Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Screening Process and Critical Appraisal
3. Results
3.1. Search Results
3.2. Chromosomal Aberrations of Interest
3.3. Patient Characteristics and Acquisition of Samples
3.4. Molecular Methods for cfDNA Analysis
3.5. Study Outcomes
3.6. Limitations and Biases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levy, B.; Wapner, R. Prenatal diagnosis by chromosomal microarray analysis. Fertil. Steril. 2018, 109, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Bedei, I.; Wolter, A.; Weber, A.; Signore, F.; Axt-Fliedner, R. Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review. Genes 2021, 12, 501. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L.; Cariati, F.; Sarno, L.; Conforti, A.; Bagnulo, F.; Strina, I.; Patore, L.; Maruotti, G.M.; Alviggi, C. Non-Invasive Prenatal Testing: Current Perspectives and Future Challenges. Genes 2020, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Hu, L.; Liu, J.; Wen, L.; Luo, X.; Lu, J.; Wei, F. Efficiency of noninvasive prenatal testing for the detection of fetal microdeletions and microduplications in autosomal chromosomes. Mol. Genet. Genom. Med. 2020, 8, e1339. [Google Scholar] [CrossRef]
- Yatsenko, S.A.; Peters, D.G.; Rajkovic, A. Response to Sahoo et al. Genet. Med. 2016, 18, 277. [Google Scholar] [CrossRef] [PubMed]
- Benn, P. Expanding non-invasive prenatal testing beyond chromosomes 21, 18, 13, X and Y. Clin. Genet. 2016, 90, 477–485. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, R.; Li, J.; Zhang, R. Novel perspectives in fetal biomarker implementation for the noninvasive prenatal testing. Crit. Rev. Clin. Lab. Sci. 2019, 56, 374–392. [Google Scholar] [CrossRef]
- Shaffer, B.L.; Norton, M.E. Cell-Free DNA Screening for Aneuploidy and Microdeletion Syndromes. Obstet. Gynecol. Clin. N. Am. 2018, 45, 13–26. [Google Scholar] [CrossRef]
- Familiari, A.; Boito, S.; Rembouskos, G.; Ischia, B.; Accurti, V.; Fabietti, I.; Volpe, P.; Persico, N. Cell-free DNA analysis of maternal blood in prenatal screening for chromosomal microdeletions and microduplications: A systematic review. Prenat. Diagn. 2021, 41, 1324–1331. [Google Scholar] [CrossRef]
- Gross, S.J.; Stosic, M.; McDonald-McGinn, D.M.; Bassett, A.S.; Norvez, A.; Dhamankar, R.; Kobara, K.; Kirkizlar, E.; Zimmermann, B.; Wayham, N.; et al. Clinical experience with single-nucleotide polymorphism-based non-invasive prenatal screening for 22q11.2 deletion syndrome. Ultrasound Obstet. Gynecol. 2016, 47, 177–183. [Google Scholar] [CrossRef]
- Schmid, M.; Wang, E.; Bogard, P.E.; Bevilacqua, E.; Hacker, C.; Wang, S.; Doshi, J.; White, K.; Kaplan, J.; Sparks, A.; et al. Prenatal Screening for 22q11.2 Deletion Using a Targeted Microarray-Based Cell-Free DNA Test. Fetal Diagn. Ther. 2018, 44, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Ravi, H.; McNeill, G.; Goel, S.; Meltzer, S.D.; Hunkapiller, N.; Ryan, A.; Levy, B.; Demko, Z.P. Validation of a SNP-based non-invasive prenatal test to detect the fetal 22q11.2 deletion in maternal plasma samples. PLoS ONE 2018, 13, e0193476. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Hsieh, T.-T.; Cheng, P.-J.; Hung, T.-H.; Chan, K.-S.; Tsai, C.; Shaw, S.W. Taiwanese Clinical Experience with Noninvasive Prenatal Testing for DiGeorge Syndrome. Fetal Diagn. Ther. 2021, 48, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Wapner, R.J.; Babiarz, J.E.; Levy, B.; Stosic, M.; Zimmermann, B.; Sigurjonsson, S.; Wayham, N.; Ryan, A.; Banjevic, M.; Lacroute, P.; et al. Expanding the scope of noninvasive prenatal testing: Detection of fetal microdeletion syndromes. Am. J. Obstet. Gynecol. 2015, 212, 332.e1–332.e9. [Google Scholar] [CrossRef] [PubMed]
- Helgeson, J.; Wardrop, J.; Boomer, T.; Almasri, E.; Paxton, W.B.; Saldivar, J.S.; Dharajiya, N.; Monroe, T.J.; Farkas, D.H.; Grosu, D.S.; et al. Clinical outcome of subchromosomal events detected by whole-genome noninvasive prenatal testing. Prenat. Diagn. 2015, 35, 999–1004. [Google Scholar] [CrossRef]
- Petersen, A.K.; Cheung, S.W.; Smith, J.L.; Bi, W.; Ward, P.A.; Peacock, S.; Braxton, A.; van den Veyver, I.B.; Breman, A.M. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory. Am. J. Obstet. Gynecol. 2017, 217, 691.e1–691.e6. [Google Scholar] [CrossRef]
- Martin, K.; Iyengar, S.; Kalyan, A.; Lan, C.; Simon, A.L.; Stosic, M.; Kobara, K.; Ravi, H.; Truong, T.; Ryan, A.; et al. Clinical experience with a single-nucleotide polymorphism-based non-invasive prenatal test for five clinically significant microdeletions. Clin. Genet. 2018, 93, 293–300. [Google Scholar] [CrossRef]
- Schwartz, S.; Kohan, M.; Pasion, R.; Papenhausen, P.R.; Platt, L.D. Clinical experience of laboratory follow-up with noninvasive prenatal testing using cell-free DNA and positive microdeletion results in 349 cases. Prenat. Diagn. 2018, 38, 210–218. [Google Scholar] [CrossRef]
- Koumbaris, G.; Achilleos, A.; Nicolaou, M.; Loizides, C.; Tsangaras, K.; Kypri, E.; Mina, P.; Sismani, C.; Velissariou, V.; Christopoulou, G.; et al. Targeted capture enrichment followed by NGS: Development and validation of a single comprehensive NIPT for chromosomal aneuploidies, microdeletion syndromes and monogenic diseases. Mol. Cytogenet. 2019, 12, 48. [Google Scholar] [CrossRef]
- Welker, N.C.; Lee, A.K.; Kjolby, R.A.S.; Wan, H.Y.; Theilmann, M.R.; Jeon, D.; Goldberg, J.D.; Haas, K.R.; Muzzey, D.; Chu, C.S. High-throughput fetal fraction amplification increases analytical performance of noninvasive prenatal screening. Genet. Med. 2021, 23, 443–450. [Google Scholar] [CrossRef]
- Liang, D.; Cram, D.S.; Tan, H.; Linpeng, S.; Liu, Y.; Sun, H.; Zhang, Y.; Tian, F.; Zhu, H.; Xu, M.; et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. Genet. Med. 2019, 21, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, R.B.; Tynan, J.A.; Liu, T.; Wu, Y.; Mazloom, A.R.; Almasri, E.; Hogg, G.; Angkachatchai, V.; Zhao, C.; Grosu, D.S.; et al. Clinical validation of a noninvasive prenatal test for genome wide detection of fetal copy number variants. Am. J. Obstet. Gynecol. 2016, 215, 227.e1–227.e16. [Google Scholar] [CrossRef]
- Rafalko, J.; Soster, E.; Caldwell, S.; Almasri, E.; Westover, T.; Weinblatt, V.; Cacheris, P. Genome-wide cell-free DNA screening: A focus on copy-number variants. Genet. Med. 2021, 23, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Neofytou, M.C.; Tsangaras, K.; Kypri, E.; Loizides, C.; Ioannides, M.; Achilleos, A.; Mina, P.; Keravnou, A.; Sismani, C.; Koumbaris, G.; et al. Targeted capture enrichment assay for non-invasive prenatal testing of large and small size sub-chromosomal deletions and duplications. PLoS ONE 2017, 12, e0171319. [Google Scholar] [CrossRef]
- Kucharik, M.; Gnip, A.; Hyblova, M.; Budis, J.; Strieskova, L.; Harsanyova, M.; Pös, O.; Kubiritova, Z.; Radvanszky, J.; Minarik, G.; et al. Non-invasive prenatal testing (NIPT) by low coverage genomic sequencing: Detection limits of screened chromosomal microdeletions. PLoS ONE 2020, 15, e0238245. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Peng, C.F.; Qi, Y.; Rao, X.Q.; Guo, F.; Hou, Y.; He, W.; Wu, J.; Chen, Y.Y.; Zhao, X.; et al. Noninvasive prenatal detection of hemoglobin Bart hydrops fetalis via maternal plasma dispensed with prenatal haplotyping using the semiconductor sequencing platform. Am. J. Obstet. Gynecol. 2019, 222, 185.e1–185.e17. [Google Scholar] [CrossRef]
- Sawakwongpra, K.; Tangmansakulchai, K.; Ngonsawan, W.; Promwan, S.; Chanchamroen, S.; Quangkananurug, W.; Sriswasdi, S.; Jantarasaengaram, S.; Ponnikorn, S. Droplet-based digital PCR for non-invasive prenatal genetic diagnosis of α and β-thalassemia. Biomed. Rep. 2021, 15, 82. [Google Scholar] [CrossRef]
- Zhao, C.; Tynan, J.; Ehrich, M.; Hannum, G.; McCullough, R.; Saldivar, J.-S.; Oeth, P.; van den Boom, D.; Deciu, C. Detection of Fetal Subchromosomal Abnormalities by Sequencing Circulating Cell-Free DNA from Maternal Plasma. Clin. Chem. 2015, 61, 608–616. [Google Scholar] [CrossRef]
- Yin, A.H.; Peng, C.F.; Zhao, X.; Caughey, B.A.; Yang, J.X.; Liu, J.; Huang, W.W.; Liu, C.; Luo, D.H.; Liu, H.L.; et al. Noninvasive detection of fetal subchromosomal abnormalities by semiconductor sequencing of maternal plasma DNA. Proc. Natl. Acad. Sci. USA 2015, 112, 14670–14675. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Wu, J.; Zhou, P.; Fu, J.; Sun, J.; Cai, W.; Liu, H.; Yang, Y. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 8141 single pregnancies. Hum. Genom. 2019, 13, 14. [Google Scholar] [CrossRef]
- Pescia, G.; Guex, N.; Iseli, C.; Brennan, L.; Osteras, M.; Xenarios, I.; Farinelli, L.; Conrad, B. Cell-free DNA testing of an extended range of chromosomal anomalies: Clinical experience with 6,388 consecutive cases. Genet. Med. 2017, 19, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.; Bono, S.; Pizzuti, F.; Duca, S.; Polverari, A.; Faieta, M.; Baldi, M.; Diano, L.; Spinella, F. The clinical utility of genome-wide noninvasive prenatal screening. Prenat. Diagn. 2017, 37, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhang, K.; Han, M.; Pan, W.; Chen, Y.; Wang, Y.; Jiao, H.; Duan, L.; Zhu, Q.; Song, X.; et al. Noninvasive prenatal testing for fetal subchromosomal copy number variations and chromosomal aneuploidy by low-pass whole-genome sequencing. Mol. Genet. Genom. Med. 2019, 7, e674. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, Q.; Mao, X.; Lei, W.; He, M.; Lu, W. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. Hum. Genom. 2019, 13, 60. [Google Scholar] [CrossRef]
- Chen, Y.; Lai, Y.; Xu, F.; Qin, H.; Tang, Y.; Huang, X.; Meng, L.; Su, J.; Sun, W.; Shen, Y.; et al. The application of expanded noninvasive prenatal screening for genome-wide chromosomal abnormalities and genetic counseling. J. Matern.-Fetal Neonatal Med. 2021, 34, 2710–2716. [Google Scholar] [CrossRef]
- Luo, Y.; Hu, H.; Jiang, L.; Ma, Y.; Zhang, R.; Xu, J.; Pan, Y.; Long, Y.; Yao, H.; Liang, Z. A retrospective analysis the clinic data and follow-up of non-invasive prenatal test in detection of fetal chromosomal aneuploidy in more than 40,000 cases in a single prenatal diagnosis center. Eur. J. Med. Genet. 2020, 63, 104001. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; He, Y.; Xu, W.; Ma, Q.; He, Y.; Lei, W.; Chen, G.; He, Z.; Huang, J.; et al. Clinical performance of non-invasive prenatal served as a first-tier screening test for trisomy 21, 18, 13 and sex chromosome aneuploidy in a pilot city in China. Hum. Genom. 2020, 14, 21. [Google Scholar] [CrossRef]
- Lai, Y.; Zhu, X.; He, S.; Dong, Z.; Tang, Y.; Xu, F.; Chen, Y.; Meng, L.; Tao, Y.; Yi, S.; et al. Performance of Cell-Free DNA Screening for Fetal Common Aneuploidies and Sex Chromosomal Abnormalities: A Prospective Study from a Less Developed Autonomous Region in Mainland China. Genes 2021, 12, 478. [Google Scholar] [CrossRef]
- Lo, K.K.; Karampetsou, E.; Boustred, C.; McKay, F.; Mason, S.; Hill, M.; Plagnol, V.; Chitty, L.S. Limited Clinical Utility of Non-Invasive Prenatal Testing for Subchromosomal Abnormalities. Am. J. Hum. Genet. 2016, 98, 34–44. [Google Scholar] [CrossRef]
- Li, R.; Wan, J.; Zhang, Y.; Fu, F.; Ou, Y.; Jing, X.; Li, J.; Li, D.; Liao, C. Detection of fetal copy number variants by non-invasive prenatal testing for common aneuploidies. Ultrasound Obstet. Gynecol. 2016, 47, 53–57. [Google Scholar] [CrossRef]
- Cogulu, O. Next Generation Sequencing as a Tool for Noninvasive Prenatal Tests. In Clinical Applications for Next-Generation Sequencing, 1st ed.; Demkow, U., Ploski, R., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 171–188. [Google Scholar]
- Wou, K.; Levy, B.; Wapner, R.J. Chromosomal Microarrays for the Prenatal Detection of Microdeletions and Microduplications. Clin. Lab. Med. 2016, 36, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.I.; Wapner, R.J.; Berkowitz, R.L. Noninvasive prenatal screening or advanced diagnostic testing: Caveat emptor. Am. J. Obstet. Gynecol. 2016, 215, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Gregg, A.R.; Skotko, B.G.; Benkendorf, J.L.; Monaghan, K.G.; Bajaj, K.; Best, R.G.; Klugman, S.; Watson, M.S. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: A position statement of the American College of Medical Genetics and Genomics. Genet. Med. 2016, 18, 1056–1065. [Google Scholar] [CrossRef]
- Bianchi, D.W. Cherchez la femme: Maternal incidental findings can explain discordant prenatal cell-free DNA sequencing results. Genet. Med. 2018, 20, 910–917. [Google Scholar] [CrossRef]
- Brady, P.; Brison, N.; Van Den Bogaert, K.; de Ravel, T.; Peeters, H.; Van Esch, H.; Devriendt, K.; Legius, E.; Vermeesch, J.R. Clinical implementation of NIPT–technical and biological challenges. Clin. Genet. 2016, 89, 523–530. [Google Scholar] [CrossRef]
- Yaron, Y.; Jani, J.; Schmid, M.; Oepkes, D. Current Status of Testing for Microdeletion Syndromes and Rare Autosomal Trisomies Using Cell-Free DNA Technology. Obstet. Gynecol. 2015, 126, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Grati, F.R.; Gross, S.J. Noninvasive screening by cell-free DNA for 22q11.2 deletion: Benefits, limitations, and challenges. Prenat. Diagn. 2019, 39, 70–80. [Google Scholar] [CrossRef]
- Advani, H.V.; Barrett, A.N.; Evans, M.I.; Choolani, M. Challenges in non-invasive prenatal screening for sub-chromosomal copy number variations using cell-free DNA. Prenat. Diagn. 2017, 37, 1067–1075. [Google Scholar] [CrossRef]
Study | Country | Type of Study | Microdeletions/CNVs | Molecular Method | Number of Participants | Sample | Size | Number of Reads | TP | FP | PPV | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yang et al., 2019 [26] | China | training set-retrospective, testing set-prospective cohort | SEA deletion | targeted method (SNP-based) | 878 | plasma | 20 kb | training set 4.84 M, testing set 5.22 M | 321 | 16 | 95.25% | 98.98% | 96.06% |
Sawakwongpra et al., 2021 [27] | Thailand | prospective cohort | SEA deletion | targeted method (droplet digital PCR) | 22 | plasma | 20 kb | 95.38% | 91.01% | ||||
Gross et al., 2016 [10] | USA | retrospective cohort | DiGeorge | targeted method (SNP-based) | 21,948 | plasma | 2.91 Mb | 8.9 M | 11 | 50 | 18% | ||
Schmid et al., 2018 [11] | UK | cross-sectional | DiGeorge | targeted method (microarray-based) | 1953 | plasma + artificial | 1.96–3.25 Mb | 97 | 8 | 92.38% | 75.2% | 99.6% | |
Ravi et al., 2018 [12] | USA | prospective cohort | DiGeorge | targeted method (SNP-based) | 10 affected and 409 controls | plasma | 2.55–3.16 Mb | 4.7 M | 19.6% | 90% | 99.74% | ||
Lin et al., 2021 [13] | Taiwan | retrospective cohort | DiGeorge | MPSS | 8158 | plasma | 3 Mb | 20 M | 7 | 6 | 53.85% | 100% | 99.92% |
Wapner et al., 2015 [14] | USA | prospective cohort | microdeletions (common) | targeted method (SNP-based) | 6 affected, 352 controls, 111 artificial | plasma + artificial | 2.91–20 Mb | 8.9 M | 106 | 4 | 96.36% | ||
Zhao et al., 2015 [28] | USA | prospective cohort | microdeletions (genome-wide) | MPSS | 178 | plasma | 3–40 Mb | 0.2× coverage | 17 | 1 | 94.4% | 94.4% | 99.4% |
Helgeson et al., 2015 [15] | USA | prospective cohort | microdeletions (common) | MPSS | 175,393 | plasma | 90.9% | ||||||
Yin et al., 2015 [29] | China | prospective cohort | microdeletions and microduplications (genome-wide) | MPSS | 1476 | plasma | 0.52–84 Mb | 3.5 M | 56 | 58 | 49.12% | 85.4% | 95.7% |
Petersen et al., 2017 [16] | USA | retrospective cohort | microdeletions (common) | various technologies | 712 | plasma | >1.5 Mb | 7 | 45 | 13.4% | |||
Martin et al., 2018 [17] | USA | retrospective cohort | microdeletions (common) | targeted method (SNP-based) | 114,616 | plasma | 2.91–20 Mb | >3.2 M | 30 | 43 | 41.1% | 96.77% | 81.62% |
Schwartz et al., 2018 [18] | USA | retrospective cross-sectional | microdeletions (common) | various technologies | 349 | plasma | 25 | 310 | 7.4% | ||||
Hu et al., 2019 [30] | China | prospective cohort | microdeletions (genome-wide) | MPSS | 8141 | plasma | >10, <10 Mb | 4.89 M | 13 | 23 | 36.11% | ||
Koumbaris et al., 2019 [19] | Cyprus | retrospective cohort | microdeletions (common) | targeted method (TACS) | 2033 | plasma | 5 | 0 | 100% | 100% | 100% | ||
Welker et al., 2021 [20] | USA | prospective cohort | microdeletions (common) | MPSS (FFA method) | 2401 | plasma | 97.2% | 99.8% | |||||
Pescia et al., 2017 [31] | Switzerland | retrospective cross-sectional | CNVs | MPSS | 6388 | plasma | >10 M | 7 | 3 | 70% | |||
Lo et al., 2016 [39] | UK | prospective cohort | CNVs | MPSS | 31 affected + 534 controls | plasma | >6, <6 Mb | 4–10 M | 55% | 83% | 99.6% | ||
Li et al., 2016 [40] | China | prospective cohort | CNVs | MPSS | 117 | plasma | >5, <5 Mb | 3.95 M | 11 | 4 | 73.33% | 61.1% | 95% |
Lefkowitz et al., 2016 [22] | USA | retrospective cross-sectional | CNVs > 7 Mb and common microdeletions | MPSS | 1166 | plasma | >7 Mb + selected smaller | 32 M | 42 | 1 | 97.67% | 97.7% | 99.9% |
Fiorentino et al., 2017 [32] | Italy | prospective cohort | CNVs | MPSS | 12,114 | plasma | >1.9 Mb | 30 M | 8 | 5 | 61.54% | 100% | 99.96% |
Yu et al., 2018 [33] | China | prospective cohort | CNVs | MPSS | 20,003 | plasma | >10, 5–10, <5 Mb | 4.2 M | 29 | 7 | 80.56% | 80.56% | |
Liang et al., 2019 [21] | China | prospective cohort | CNVs and common microdeletions | MPSS | 94,085 | plasma | >10, <10 Mb | 20 M | 49 | 71 | 40.8% | 90.74% | 99.92% |
Chen et al., 2019 [34] | China | prospective cohort | CNVs | MPSS | 42,910 | plasma | >10, 5–10, <5 Mb | 20 | 49 | 28.99% | |||
Luo et al., 2020 [36] | China | retrospective cohort | CNVs | MPSS | 40,256 | plasma | >3.5 M | 4 | 131 | 3% | |||
Pei et al., 2020 [4] | China | retrospective cohort | CNVs | MPSS | 141 | plasma | >20, 10–20, <10 Mb | >6 M | 21 | 120 | 14.89% | ||
Liu et al., 2020 [37] | China | retrospective cohort | CNVs | MPSS | 42,924 | plasma | 11 | 27 | 28.95% | ||||
Rafalko et al., 2021 [23] | USA | prospective cohort | CNVs > 7 Mb and common microdeletions | MPSS | 86,902 | plasma | >7 Mb + selected smaller | 181 | 63 | 74.2% | |||
Chen et al., 2021 [35] | China | prospective cohort | CNVs | MPSS | 34,620 | plasma | >5 Mb | 0.1× coverage | 21 | 20 | 51.22% | ||
Lai et al., 2021 [38] | China | prospective cohort | CNVs | MPSS | 86,262 | plasma | 6–32.5 Mb | 3 M | 4 | 8 | 33.3% | 20% | 99.99% |
Neofytou et al., 2017 [24] | Cyprus | prospective cohort | common microdeletions + Potocki Lupski | targeted method (TACS) | 21 affected + 50 controls | plasma + artificial | >0.5 Mb | 21 | 0 | 100% | 100% | 100% | |
Kucharik et al., 2020 [25] | Slovakia | case-control study | microdeletions (common) | MPSS | 29 | artificial | 0.9–21 Mb | 20 M | 24 | 0 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaninović, L.; Bašković, M.; Ježek, D.; Katušić Bojanac, A. Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review. J. Clin. Med. 2022, 11, 3350. https://doi.org/10.3390/jcm11123350
Zaninović L, Bašković M, Ježek D, Katušić Bojanac A. Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review. Journal of Clinical Medicine. 2022; 11(12):3350. https://doi.org/10.3390/jcm11123350
Chicago/Turabian StyleZaninović, Luca, Marko Bašković, Davor Ježek, and Ana Katušić Bojanac. 2022. "Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review" Journal of Clinical Medicine 11, no. 12: 3350. https://doi.org/10.3390/jcm11123350
APA StyleZaninović, L., Bašković, M., Ježek, D., & Katušić Bojanac, A. (2022). Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review. Journal of Clinical Medicine, 11(12), 3350. https://doi.org/10.3390/jcm11123350