Marking the Profile of the Microflora of the Endometrium and Uterine Cervix in Women as a Potential Factor Determining the Effectiveness of In Vitro Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Next-Generation Sequencing
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Composition of the Endometrium Microflora
3.2. Incidence Dependences between Individual Isolated Bacteria Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Przyjemska, A. Ocena Jakości Życia Kobiet Leczonych z Powodu Niepłodności. Master’s Thesis, Uniwersytet Jagielloński, Krakow, Poland, 2018. [Google Scholar]
- Becker, M.A.; Chandy, A.; Mayer, J.L.; Sachdeva, J.; Albertini, E.S.; Sham, C.; Worley, L.L. Psychiatric Aspects of Infertility. Am. J. Psychiatry 2019, 176, 765–766. [Google Scholar] [CrossRef] [PubMed]
- Hocaoglu, C. The Psychosocial Aspect of Infertility. Infertil. Assist. Reprod. Technol. Horm. Assays 2019, 65, 1–14. [Google Scholar]
- Szkodziak, F.; Krzyżanowski, J.; Szkodziak, P. Psychological Aspects of Infertility. A Systematic Review. J. Int. Med. Res. 2020, 48, 0300060520932403. [Google Scholar] [CrossRef] [PubMed]
- Trzęsowska-Greszta, E.; Jastrzębski, J.; Sikora, R.; Fia\lek, M.; Trębicka, P. Poziom Depresji u Kobiet z Utrudnioną Prokreacją a Styl Radzenia Sobie Ze Stresem i P\leć Psychologiczna. Kwart. Nauk. Fides Ratio 2017, 29, 191–215. [Google Scholar]
- Korolczuk, E. Niepłodność, Tożsamość, Obywatelstwo. Analiza Spolecznej Mobilizacji Wokół Dostępu Do in Vitro w Polsce. In Etnografie Biomedycyny; The University of Warsaw Press: Warsaw, Poland, 2014. [Google Scholar]
- Kiecka, A.; Macura, B.; Szczepanik, M. Wpływ Mikrobioty Układu Rozrodczego Na Płodność Żeńską i Męską. Rola Bakterii z Rodzaju Lactobacillus. Postępy Mikrobiol. 2021, 60, 151–159. [Google Scholar] [CrossRef]
- Wang, F.; Cai, F.; Shi, R.; Wang, X.-H.; Wu, X.-T. Aging and Age Related Stresses: A Senescence Mechanism of Intervertebral Disc Degeneration. Osteoarthr. Cartil. 2016, 24, 398–408. [Google Scholar] [CrossRef]
- Pytka, M.; Kordowska-Wiater, M.; Jarocki, P. Mikrobiom Układu Płciowego Kobiet. Postępy Mikrobiol. 2019, 58, 227–236. [Google Scholar] [CrossRef]
- García-Velasco, J.A.; Budding, D.; Campe, H.; Malfertheiner, S.F.; Hamamah, S.; Santjohanser, C.; Schuppe-Koistinen, I.; Nielsen, H.S.; Vieira-Silva, S.; Laven, J. The Reproductive Microbiome–Clinical Practice Recommendations for Fertility Specialists. Reprod. Biomed. Online 2020, 41, 443–453. [Google Scholar] [CrossRef]
- Shevell, T.; Malone, F.D.; Vidaver, J.; Porter, T.F.; Luthy, D.A.; Comstock, C.H.; Hankins, G.D.; Eddleman, K.; Dolan, S.; Dugoff, L. Assisted Reproductive Technology and Pregnancy Outcome. Obstet. Gynecol. 2005, 106, 1039–1045. [Google Scholar] [CrossRef]
- Kanmaz, A.G.; İnan, A.H.; Beyan, E.; Ögür, S.; Budak, A. Effect of Advanced Maternal Age on Pregnancy Outcomes: A Single-Centre Data from a Tertiary Healthcare Hospital. J. Obstet. Gynaecol. 2019, 39, 1104–1111. [Google Scholar] [CrossRef]
- Baker, J.M.; Chase, D.M.; Herbst-Kralovetz, M.M. Uterine Microbiota: Residents, Tourists, or Invaders? Front. Immunol. 2018, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, M.; Huras, H.; Kamiński, P.; Karowicz-Bilińska, A.; Drews, K.; Fuchs, T.; Pomorski, M. Rekomendacje Polskiego Towarzystwa Ginekologów i Po\lożników—Zastosowanie Antyseptyków w Przypadkach Nieswoistych Stanów Zapalnych Pochwy. Ginekol. Perinatol. Prakt. 2020, 5, 90–97. [Google Scholar]
- Lacroix, G.; Gouyer, V.; Gottrand, F.; Desseyn, J.-L. The Cervicovaginal Mucus Barrier. Int. J. Mol. Sci. 2020, 21, 8266. [Google Scholar] [CrossRef]
- Osadchiy, V.; Mills, J.N.; Mayer, E.A.; Eleswarapu, S.V. The Seminal Microbiome and Male Factor Infertility. Curr. Sex. Health Rep. 2020, 12, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Stone, L. Vaginal Microbiota and Infectious Infertility. Nat. Rev. Urol. 2018, 15, 136. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Bäckhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R. Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Konstantinov, S.R.; van der Woude, C.J.; Peppelenbosch, M.P. Do Pregnancy-Related Changes in the Microbiome Stimulate Innate Immunity? Trends Mol. Med. 2013, 19, 454–459. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Werner, M.D.; Juneau, C.R.; Tao, X.; Landis, J.; Zhan, Y.; Treff, N.R.; Scott, R.T. Endometrial Microbiome at the Time of Embryo Transfer: Next-Generation Sequencing of the 16S Ribosomal Subunit. J. Assist. Reprod. Genet. 2016, 33, 129–136. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Scott, R.T. Introduction: Microbiome in Human Reproduction. Fertil. Steril. 2015, 104, 1341–1343. [Google Scholar] [CrossRef]
- Gustyn, J.; Lisiak, E.; Moryz-Balaska, E.; Safader, M. Polska w Liczbach 2021; Główny Urząd Statystyczny: Warsaw, Poland, 2021. [Google Scholar]
- Kalkulator Doboru Próby. Available online: https://www.naukowiec.org/dobor.html (accessed on 19 April 2022).
- Einenkel, R.; Zygmunt, M.; Muzzio, D.O. Microorganisms in the Healthy Upper Reproductive Tract: From Denial to Beneficial Assignments for Reproductive Biology. Reprod. Biol. 2019, 19, 113–118. [Google Scholar] [CrossRef]
- Miles, S.M.; Hardy, B.L.; Merrell, D.S. Investigation of the Microbiota of the Reproductive Tract in Women Undergoing a Total Hysterectomy and Bilateral Salpingo-Oopherectomy. Fertil. Steril. 2017, 107, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Winters, A.D.; Romero, R.; Gervasi, M.T.; Gomez-Lopez, N.; Tran, M.R.; Garcia-Flores, V.; Pacora, P.; Jung, E.; Hassan, S.S.; Hsu, C.-D. Does the Endometrial Cavity Have a Molecular Microbial Signature? Sci. Rep. 2019, 9, 1–17. [Google Scholar]
- Lüll, K.; Saare, M.; Peters, M.; Kakhiani, E.; Zhdanova, A.; Salumets, A.; Boyarsky, K.; Org, E. Differences in Microbial Profile of Endometrial Fluid and Tissue Samples in Women with in Vitro Fertilization Failure Are Driven by Lactobacillus Abundance. Acta Obstet. Gynecol. Scand. 2022, 101, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Witkin, S.; Linhares, I. Why Do Lactobacilli Dominate the Human Vaginal Microbiota? BJOG Int. J. Obstet. Gynaecol. 2017, 124, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Carosso, A.; Revelli, A.; Gennarelli, G.; Canosa, S.; Cosma, S.; Borella, F.; Tancredi, A.; Paschero, C.; Boatti, L.; Zanotto, E.; et al. Controlled Ovarian Stimulation and Progesterone Supplementation Affect Vaginal and Endometrial Microbiota in IVF Cycles: A Pilot Study. J. Assist. Reprod. Genet. 2020, 37, 2315–2326. [Google Scholar] [CrossRef]
- Moreno, I.; Garcia-Grau, I.; Perez-Villaroya, D.; Gonzalez-Monfort, M.; Bahçeci, M.; Barrionuevo, M.J.; Taguchi, S.; Puente, E.; Dimattina, M.; Lim, M.W.; et al. Endometrial Microbiota Composition Is Associated with Reproductive Outcome in Infertile Patients. Microbiome 2022, 10, 1. [Google Scholar] [CrossRef]
- Sezer, O.; Caliskan, C.S.; Celik, S.; Kilic, S.S.; Kuruoglu, T.; Ustun, G.U.; Yurtcu, N. Assessment of Vaginal and Endometrial Microbiota by Real-time PCR in Women with Unexplained Infertility. J. Obstet. Gynaecol. Res. 2022, 48, 129–139. [Google Scholar] [CrossRef]
- Okwelogu, S.I.; Ikechebelu, J.I.; Agbakoba, N.R.; Anukam, K.C. Microbiome Compositions From Infertile Couples Seeking In Vitro Fertilization, Using 16S RRNA Gene Sequencing Methods: Any Correlation to Clinical Outcomes? Front. Cell. Infect. Microbiol. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Giudice, L.C. Challenging Dogma: The Endometrium Has a Microbiome with Functional Consequences! Am. J. Obstet. Gynecol. 2016, 215, 682–683. [Google Scholar] [CrossRef]
- Liu, Y.; Ko, E.Y.-L.; Wong, K.K.-W.; Chen, X.; Cheung, W.-C.; Law, T.S.-M.; Chung, J.P.-W.; Tsui, S.K.-W.; Li, T.-C.; Chim, S.S.-C. Endometrial Microbiota in Infertile Women with and without Chronic Endometritis as Diagnosed Using a Quantitative and Reference Range-Based Method. Fertil. Steril. 2019, 112, 707–717. [Google Scholar] [CrossRef]
- Cregger, M.; Lenz, K.; Leary, E.; Leach, R.; Fazleabas, A.; White, B.; Braundmeier, A. Reproductive Microbiomes: Using the Microbiome as a Novel Diagnostic Tool for Endometriosis. Reprod. Immunol. Open Access 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Hashimoto, T.; Kyono, K. Does Dysbiotic Endometrium Affect Blastocyst Implantation in IVF Patients? J. Assist. Reprod. Genet. 2019, 36, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Johnston-MacAnanny, E.B.; Hartnett, J.; Engmann, L.L.; Nulsen, J.C.; Sanders, M.M.; Benadiva, C.A. Chronic Endometritis Is a Frequent Finding in Women with Recurrent Implantation Failure after in Vitro Fertilization. Fertil. Steril. 2010, 93, 437–441. [Google Scholar] [CrossRef]
- Kyono, K.; Hashimoto, T.; Kikuchi, S.; Nagai, Y.; Sakuraba, Y. A Pilot Study and Case Reports on Endometrial Microbiota and Pregnancy Outcome: An Analysis Using 16S RRNA Gene Sequencing among IVF Patients, and Trial Therapeutic Intervention for Dysbiotic Endometrium. Reprod. Med. Biol. 2019, 18, 72–82. [Google Scholar] [CrossRef]
- Nelson, S.S. Polish Government Eliminates Program Covering In-Vitro Fertilization. NPR 2017. Available online: https://www.npr.org/2017/04/06/522826565/polish-government-eliminates-program-covering-in-vitro-fertilization?t=1654851544945 (accessed on 4 June 2022).
- Vanderhout, S.M.; Rastegar Panah, M.; Garcia-Bailo, B.; Grace-Farfaglia, P.; Samsel, K.; Dockray, J.; Jarvi, K.; El-Sohemy, A. Nutrition, Genetic Variation and Male Fertility. Transl. Androl. Urol. 2021, 10, 1410–1431. [Google Scholar] [CrossRef]
- Pereira, N.L.; Ahmad, F.; Byku, M.; Cummins, N.W.; Morris, A.A.; Owens, A.; Tuteja, S.; Cresci, S. COVID-19: Understanding Inter-Individual Variability and Implications for Precision Medicine. Mayo Clin. Proc. 2021, 96, 446–463. [Google Scholar] [CrossRef] [PubMed]
Age (years) | 34.09 ± 3.17 |
Weight (kg) | 68.03 ± 14.96 |
High (cm) | 165.36 ± 6.97 |
BMI | 24.99 ± 2.09 |
Duration of infertility (years) | 9.3 ± 2.4 |
Concentration of beta hCG (IU/L) | 21.09 ± 5.89 |
Inclusion Criteria | Exclusion Criteria |
---|---|
Infertility as defined by Word Health Organization standards | American Fertility Score III/IV and pre-treatment with a gonadotrophin-releasing hormone analog |
Written, conscious consent of the patient | No written consent given |
Age 18–45 | Age < 18 or >45 |
Qualification and performance of the in vitro procedure | Disqualification of the patient, and excluding her from the IVF procedure in accordance with the criteria and qualifications described in the current recommendations and guidelines |
No use of probiotic, prebiotic, or synbiotic preparations for at least 3 months before the examination, regardless of the form of administration | Use of probiotic, prebiotic, or symbiotic preparation for at least 3 months before the examination, regardless of the form of administration |
Undergoing sample transfer procedure | |
No use of antibiotics in the period of at least 3 months before the examination, regardless of the form of administration | Use of antibiotics in the period of at least 3 months before the examination, regardless of the form of administration |
No current or past neoplastic disease | Current or past neoplastic disease |
No mental or emotional disorders | Mental or emotional disorders |
Caucasian race | Race other than Caucasian |
No malformations of the uterus and fallopian tubes | Previous pregnancy or miscarriage in their medical history |
No vaginal infections (vaginal discharge, itching, burning, pain, bad smell) | Current or last 3 months before study vaginal infections |
No endometriosis | Endometriosis |
No use of hormonal contraceptives within 3 months prior to the start of their IVF intake | Used hormonal contraceptives within 3 months prior to the start of their IVF intake |
Lp. | Strain | Average | 95% Confidence Interval | Physiological/Pathological Microflora | % of Total Microflora |
---|---|---|---|---|---|
1 | Lactobacillus helveticus group | 60,570.66 ± 21,824.62 | 55,682.2; 65,459.1 | Physiological | 16 |
2 | Lactobacillus jensenii group | 42,462.03 ± 38,365.73 | 28,389.4; 56,534.7 | Physiological | 11 |
3 | Lactobacillus gasseri group | 37,687.71 ± 29,282.06 | 26,947.0; 48,428.5 | Physiological | 10 |
4 | Lactobacillus iners | 37,272.93 ± 32,042.41 | 18,772.2; 55,773.7 | Physiological | 10 |
5 | Escherichia coli group | 35,894.00 ± 30,071.02 | 4336.4; 67,451.6 | Pathological | 10 |
6 | Atopobium parvulum | 20,603.00 ± 25,672.43 | −43,170.8; 84,376.8 | Pathological | 6 |
7 | Bifidobacterium breve | 18,250.67 ± 17,535.96 | 4771.3; 31,730.0 | Physiological and pathological | 5 |
8 | Lactobacillus paracasei group | 17,414.67 ± 25,999.63 | −47,172.0; 82,001.3 | Physiological | 5 |
9 | Lactobacillus delbrueckii group | 16,862.00 ± 5135.53 | 4104.6; 29,619.4 | Physiological | 5 |
10 | Streptococcus agalactiae | 16,063.33 ± 16,117.75 | −23,975.4; 56,102.0 | Pathological | 4 |
11 | Staphylococcus aureus group | 14,118.33 ± 24,114.68 | −11,188.5; 39,425.1 | Pathological | 4 |
12 | Bifidobacterium longum group | 13,680.50 ± 11,412.00 | −88,852.2; 116,213.2 | Physiological and pathological | 4 |
13 | Gardnerella vaginalis group | 12,532.25 ± 9780.94 | 4355.2; 20,709.3 | Pathological | 3 |
14 | Streptococcus salivarius group | 11,037.50 ± 10,815.23 | −6171.9; 28,246.9 | Pathological | 3 |
15 | Enterococcus faecalis | 4751.50 ± 6977.68 | −6351.6; 15,854.6 | Pathological | 1 |
16 | Lactobacillus reuteri group | 3406.22 ± 2057.17 | 1824.9; 4987.5 | Physiological | 1 |
17 | Aerococcus christensenii | 2301.33 ± 1119.73 | −480.2; 5082.9 | Pathological | 1 |
18 | Lactobacillus fermentum | 1517.33 ± 620.41 | −23.8; 3058.5 | Physiological | <1 |
19 | Clostridium fallax | 1032.50 ± 252.44 | −1235.6; 3300.6 | Physiological | <1 |
20 | Lactobacillus FN667084_s | 935.67 ± 64.47 | 775.5; 1095.8 | Physiological | <1 |
21 | Alloscardovia omnicolens | 905.00 ± 69.30 | 282.4; 1527.6 | Pathological with clinical symptoms | <1 |
22 | Lactobacillus_uc | 724.00 ± 386.08 | −2744.8; 4192.8 | Physiological | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarska-Czerwińska, A.; Czerwiński, M.; Morawiec, E.; Łach, A.; Ziaja, A.; Kusaj, A.; Strączyńska, P.; Sagan, D.; Boroń, D.; Grabarek, B.O. Marking the Profile of the Microflora of the Endometrium and Uterine Cervix in Women as a Potential Factor Determining the Effectiveness of In Vitro Fertilization. J. Clin. Med. 2022, 11, 3348. https://doi.org/10.3390/jcm11123348
Bednarska-Czerwińska A, Czerwiński M, Morawiec E, Łach A, Ziaja A, Kusaj A, Strączyńska P, Sagan D, Boroń D, Grabarek BO. Marking the Profile of the Microflora of the Endometrium and Uterine Cervix in Women as a Potential Factor Determining the Effectiveness of In Vitro Fertilization. Journal of Clinical Medicine. 2022; 11(12):3348. https://doi.org/10.3390/jcm11123348
Chicago/Turabian StyleBednarska-Czerwińska, Anna, Michał Czerwiński, Emilia Morawiec, Aleksandra Łach, Anna Ziaja, Adrian Kusaj, Patrycja Strączyńska, Dorota Sagan, Dariusz Boroń, and Beniamin Oskar Grabarek. 2022. "Marking the Profile of the Microflora of the Endometrium and Uterine Cervix in Women as a Potential Factor Determining the Effectiveness of In Vitro Fertilization" Journal of Clinical Medicine 11, no. 12: 3348. https://doi.org/10.3390/jcm11123348
APA StyleBednarska-Czerwińska, A., Czerwiński, M., Morawiec, E., Łach, A., Ziaja, A., Kusaj, A., Strączyńska, P., Sagan, D., Boroń, D., & Grabarek, B. O. (2022). Marking the Profile of the Microflora of the Endometrium and Uterine Cervix in Women as a Potential Factor Determining the Effectiveness of In Vitro Fertilization. Journal of Clinical Medicine, 11(12), 3348. https://doi.org/10.3390/jcm11123348