Sofi, A.; Miller, M.A.; Dukkipati, S.; Reddy, V.Y. Mitral isthmus ablation: A hierarchical approach guided by electroanatomic correlation. Heart Rhythm 2019, 16, 632–637. [Google Scholar] [CrossRef]
- Báez-Escudero, J.L.; Morales, P.F.; Dave, A.S.; Sasaridis, C.M.; Kim, Y.-H.; Okishige, K.; Valderrábano, M. Ethanol infusion in the vein of Marshall facilitates mitral isthmus ablation. Heart Rhythm 2012, 9, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
- De Groot, N.M.; Schalij, M.J. Fragmented, long-duration, low-amplitude electrograms characterize the origin of focal atrial tachycardia. J. Cardiovasc. Electrophysiol. 2006, 17, 1086–1092. [Google Scholar] [CrossRef]
- Itoh, T.; Yoshida, Y.; Morishima, I.; Yamada, T. Focal intra-cavotricuspid isthmus atrial tachycardias occurring after typical atrial flutter ablation: Incidence and electrocardiographic and electrophysiological characteristics. J. Interv. Card. Electrophysiol. 2018, 52, 237–245. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Pts, n. | Age (Years) | Clinical Setting | Prior PVI | Ablation Site | Mapping Strategy | Cath | Acute Success | Systemic Compl | Local Compl | Proc. Time (min) | Fluoro Time (min) | AAFL Recurrence at FU after an Acutely Successful CA Procedure | Overall SR Maintenance at FU after CA | FU (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kalman, et al. [10] | 1996 | 18 | 27 ± 15 | CHD | 0% | RA | Conv. | 4 mm | 83% | n.r. | n.r. | n.r. | n.r. | 27% | 61% | 17 ± 8 |
Baker, et al. [34] | 1996 | 14 | 34 ± 25 | CHD | 0% | RA | Conv. | 4 mm | 93% | 0% | 1.4% (PA) | n.r. | n.r. | 46% | 50% | 8 ± 5 |
Triedmann, et al. [35] | 1997 | 45 | 25 ± 11 | CHD | 0% | RA | Conv. | 4 mm | 73% | 4.4% (PE) | 2.2% (GH) | n.r. | n.r. | 52% | 36% | 17 ± 11 |
Jais, et al. [36] | 2000 | 22 | 60 ± 14 | SHD, MVS | 0% | LA | Conv. + 3D | 4 mm | 77% | 4.5% (CE) | 0% | 339 ± 113 | 95 ± 42 | 6% | 73% | 15 ± 7 |
Delacretaz, et al. [37] | 2001 | 20 | 43 ± 15 | CHD | 0% | RA/LA | Conv. + 3D | 4 mm | 65% | 0% | 0% | n.r. | 26 ± 9 | 8% | 60% | 19 ± 14 |
Nakagawa, et al. [38] | 2001 | 16 | (15–53) | CHD | 0% | RA | Conv. + 3D | 4 mm | 100% | 0% | 0% | n.r. | n.r. | 20% | 80% | 13 |
Ouyang, et al. [39] | 2002 | 28 | 64 ± 10 | VHS, SHD | n.r. | LA | Conv. + 3D | 4 mm, IC | 88% | 0% | 7% (GH) | 384 ± 145 | 18 ± 9 | 0% | 71% | 14 |
Zrenner, et al. [40] | 2003 | 12 | 29 ± 5 | CHD | 0% | RA | Conv. + 3D | 8 mm | 83% | 0% | 0% | 343 ± 141 | 64 ± 43 | 30% | 58% | 19 ± 8 |
Tai, et al. [41] | 2004 | 15 | 61 ± 13 | RHD | 0% | RA | Conv. + 3D | 4 mm | 87% | 0% | 0% | n.r. | n.r. | 15% | 67% | 17 ± 4 |
Tanner, et al. [42] | 2004 | 36 | (9–67) | CHD | 0% | RA/LA | Conv. + 3D | IC | 87% | 0% | 2.7% (AVF) | 115 (45–315) | 12 (4–56) | 8% | 78% | 17 ± 7 |
Lukac, et al. [43] | 2005 | 83 | (9–73) | CHD, SHD | 0% | RA/LA | Conv. + 3D | 4,8 mm, IC | 88% | 1.2% (CE) | 0% | 135 (27–382) | 17 (2–83) | 24% | 60% | 27 (2–76) |
Stevenson, et al. [31] | 2005 | 8 | 53 ± 12 | No SHD | 0% | RA | Conv. + 3D | 4 mm, IC | 87% | n.r. | n.r. | n.r. | n.r. | 25% | 75% | 20 ± 13 |
Magnin-Poull, et al. [44] | 2005 | 22 | 43 ± 12 | CHD | 0% | RA | Conv. + 3D | 4 mm | 100% | 0% | 0% | 290 ± 155 | 24 ± 12 | 54% | 41% | 25 ± 16 |
Deisenhofer, et al. [4] | 2006 | 16 | 58 ± 8 | PVI | 100% | LA | Conv. + 3D | IC | 89% | 6% (CE) | 0% | 283 ± 66 | 47 ± 22 | 62% | 38% | 10 ± 7 |
Seiler, et al. [45] | 2007 | 40 | 52 ± 12 | CHD, VHS | 0% | RA/LA | Conv. + 3D | IC | 88% | n.r. | n.r. | n.r | n.r | 37% | 55% | 28 ± 17 |
De Ponti, et al. [46] | 2007 | 65 | 57 ± 17 | CHD, SHD | 9% | RA/LA | 3D only | 4,8 mm, IC | 92% | 0% | 3% (AVF) | n.r | n.r | 6.8% | 80% | 14 ± 4 |
Fiala, et al. [5] | 2007 | 33 | 62 ± 11 | No SHD | 0% | RA/LA | Conv. + 3D | 4 mm, IC | 84% | 0% | 0% | 191 ± 50 | 22 ± 9 | 9% | 73% | 37 ± 15 |
Bai, et al. [47] | 2007 | 70 | 45–71 | SHD, PVI | 61% | RA/LA | Conv. + 3D | 8 mm, IC | 86% | 0% | 0% | 150–366 | 44–116 | 17% | 75% | 10 |
Chae, et al. [48] | 2007 | 78 | 62 ± 11 | PVI | 100% | LA | Conv. + 3D | 8 mm, IC | 85% | 0% | 0% | n.r. | n.r. | 23% | 77% | 13 ± 10 |
Esato, et al. [49] | 2009 | 26 | 59 ± 12 | SHD, CHD | 73% | RA/LA | Conv. + 3D | IC | 100% | 0% | 0% | 181 ± 58 | 37 ± 19 | 8% | 88% | 11 ± 3 |
Yap, et al. [50] | 2010 | 130 | 40 ± 13 | CHD | 0% | RA | Conv. + 3D | 4,8 mm, IC | 63% | 3.3% | n.r. | 185–240 | 42–47 | 48% | 43% | 44 |
De Ponti, et al. [51] | 2010 | 52 | 54 ± 16 | SHD, PVI | 17% | RA/LA | 3D only | IC | 90% | 0% | 4% (AVF) | n.r | n.r | 6% | 92% | 26 ± 18 |
Drago, et al. [52] | 2011 | 31 | 26 ± 17 | CHD | 0% | RA | 3D only | 4,8 mm, IC | 87% | 0% | 0% | 293 ± 104 | 38 ± 23 | 0% | n.r. | 12 ± 4 |
Wasmer, et al. [21] | 2012 | 25 | 59 ± 10 | PVI | 100% | LA | Conv. + 3D | IC | n.r. | n.r | n.r | n.r | n.r | 28% | 64% | 31 ± 17 |
Zhang, et al. [53] | 2013 | 10 | 57 ± 14 | No SHD | 0% | LA | Conv. + 3D | IC | 100% | 0% | 0% | n.r | n.r | 20% | 80% | 14 ± 10 |
Scaglione, et al. [9] | 2014 | 46 | 49 ± 13 | CHD | 0% | RA/LA | Conv. + 3D | 4,8 mm, IC | 100% | 0% | 0% | 110 ± 30 | 30 ± 9 | 24% | 76% | 7 ± 4 |
Anter, et al. [54] | 2016 | 20 | 62 ± 7 | CA | 95% | RA/LA | HD 3D map (OrionTM, Boston Scientific, Natick, MA, USA) | IC | 80% | 0% | 5% (GH) | n.r | n.r | 25% | 75% | 7 ± 3 |
Grubb, et al. [55] | 2019 | 140 | 45 ± 1 | CHD | 0% | RA/LA | Conv. + 3D | 8 mm, IC | 89% | 1% (AVB; CE) | n.r. | n.r. | 30 ± 2 | 50% | 56% | 49.9 |
Marazzato, et al. [14] | 2020 | 227 | 49–72 | MVS, CM IV | 56% | RA/LA | Conv. + 3D | n.r. | 96% (87–100) | <1% (RPH; CE) | n.r. | 70–306 | 9–64 | n.r. | 59% (47–71) | 1–63 |
Derval, et al. [7] | 2020 | 132 | 60 ± 12 | PVI, no SHD | 84% | RA/LA | HD 3D map (OrionTM, Boston Scientific) | IC | 92% | n.r. | n.r. | n.r. | n.r. | 46% | 54% | 13 ± 9 |
Balt, et al. [56] | 2021 | 23 | 66 ± 5 | HS, PVI | n.r. | RA/LA | HD 3D map (Advisor TM HD grid, Abbott, Chicago, IL, USA) | IC + CF | 84% | 4% (CE) | 0% | 145 ± 42 | 25 ± 12 | 21% | 75% | 12 |
Liu, et al. [57] | 2021 | 31 | 59 ± 10 | HS, CA | 60% | RA/LA | Conv. + HD (PentarayTM, Biosense Webster Inc., Irvine, CA, USA) | IC | 100% | n.r. | n.r. | n.r. | n.r. | 7% | 93% | 6 |
Vlachos, et al. [58] | 2021 | 107 | 66 ± 9 | PVI | 100% | LA | Conv + HD (OrionTM, Boston Scientific; AdvisorTM HD grid, Abbott; PentarayTM, Biosense Webster Inc.) | IC | 99% | 0% | 1% (AVF) | 214 ± 90 | 28 ± 20 | 16% | 84% | 16 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Ponti, R.; Marazzi, R.; Vilotta, M.; Angeli, F.; Marazzato, J. Procedural Feasibility and Long-Term Efficacy of Catheter Ablation of Atypical Atrial Flutters in a Wide Spectrum of Heart Diseases: An Updated Clinical Overview. J. Clin. Med. 2022, 11, 3323. https://doi.org/10.3390/jcm11123323
De Ponti R, Marazzi R, Vilotta M, Angeli F, Marazzato J. Procedural Feasibility and Long-Term Efficacy of Catheter Ablation of Atypical Atrial Flutters in a Wide Spectrum of Heart Diseases: An Updated Clinical Overview. Journal of Clinical Medicine. 2022; 11(12):3323. https://doi.org/10.3390/jcm11123323
Chicago/Turabian StyleDe Ponti, Roberto, Raffaella Marazzi, Manola Vilotta, Fabio Angeli, and Jacopo Marazzato. 2022. "Procedural Feasibility and Long-Term Efficacy of Catheter Ablation of Atypical Atrial Flutters in a Wide Spectrum of Heart Diseases: An Updated Clinical Overview" Journal of Clinical Medicine 11, no. 12: 3323. https://doi.org/10.3390/jcm11123323
APA StyleDe Ponti, R., Marazzi, R., Vilotta, M., Angeli, F., & Marazzato, J. (2022). Procedural Feasibility and Long-Term Efficacy of Catheter Ablation of Atypical Atrial Flutters in a Wide Spectrum of Heart Diseases: An Updated Clinical Overview. Journal of Clinical Medicine, 11(12), 3323. https://doi.org/10.3390/jcm11123323