Influence of Probiotics in Prevention and Treatment of Patients Who Undergo Chemotherapy or/and Radiotherapy and Suffer from Mucositis, Diarrhoea, Constipation, Nausea and Vomiting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy, Inclusion, and Exclusion Criteria
2.2. Data Extraction and Analysis
3. Results
3.1. Search Results
3.2. Characteristics of the Included Studies and Study Population
3.3. Effects of Interventions
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jema, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Redmond, K. Advances in supportive care. Eur. J. Cancer Care 1996, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- WHO List of Priority Medical Devices for Cancer Management; World Health Organization: Geneva, Switzerland, 2017.
- ESMO Guidelines. Available online: https://www.esmo.org/guidelines (accessed on 6 April 2021).
- ASCO Guidelines. Available online: https://www.asco.org/practice-patients/guidelines (accessed on 6 April 2021).
- Symonds, R.P.; Foweraker, K. Principles of chemotherapy and radiotherapy. Curr. Obstet. Gynaecol. 2006, 16, 100–106. [Google Scholar] [CrossRef]
- Miller, A.C.; Elamin, E.M. Use of Probiotics for Treatment of Chemotherapy-induced Diarrhea: Is It a Myth? J. Parenter. Enteral. Nutr. 2009, 33, 573–574. [Google Scholar] [CrossRef] [Green Version]
- Dranitsaris, G.; Maroun, J.; Shah, A. Estimating the cost of illness in colorectal cancer patients who were hospitalized for severe chemotherapy-induced diarrhea. Can. J. Gastroenterol. 2005, 19, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.; Vitetta, L. Adjunctive Treatments for the Prevention of Chemotherapy- and Radiotherapy-Induced Mucositis. Integr. Cancer Ther. 2018, 17, 1027–1047. [Google Scholar] [CrossRef] [Green Version]
- Riehl, T.E.; Alvarado, D.; Ee, X.; Zuckerman, A.; Foster, L.; Kapoor, V.; Thotala, D.; Ciorba, M.A.; Stenson, F.W. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut 2019, 68, 1003–1013. [Google Scholar] [CrossRef]
- Gibson, R.J.; Keefe, D.M.; Lalla, R.V.; Bateman, E.; Blijlevens, N.; Fijlstra, M.; King, E.E.; Stringer, A.M.; van der Velden, W.J.; Yazbeck, R.; et al. Systematic review of agents for the management of gastrointestinal mucositis in cancer patients. Support Care Cancer 2013, 21, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Mego, M.; Holec, V.; Drgona, L.; Hainova, K.; Ciernikova, S.; Zajac, V. Probiotic bacteria in cancer patients undergoing chemotherapy and radiation therapy. Complement Ther. Med. 2013, 21, 712–723. [Google Scholar] [CrossRef]
- Ray, D.; Alpini, G.; Glaser, S. Probiotic Bifidobacterium species: Potential beneficial effects in diarrheal disorders. Focus on “Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells”. Am. J. Physiol. Cell Physiol. 2014, 307, C1081–C1083. [Google Scholar] [CrossRef] [Green Version]
- Bossi, P.; Antonuzzo, A.; Cherny, N.I.; Rosengarten, O.; Pernot, S.; Trippa, F.; Schuler, U.; Snegovoy, A.; Jordan, K.; Ripamonti, C.I. ESMO Guidelines Committee Diarrhoea in adult cancer patients: ESMO Clinical Practice Guidelines. Ann. Oncol. 2018, 29, IV126–IV142. [Google Scholar] [CrossRef] [PubMed]
- American Gastroenterological Association; Bharucha, A.E.; Dorn, S.D.; Lembo, A.; Pressman, A. American Gastroenterological Association Medical Position Statement on Constipation. Gastroenterology 2013, 144, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Quigley, E.M.; Hasler, W.L.; Parkman, H.P. AGA technical review on nausea and vomiting. Gastroenterology 2001, 120, 263–286. [Google Scholar] [CrossRef] [PubMed]
- Elad, S.; Cheng, K.K.F.; Lalla, R.V.; Yarom, N.; Hong, C.; Logan, R.M.; Bowen, J.; Gibson, R.; Saunders, D.P.; Zadik, Y.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2020, 126, 4423–4431. [Google Scholar] [CrossRef]
- Giralt, J.; Regadera, J.P.; Verges, R.; Romero, J.; de la Fuente, I.; Biete, A.; Villoria, J.; Cobo, J.M.; Guarner, F. Effects of probiotic Lactobacillus casei DN-114 001 in prevention of radiation-induced diarrhea: Results from multicenter, randomized, placebo-controlled nutritional trial. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1213–1219. [Google Scholar] [CrossRef]
- Linn, Y.H.; Thu, K.K.; Win, N.H.H. Effect of Probiotics for the Prevention of Acute Radiation-Induced Diarrhoea among Cervical Cancer Patients: A Randomized Double-Blind Placebo-Controlled Study. Probiotics Antimicrob Proteins 2019, 11, 638–647. [Google Scholar] [CrossRef]
- Sharma, A.; Rath, G.K.; Chaudhary, S.P.; Thakar, A.; Mohanti, B.K.; Bahadur, S. Lactobacillus brevis CD2 lozenges reduce radiation- and chemotherapy-induced mucositis in patients with head and neck cancer: A randomized double-blind placebo-controlled study. Eur. J. Cancer 2012, 48, 875–881. [Google Scholar] [CrossRef]
- Chitapanarux, I.; Chitapanarux, T.; Traisathit, P.; Kudumpee, S.; Tharavichitkul, E.; Lorvidhaya, V. Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat. Oncol. 2010, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Urbancsek, H.; Kazar, T.; Mezes, I.; Neumann, K. Results of a double-blind, randomized study to evaluate the efficacy and safety of antibiophilus® in patients with radiation-induced diarrhoea. Eur. J. Gastroenterol. Hepatol. 2001, 13, 391–396. [Google Scholar] [CrossRef]
- Delia, P.; Sansotta, G.; Donato, V.; Frosina, P.; Messina, G.; De Renzis, C.; Famularo, G. Use of probiotics for prevention of radiation-induced diarrhea. World J. Gastroenterol. 2007, 13, 912–915. [Google Scholar] [CrossRef]
- Mego, M.; Chovanec, J.; Vochyanova-Andrezalova, I.; Konkolovsky, P.; Mikulova, M.; Reckova, M.; Miskovska, V.; Bystricky, B.; Beniak, J.; Medvecova, L.; et al. Prevention of irinotecan induced diarrhea by probiotics: A randomized double blind, placebo controlled pilot study. Complement Ther. Med. 2015, 23, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, H.; Xia, C.; Dong, Q.; Chen, E.; Qiu, Y.; Su, Y.; Xie, H.; Zeng, L.; Kuang, J.; et al. A randomized, double-blind, placebo-controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma. Cancer 2019, 125, 1081–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demers, M.; Dagnault, A.; Desjardins, J. A randomized double-blind controlled trial: Impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin. Nutr. 2014, 33, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Jiang, C.; Li, W.; Wei, J.; Hong, H.; Li, J.; Feng, L.; Wei, H.; Xin, H.; Chen, T. A Phase II Randomized Clinical Trial and Mechanistic Studies Using Improved Probiotics to Prevent Oral Mucositis Induced by Concurrent Radiotherapy and Chemotherapy in Nasopharyngeal Carcinoma. Front. Immunol. 2021, 12, 618150. [Google Scholar] [CrossRef]
- Österlund, P.; Ruotsalainen, T.; Korpela, R.; Saxelin, M.; Ollus, A.; Valta, P.; Kouri, M.; Elomaa, I.; Joensuu, H. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: A randomised study. Br. J. Cancer 2007, 97, 1028–1034. [Google Scholar] [CrossRef] [Green Version]
- Delia, P.; Sansotta, G.; Donato, V.; Messina, G.; Frosina, P.; Pergolizzi, S.; De Renzis, C. Prophylaxis of diarrhoea in patients submitted to radiotherapeutic treatment on pelvic district: Personal experience. Dig. Liver Dis. 2002, 34, S84–S86. [Google Scholar] [CrossRef]
- De Sanctis, V.; Belgioia, L.; Cante, D.; La Porta, M.R.; Caspiani, O.; Guarnaccia, R.; Argenone, A.; Muto, P.; Musio, D.; De Felice, F.; et al. Lactobacillus brevis CD2 for Prevention of Oral Mucositis in Patients with Head and Neck Tumors: A Multicentric Randomized Study. Anticancer Res. 2019, 39, 1935–1942. [Google Scholar] [CrossRef] [Green Version]
- Delia, P.; Sansotta, G.; Donato, V.; Messina, G.; Frosina, P.; Pergolizzi, S.; De Renzis, C.; Famularo, G. Prevention of Radiation-Induced Diarrhea with The Use of Vsl#3, A New High-Potency Probiotic Preparation. Am. J. Gastroenterol. 2002, 97, 2150–2152. [Google Scholar] [CrossRef]
- Mansouri-Tehrani, H.S.; Khorasgani, M.R.; Roayaei, M. Effects of Probiotics with or without Honey on Radiation-induced Diarrhea. Int. J. Radiat. Res. 2016, 14, 205–213. [Google Scholar] [CrossRef]
- Shao, F.; Xin, F.Z.; Yang, C.G.; Yang, D.G.; Mi, Y.T.; Yu, J.X.; Li, G.Y. The Impact of Microbial Immune Enteral Nutrition on the Patients with Acute Radiation Enteritis in Bowel Function and Immune Status. Cell Biochem. Biophys. 2014, 69, 357–361. [Google Scholar] [CrossRef]
- Topuz, E.; Derin, D.; Can, G.; Kürklü, E.; Çınar, S.; Aykan, F.; Çevikbaş, A.; Dişçi, R.; Durna, Z.; Şakar, B.; et al. Effect of oral administration of kefir on serum proinflammatory cytokines on 5-FU induced oral mucositis in patients with colorectal cancer. Invest. New Drugs 2008, 26, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Wada, M.; Nagata, S.; Saito, M.; Shimizu, T.; Yamashiro, Y.; Matsuki, T.; Asahara, T.; Nomoto, K. Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Support Care Cancer 2010, 18, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, X.E. Efficacy of Bifidobacterium tetragenous viable bacteria tablets for cancer patients with functional constipation. Asian Pac. J. Cancer Prev. 2014, 15, 10241–10244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, S.X.; Jia, Y.R.; Ren, S.Q.; Gong, X.J.; Tang, H.; Wan-Shui, W.; Li-Ming, S. The protective effects of Bacillus licheniformis preparation on gastrointestinal disorders and inflammation induced by radiotherapy in pediatric with central nervous system tumor. Adv. Med. Sci. 2018, 63, 134–139. [Google Scholar] [CrossRef]
- Reyna-Figueroa, J.; Barrón-Calvillo, E.; García-Parra, C.; Galindo-Delgado, P.; Contreras-Ochoa, C.; Lagunas-Martínez, A.; Campos-Romero, F.H.; Silva-Estrada, J.A.; Limón-Rojas, A.E. Probiotic Supplementation Decreases Chemotherapy-induced Gastrointestinal Side Effects in Patients with Acute Leukemia. J. Pediatr. Hematol. Oncol. 2019, 41, 468–472. [Google Scholar] [CrossRef]
- Doron, S.; Snydman, D.R. Risk and Safety of Probiotics. Clin. Infect. Dis. 2015, 60, S129–S134. [Google Scholar] [CrossRef] [Green Version]
- Snydman, D.R. The Safety of Probiotics. Clin. Infect. Dis. 2008, 46, S104–S111. [Google Scholar] [CrossRef] [Green Version]
- Serna-Thomé, G.; Castro-Eguiluz, D.; Fuchs-Tarlovsky, V.; Sánchez-López, M.; Delgado-Olivares, L.; Coronel-Martínez, J.; Molina-Trinidad, E.M.; de la Torre, M.; Cetina-Pérez, L. Use of Functional Foods and Oral Supplements as Adjuvants in Cancer Treatment. Rev. Investig. Clin. 2018, 70, 136–146. [Google Scholar] [CrossRef] [Green Version]
- James, L.A.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 356–365. [Google Scholar] [CrossRef]
- Montassier, E.; Gastinne, T.; Vangay, P.; Al-Ghalith, G.A.; Bruley des Varannes, S.; Massart, S.; Moreau, P.; Potel, G.; de La Cochetiere, M.F.; Batard, E.; et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment. Pharmacol. Ther. 2015, 42, 515–528. [Google Scholar] [CrossRef]
- Dubin, K.; Callahan, M.K.; Ren, B.; Khanin, R.; Viale, A.; Ling, L.; No, D.; Gobourne, A.; Littmann, E.; Huttenhower, C.; et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 2016, 7, 10391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Sood, U.; Gupta, V.; Singh, M.; Scaria, J.; Lal, R. Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis. Indian J. Microbiol. 2020, 60, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Logan, R.M.; Stringer, A.M.; Bowen, J.M.; Yeoh, A.S.; Gibson, R.J.; Sonis, S.T.; Keefe, D.M. The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: Pathobiology, animal models and cytotoxic drugs. Cancer Treat. Rev. 2007, 33, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Rodes, L.; Khan, A.; Paul, A.; Coussa-Charley, M.; Marinescu, D.; Tomaro-Duchesneau, C.; Shao, W.; Kahouli, I.; Prakash, S. Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model. J. Microbiol. Biotechnol. 2013, 23, 518–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegazy, S.K.; El-Bedewy, M.M. Effect of probiotics on pro-inflammatory cytokines and NF-κB activation in ulcerative colitis. World J. Gastroenterol. 2010, 16, 4145–4151. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.J. Chemotherapy-Induced Mucositis: Mechanism of Damage, Time Course of Events, and Possible Preventative Strategies. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2004. [Google Scholar]
- Eizaguirre, I.; García Urkia, N.; Asensio, A.B.; Hijona, E.; García Arenzana, J.M.; Bachiller, P.; Aldazabal, P. Adaptation in the small intestine: Effect of minimal enteral nutrition and probiotics on proliferation and apoptosis in the intestinal wall. Cir. Pediatr. 2010, 23, 118–121. [Google Scholar]
- Yan, F.; Polk, D.B. Probiotic Bacterium Prevents Cytokine-induced Apoptosis in Intestinal Epithelial Cells. J. Biol. Chem. 2002, 277, 50959–50965. [Google Scholar] [CrossRef] [Green Version]
- Scully, C.; Epstein, J.; Sonis, S. Oral mucositis: A challenging complication of radiotherapy, chemotherapy, and radiochemotherapy: Part 1, pathogenesis and prophylaxis of mucositis. Head Neck 2003, 25, 1057–1070. [Google Scholar] [CrossRef]
- Lutgendorff, F.; Nijmeijer, R.M.; Sandström, P.A.; Trulsson, L.M.; Magnusson, K.E.; Timmerman, H.M.; van Minnen, L.P.; Rijkers, G.T.; Gooszen, H.G.; Akkermans, L.M.; et al. Probiotics Prevent Intestinal Barrier Dysfunction in Acute Pancreatitis in Rats via Induction of Ileal Mucosal Glutathione Biosynthesis. PLoS ONE 2009, 4, e4512. [Google Scholar] [CrossRef]
- Esposito, E.; Iacono, A.; Bianco, G.; Autore, G.; Cuzzocrea, S.; Vajro, P.; Canani, R.B.; Calignano, A.; Raso, G.M.; Meli, R. Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J. Nutr. 2009, 139, 905–911. [Google Scholar] [CrossRef] [Green Version]
- Blijlevens, N.M.A.; Donnelly, J.P.; De Pauw, B.E. Mucosal barrier injury: Biology, pathology, clinical counterparts and consequences of intensive treatment for haematological malignancy: An overview. Bone Marrow Transplant. 2000, 25, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.M.; Roy, N.C. Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components. J. Nutr. 2011, 141, 769–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, D.; Yan, J.; Liu, F.; Ding, P.; Chen, B.; Lu, Y.; Sun, Z. Probiotics in preventing and treating chemotherapy-induced diarrhea: A meta-analysis. Asia Pac. J. Clin. Nutr. 2019, 28, 701–710. [Google Scholar] [CrossRef] [PubMed]
- McGough, C.; Baldwin, C.; Frost, G.; Andreyev, H.J.N. Role of nutritional intervention in patients treated with radiotherapy for pelvic malignancy. Br. J. Cancer 2004, 90, 2278–2287. [Google Scholar] [CrossRef]
- Devaraj, N.K.; Suppiah, S.; Veettil, S.K.; Ching, S.M.; Lee, K.W.; Menon, R.K.; Soo, M.J.; Deuraseh, I.; Hoo, F.K.; Sivaratnam, D. The Effects of Probiotic Supplementation on the Incidence of Diarrhea in Cancer Patients Receiving Radiation Therapy: A Systematic Review with Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 2886. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.M.; Li, S.T.; Shu, Y.; Zhan, H.Q. Probiotics for prevention of radiation-induced diarrhea: A meta-analysis of randomized controlled trials. PLoS ONE 2017, 12, e0178870. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Heus, P.; van de Wetering, F.T.; van Tienhoven, G.; Verleye, L.; Scholten, R.J. Probiotics for the prevention or treatment of chemotherapy- or radiotherapy-related diarrhoea in people with cancer. Cochrane Database Syst. Rev. 2018, 8, CD008831. [Google Scholar] [CrossRef]
- Picó-Monllor, J.A.; Mingot-Ascencao, J.M. Search and Selection of Probiotics That Improve Mucositis Symptoms in Oncologic Patients. A Systematic Review. Nutrients 2019, 11, 2322. [Google Scholar] [CrossRef] [Green Version]
- Jordan, I.K.; Jahn, F.; Aapro, M. Recent developments in the prevention of chemotherapy-induced nausea and vomiting (CINV): A comprehensive review. Ann. Oncol 2015, 26, 1081–1090. [Google Scholar] [CrossRef]
- Prisciandaro, L.D.; Geier, M.S.; Butler, R.N.; Cummins, A.G.; Howarth, G.S. Evidence Supporting the use of Probiotics for the Prevention and Treatment of Chemotherapy-Induced Intestinal Mucositis. Crit. Rev. Food Sci. Nutr. 2011, 51, 239–247. [Google Scholar] [CrossRef]
- Guarner, F.; Sanders, M.E.; Eliakim, R.; Fedorak, R.; Gangl, A.; Garisch, J.; Kaufmann, P.; Karakan, T.; Khan, A.G.; Kim, N.; et al. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics October 2011. Available online: https://www.worldgastroenterology.org/guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english (accessed on 6 May 2021).
Study | Year | Country | Study Design | Study Population | Probiotics (Species, Components) | Probiotics (Daily Administration) | Time of Intervention (Weeks) | |||
---|---|---|---|---|---|---|---|---|---|---|
Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | |||||
ADULT POPULATION | ||||||||||
Chemotherapy treatment | ||||||||||
Mego M. et al. [24] | 2015 | Slovakia | RDBPC 1 | 23 | 23 | Bifidobacterium breve HA-129 (25%), Bifidobacterium bifidum HA-132 HA (20%), Bifidobacterium longum HA-135 (14.5%), Lactobacillus rhamnosus HA-111 (8%), Lactobacillus acidophilus HA-122 (8%), Lactobacillus casei HA-108 (8%), Lactobacillus plantarum HA-119 (8%), Streptococcus thermophilus HA-110 (6%), Lactobacillus brevis HA-112 (2%), Bifidobacterium infantis HA-116 (0.5%) 10 × 109 CFU 2 per capsule, inulin, maltodextrin, magnesium stearate, ascorbic acid | inulin, maltodextrin, magnesium stearate, ascorbic acid | capsule p.o.3 3 times a day | capsule p.o. | 12 |
Liu J. et al. [36] | 2014 | China | RCT 4 | 50 | 50 | Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, Bacillus cereus | no intervention | capsules (4) p.o. 3 times a day | no intervention | 4 |
Radiotherapy treatment | ||||||||||
Urbancsek H. et al. [22] | 2001 | Hungary | RDBPC | 102 | 103 | Lactobacillus rhamnosus 1.5 × 10⁹ CFU (1.5 g) | 700 mg corn starch, 797 mg microcrystalline cellulose, 1.37 mg iron oxide, 1.13 mg dispersed orange, 1 mg caramel aroma | sachet p.o. 3 times a day | sachet p. o. 3 times a day | up to 1 (depending on the response of the diarrhoea) |
Mansouri-Tehrani H.S. et al. [32] | 2016 | Iran | RCT | 22 | 24 | Lactobacillus casei 1.5 × 109 CFU, Lactobacillus acidophilus 1.5 × 1010 CFU, Lactobacillus rhamnosus 3.5 × 109 CFU, Lactobacillus bulgaricus 2.5 × 108 CFU, Bifidobacterium breve 1 × 1010 CFU, Bifidobacterium longum 5 × 108 CFU, Streptococcus thermophilus 1.5 × 108 CFU (500 mg) | corn starch 500 mg | capsule p.o. 2 times a day (second one with yogurt) | capsule p.o. 2 times a day | 5 |
Delia P. et al. [23] | 2007 | Italy | RDBPC | 243 | 239 | Lactobacillus casei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, Bifidobacterium longum, B. breve, B. infantis. Streptococcus salivarius susp. Thermophilus 450 billions/g of viable lyophilized cells | N/A composition of placebo | sachet p.o. 3 times a day | sachet p.o. | from the start of RT 5 |
Delia P. et al. [29] | 2002 | Italy | RCT | 95 | 95 | Lactobacillus casei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, Bifidobacterium longum, B. breve, B. infantis, Streptococcus salivarius susp. thermophilus | no intervention | bag p.o. 3 times a day | no intervention | N/A |
Delia P. et al. [31] | 2002 | Italy | RCT | 95 | 95 | Lactobacillus casei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, Bifidobacterium. longum, B. breve, B. infantis, Streptococcus salivarius susp. Thermophilus 450 billions/g of viable lyophilized | N/A composition of placebo | p.o. 3 times a day | p.o. | from the start of RT to finish cycle of RT |
Shao F. et al. [33] | 2013 | China | RCT | 24 | 22 | Bifidobacterium adolescent is 0.5 × 109, Lactobacillus, Streptococcus thermophilus | 500 mL Peptiosorb solution (1 cal): 16% protein, 9% fat, 75% carbohydrates/mL) | capsules p.o. 3 times a day | p.o. 1 time a day | 2 |
Radiotherapy and chemotherapy treatment | ||||||||||
Giralt J. et al. [18] | 2008 | Spain | RDBPC | 44 | 41 | Lactobacillus casei DN-114 001 108 CFU/g, in addition to the standard starters Streptococcus thermophilus, Lactobacillus delbrueckii, subsp. bulgaricus | sterilised active product with 4 kGy for 5 min | 96 mL of fermented liquid yoghurt p.o. 3 times a day | 96 mL p.o. 3 times a day | 5–6 |
Ye-Htut-Linn et al. [19] | 2017 | Myanmar | RDBPC | 26 | 28 | Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 1.75 × 109 lyophilized live | starch | capsule with yogurt p.o. 3 times a day | capsule p.o. 3 times a day | 5 |
Österlund P. et al. [28] | 2007 | Finland | RCT | 98 | 52 | Lactobacillus rhamnosus GG 1–2 × 1010 | no intervention | gelatine capsule p.o. 2 times a day | no intervention | 24 |
Sharma A. et al. [20] | 2011 | India | RDBPC | 93 | 95 | Lactobacillus brevis CD2 minimum 2 × 109 viable cells | mixture of sugars and salts | lozenge p.o. 6 times a day | lozenge p. o. | 8 |
Chitapanarux et al. [21] | 2010 | Thailand | RDBPC | 32 | 31 | Lactobacillus acidophilus minimum 109, Bifidobacterium bifidum minimum 109 (250 mg) | magnesium stearate, talc, purified water | capsules (2) p.o. 2 times a day | capsules p. o. 2 times a day | 7.3 |
Topuz E. et al. [34] | 2008 | Turkey | NRS 6 | 17 | 20 | 250 mL of kefir | 0.09% NaCl | oral lavage 2 times a day | oral lavage 2 times a day | N/A |
de Sanctis V. et al. [30] | 2019 | Italy | RCT | 32 | 36 | Lactobacillus brevis CD2 2 × 109 viable cells | sodium bicarbonate | lozenge p.o. 6 times a day | mouthwash 3 times a day | from the start of the RT to 1 week after |
Jiang C et al. [25] | 2018 | China | RDBPC | 58 | 35 | Bifidobacterium longum, Lactobacillus lactis, Enterococcus faecium | starch | capsules (3) p.o. 2 times a day | capsules (3) p.o. 2 times a day | up to 7 |
Demers M et al. [26] | 2014 | Canada | RDBPC | standard dose 91 high dose 64 | 91 | Lactobacillus acidophilus LAC-361, Bifidobacterium longum BB-536 standard dose 1.3 billion CFU high dose 10 billion CFU | N/A | capsule p.o. standard dose 2 times a da high dose 3 times a day | N/A | from the start of RT to the end of RT |
Xia C. et al. [27] | 2021 | China | RDBPC | 36 | 34 | Lactobacillus plantarum MH-301 109 CFU, Bifidobacterium animalis subsp. Lactis LPL-RH 109 CFU, Lactobacillus rhamnosus LGG-18 109 CFU, Lactobacillus acidophilus 109 CFU | N/A | capsule p.o. 2 times a day | p.o. 2 times a day | 6–7 |
CHILD POPULATION | ||||||||||
Chemotherapy treatment | ||||||||||
Reyna-Figueroa J. et al. [38] | 2019 | Mexico | RCT | 30 | 30 | Lactobacillus rhamnosus GG 5 × 109 CFU, maltodextrin | N/A | sachet p.o. 2 times a day | N/A | up to 1 (upon completion of: a 7-day probiotic course/chemotherapy/neutropenia onset) |
Wada M. et al. [35] | 2009 | Japan | RCT | 18 | 22 | 109 freeze-dried, live Bifidobacterium breve strain Yakult, corn starch, hydroxypropyl cellulose (1 g) | corn starch and hydroxypropyl, cellulose | powder p.o. 3 times a day | powder p.o. 3 times a day | 4–20 |
Radiotherapy treatment | ||||||||||
Shu-Xu Du et al. [37] | 2018 | China | NRS | 80 | 80 | Bacillus licheniformis | N/A | capsule p.o. 3 times a day | N/A | from the start of RT to the end of RT |
Study | Age (Years, Mean ± SD) | Sex (%Male) | Pathology (Patients, %) | Stage (Patients, %) | Chemotherapy | Radiotherapy (Total Dose, Gy) | Other Therapy (Patients, %) | Operation (Patients, %) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | Control | Study | Control | Study | Control | Study | Control | ||||||
ADULT POPULATION | |||||||||||||
Chemotherapy treatment | |||||||||||||
Mego M. et al. [24] | 62 (median) 45–75 (range) | 64 (median) 42–81 (range) | 60.9 | 52.2 | colon carcinoma 69.6 rectal carcinoma 30.4 | N/A | N/A | study (percentage of patients): irinotecan weekly 60.9 irinotecan every 2 or 3 weeks 39.1 5-fluorouracil 52.2 capecitabine 0 control (percentage of patients): irinotecan weekly 60.9 irinotecan every 2 or 3 weeks 39.1 5-fluorouracil 52.2 capecitabine 8.7 | N/A | antiemetics, analgesics study: cetuximab 17.4 bevacizumab 26.1 control: cetuximab 21.7 bevacizumab 30.4 | study: resection of the primary tumor 65.2 colostomy 34.8 control: resection of the primary tumor 82.6 colostomy 34.8 | ||
Liu J. et al. [36] | 62.1 ± 10.9 | 60.1 ± 9.9 | 68 | gastric cancer colorectal cancer lung cancer lymphoma | N/A | N/A | CHOP regimen: cyclophosphamide 750 mg/m2 i.v. 1 1 day, hydroxy daunorubicin 50 mg/m2 i.v. 1 day, oncovin 1.4 mg/m2 i.v. 1 day, prednisone 40 mg/m2 p.o. 1–5 days TP regimen fluoropyrimidine-based chemotherapy regimen | No | N/A | N/A | |||
Radiotherapy treatment | |||||||||||||
Urbancsek H. et al. [22] | 59 | 60 | 25 | 26 | uterus cancer ovaries cancer prostate cancer rectum cancer lower abdomen cancer | N/A | N/A | No | 50 (median) about 2 Gy daily | loperamide | N/A | ||
Mansouri-Tehrani H.S. et al. [32] | 63.73 ± 15.09 | 64.17 ± 11.69 | 67.4 | colon and rectum 9 prostate 9 endometrium 4.5 bladder 6 ovary 3 cervical 1.5 | colon and rectum 13.4 prostate 9 endometrial 3 bladder 6 ovary 1.5 cervical 3 | N/A | N/A | N/A | 40–50 1.8 Gy/day with 18 MV five fractions weekly for 4–5 weeks | N/A | N/A | ||
Delia P. et al. [23] | N/A | N/A | N/A | N/A | sigmoid cancer rectal cancer cervical cancer | N/A | N/A | No | 60–70 | N/A | surgery for sigmoid, rectal or cervical cancer | ||
Delia P. et al. [29] | range 45–65 | 51 | colorectal carcinoma 53 cervical carcinoma 47 | N/A | N/A | No | 60–70 | N/A | surgical anterior resection 53 hysterectomy 47 | ||||
Delia P. et al. [31] | N/A | N/A | N/A | N/A | sigmoid cancer rectal cancer cervical cancer | N/A | N/A | No | adjuvant postoperative | loperamide | surgery for sigmoid, rectal or cervical cancer | ||
Shao F. et al. [33] | 60.2 | 48 | abdominal tumour | N/A | N/A | N/A | <60 | glutamine enteric capsule (0.25 g) p.o. 2 capsules 3 times a day fish oil soft capsule (1200 mg) p o. 3 times a day Peptisorb mixed with water | N/A | ||||
Radiotherapy and chemotherapy treatment | |||||||||||||
Giralt J. et al. [18] | 60.91 ± 11.80 | 59.34 ± 12.77 | 0 | endometrial adenocarcinoma cervical squamous cell carcinoma | N/A | N/A | cisplatin i.v. 40 mg/m2 weekly (11 SG and 14 CG) | 45–50.4 dose of 1.8–2 Gy/d, five times weekly for 5–6 weeks brachytherapy 2–3 weeks later | 5-HT3 inhibitors | associated with cancer therapy | |||
Linn YH. et al. [19] | 57.38 ± 10.75 | 52.5 ± 9.61 | 0 | squamous cell carcinoma adenocarcinoma anaplastic carcinoma cervical cancer | I B 7.7 II A 7.7 II B 46.2 III A 7.7 III B 26.9 IV A 3.8 | I B 14.3 II A 3.6 II B 50 III A 14.3 III B 14.3 IV A 3.6 | N/A | 50.77 ± 2.72 study group 51.16 ± 3.43 Control group | N/A | study group 15 control group 14 | |||
Österlund P. et al. [28] | 61 | 57 | 52 | 48 | colorectal cancer | Dukes‘ stage B 28 C 56 Da16 | Dukes‘ stage B 25 C 60 Da 15 | levoleucovorin: 10/20 mg/m2 5-FU: 370–425 mg/m2 i.v. bolus on days 1–5 of the cycle, repeated at 4-week intervals for six times 2-h infusion of levoleucovorin 200/400 mg/m2 followed by 5-FU 400 mg/m2 administered as an intravenous bolus and 48-h infusion of 3.0–3.6 g m−2 5-FU; this cycle was repeated every 14 days for 12 times 24 weeks | 50.4 1.8 Gy daily, 5.5 weeks | 11 g guar gum metoclopramide, 5-HT3 inhibitors, dexpanthenol lozenges 100–200 mg 3 times a day, pyridoxine 50 mg 3 times a day | associated with cancer therapy | ||
Sharma A. et al. [20] | 52.35 ± 9.433 | 50.09 ± 10.038 | 93 | HNSCC 2 nasopharynx 10.9 oropharynx 47.5 hypopharynx 28.7 larynx 11.9 | HNSCC nasopharynx 11.1 oropharynx 50.5 hypopharynx 28.3 larynx 9.1 others 1.0 | I 2.97 II 5.9 III 44.6 IV 46.5 | I 5.1 II 4.0 III 41.4 IV 49.5 | cisplatin 40 mg/m2 weekly for 7 doses at 5 fractions per week | 70 in 35 fractions over 7 weeks | analgesics study group 30 control group 45 | N/A | ||
Chitapanarux I. et al. [21] | 47 | 52 | N/A | squamous cell carcinoma of cervix | FIGO IIB 53.1 IIIB 46.9 | FIGO IIB 58.1 IIIB 41.9 | cisplatin 40 mg/m2 weekly for 6 weeks | 56 200 cGy per fraction, five fractions per week brachytherapy: 28, Iridium-192 700 cGy per fraction, 4 insertions | loperamide (2 mg) | No | |||
Topuz E. et al. [34] | 51 | 58 | 64.86 | colon cancer 35.3 rectosigmoid cancer 64.7 | colon cancer 55.0 rectosigmoid cancer 45.0 | ECOG III 82.4 IV 5.9 unknown 11.8 | ECOG II 35 III 50 IV 15 | median 6 cycles FOLFOX: folinic acid, 5-FU and oxaliplatin FUFA: folinic acid, 5-fluorouracil | adjuvant chemo-radiotherapy | N/A | No | ||
de Sanctis V. et al. [30] | 58.4 range (34–74) | 60 range (39–77) | 77.9 | head and neck carcinoma | IIA 6.3 III 15.6 IV A 3.1 IV B 9.4 | II A 0 III 13.9 IV A 66.7 IV B 11.1 | cisplatin-based 40 mg/m2 weekly or 100 mg/m2 3-weekly neoadjuvant chemotherapy (docetaxel, cisplatin and 5-fluorouracil every 21 days for three cycles (patients with nasopharyngeal cancer) | 68–70 IMRT (macroscopic disease—intensity-modulated radiation therapy) 50–54 (low-risk regions) | cetuximab, biweekly | N/A | |||
Jiang C. et al. [25] | 51.69 ± 9.79 | 50.40 ± 10.25 | 63.79 | 60.00 | nasopharyngeal carcinoma | T1 1.72 T2 17.24 T3 39.66 T4 41.38 | T1 2.86 T2 8.57 T3 37.14 T4 51.43 | cisplatin (100 mg/m2) three times during trial | 70 in 32 fractions 2.19 Gy/d, 5 d/w; gross tumour volume) 60 in 32 fractions for 45 days; clinical target volume | oral cavity fungal infections: antifungal agents, soda water | N/A | ||
Demers M. et al. [26] | Standard dose 61.4 High dose 62.0 | 60.6 | standard dose 72 high dose 66 | 63 | standard dose: prostate 32 endometrium 32 cervix 10 rectum 45 others 1 high dose: prostate 37 endometrium 8 cervix 7 rectum 41 others 7 | prostate 30 endometrium 12 cervix 16 rectum 41 others 1 | N/A | N/A | cervical cancers, cisplatin 40 mg/m2 rectal cancers, either 5-fluorouracil 225 mg/m2 in continuous perfusion or capsules of capecitabine (Xeloda) 825–1000 mg/m2 during the entire radiotherapy treatment | 40–50.4 brachytherapy | N/A | N/A | |
Xia C. et al. [27] | range 18–70 | N/A | N/A | nasopharyngeal carcinoma | N/A | N/A | cisplatin (100 mg/m2) on days 1, 22 and 43 | 32 fractions of 70 Gy radiotherapy (2.19 Gy/d, 5 d/wk) 32 fractions for 45 days (6–7 weeks in total) | N/A | N/A | |||
CHILD POPULATION | |||||||||||||
Chemotherapy treatment | |||||||||||||
Reyna-Figueroa J. et al. [38] | 10.8 | 10.7 | 63.3 | acute lymphoblastic leukemia acute myeloblastic leukemia | high risk—56.7 usual risk—43.3 | high risk— 60 usual risk— 40 | prednisone p.o. 60 mg/m², 0 to 28 days; vincristine i.v. 2 mg/m², on days 0, 7, 14, 21, 28; daunorubicin i.v. 30 mg/m², on days 0 and 14; L-asparagine i.m. 10,000 UI/m² on days 5, 8, 12, 15, 19, 22; | No | N/A | No | |||
Wada M. et al. [35] | 6.5 | 7.25 | 40 | acute lymphoblastic leukemia 33.3 non-Hodgkin lymphoma 33.3 yolk sac tumor 22.2 Ewing sarcoma 11 | acute lymphoblastic leukemia 50 acute myeloid leukemia 9.1 non-Hodgkin lymphoma 18.2 Hodgkin disease 9.1 primitive neuroectodermal tumor 9.1 leiomyosarcoma 4.5 | N/A | N/A | N/A | No | polymyxin B sulfate and sulfamethoxazole-trimethoprim granulocyte colony stimulating factor | N/A | ||
Radiotherapy treatment | |||||||||||||
Du S. et al. [37] | 7.0 | 7.5 | 62.5 | 72.5 | medulloblastoma 37.5 glioblastoma 30.0 ependymoma 21.2 astrocytoma 11.3 | medulloblastoma 37.5 glioblastoma 30.0 ependymoma 21.2 astrocytoma 11.3 | N/A | N/A | No | 36 (CSI; range from 21 to 54 Gy) 1.5 (posterior fossa boost as; range from 1.5 to 1.8 Gy) | N/A | associated with cancer therapy |
Study | Grade (Percentage of Patients, %) | Duration (Days, Mean ± SD) | Frequency (Daily Incidents, Mean ± SD) | Consistency of Stool (Bristol Scale, Mean) | Abdominal Pain (Percentage of Patients, %) | Antidiarrheal Drug Used | General Result 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | ||||||
ADULT POPULATION | |||||||||||||||||
Chemotherapy treatment | |||||||||||||||||
Mego M. et al. [24] | CTCAE 2 4.1 1–21.7 2–17.4 3–0 4–0 | CTCAE 4.1 1–34.8 2–8.7 3–13 4–4.3 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | loperamide 5.9 (mean tablets), diphenoxylate/atropine—0.3 (tablets) | loperamide—37.7 (mean tablets), diphenoxylate/atropine—21.3 (tablets) | non-significant | ||||
Radiotherapy treatment | |||||||||||||||||
Urbancsek H. et al. [22] | Investigator’s scale 3 mean grade 0.7 | Investigator’s scale 3 mean grade 1.0 | N/A | N/A | 2.4 | 3.2 | Investigators’ scale 4 0.7 | Investigators’ scale 4 1.0 | N/A | N/A | loperamide (35% patients; mean time to use 138 h) | loperamide (48% patients; mean time to use 125 h) | non-significant | ||||
Mansouri-Tehrani H.S. et al. [32] | NCI CTC 5 2.0 2 or 3–31.8 | NCI CTC 2.0 2 or 3–70.8 | N/A | N/A | 0–7 (range) | 0–10 (range) | 4.3 | 5.7 | blounting 86.4 | blounting 41.7 | drug not specified (9.1% patients) | drug not specified (37.5% patients) | improvement | ||||
Delia P. et al. [23] | WHO 6 degrees 3 or 4–1.4 | WHO degrees 3 or 4–55.4 | N/A | N/A | 5.1 ± 3 | 14.7 ± 6 | N/A | N/A | N/A | N/A | loperamide (mean time to use 122 ± 8 h) | loperamide (mean time to use 86 ± 6) | improvement | ||||
Delia P. et al. [29] | WHO degrees 1–10 2–21 3–3 4–0 | WHO degrees 1–10 2–12 3–17 4–13 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | ||||
Delia P. et al. [31] | scale not specified 1 or 2–30.53 3 or 4–7.37 | scale not specified 1 or 2–21.05 3 or 4–29.47 | N/A | N/A | 4.6 ± 2 | 12.3 ±4 | N/A | N/A | N/A | N/A | loperamide (mean time to use 118 ± 6 h) | loperamide (mean time to use 97 ± 4 h) | improvement | ||||
Shao F. et al. [33] | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 7 days after RT 7: 33.3 14 days after RT: 20.4 | 7 days after RT: 68.2 14 days after RT: 54.5 | enteral nutrition, parenteral nutrition 17% patients | enteral nutrition, parenteral nutrition 64% patients | improvement | ||||
Radiotherapy and chemotherapy treatment | |||||||||||||||||
Giralt J. et al. [18] | NCI CTC 3.0 ≥ 3–45.45 | NCI CTC 3.0 ≥ 3–36.59 | N/A | N/A | N/A | N/A | 5.95 | 5.94 | N/A | N/A | loperamide (2 mg) | non-significant | |||||
Linn Y.H. et al. [19] | CTCAE 4.0 4 1 or 2–53.8 3 or 4–0 | CTCAE 4.0 1 or 2–82.1 3 or 4–17.9 | N/A | N/A | N/A | N/A | N/A | N/A | CTCAE 4.0 1–73.1 2–3.8 3.63 days ± 2.29 | CTCAE 4.0 1–92.9 2–57.1 3–10.7 7.77 days ± 4.76 | loperamide (50% patients; mean time to use 20.92 days) | loperamide (85.7% patients; mean time to use 18.04 days) | improvement | ||||
P. Österlund et al. [28] | NCI CTC 2.0 0 to 2–78 3 or 4–25 | NCI CTC 2.0 0 to 2–63 3 or 4–37 | N/A | N/A | N/A | N/A | N/A | N/A | discomfort: 59 | discomfort: 75 | loperamide | loperamide | improvement | ||||
Chitapanarux I. et a [21] | NCI CTC 2.0 1–55 2 or 3–45 | NCI CTC 2.0 1–91 2 or 3–9 | N/A | N/A | N/A | N/A | 1–4 3% 5–6 78% patients 7 19% | 1–4 0% 5–6 35% patients 7 65% | N/A | N/A | loperamide (2 mg; 9% patients) | loperamide (2 mg; 32% patients) | improvement | ||||
Demers, M et al. [26] | Control | Standard dose | High dose | N/A | Standard dose: 2.7, high dose: 2.8 | 2.9 | standard dose: median 1.4 (1.2–1.8) high dose: median 1.5 (1.2–1.8) | median 1.6 (1.2–1.9) | NCI CTC 3.0 <1-100 | loperamide (standard-dose 30.2% patients, high-dose 27.4% patients) | loperamide (42.5% patients) | non-significant | |||||
WHO degrees with pelvic surgery 0–0 1–3.5 2–51.7 3–17.2 4–27.6 without pelvic surgery 0–10.5 1–19.3 2–47.4 3–21.1 4–1.8 total 87 | WHO degrees with pelvic surgery 0–6.3 1–15.6 2–53.1 3–21.9 4–3.1 without pelvic surgery 0–20.4 1–26.5 2–40.8 3–10.2 4–1 2.0 Total 81 | WHO degrees with pelvic surgery 0–16.7 1–5.6 2–38.9 3–27.8 4–11.1 without pelvic surgery 0–17.1 1–22 2–43.9 3–12.2 4–4.9 Total 59 | |||||||||||||||
CHILD POPULATION | |||||||||||||||||
Chemotherapy treatment | |||||||||||||||||
Reyna-Figueroa J. et al. [38] | no case of diarrhoea | N/A | no case of diarrhoea | up to 5 | no case of diarrhoea | N/A | no case of diarrhoea | N/A | no case of diarrhoea | N/A | no case of diarrhoea | N/A | improvement | ||||
Wada M. et al. [35] | N/A | N/A | 1.06 ± 1.80 | 3.00 ± 3.84 | 0.5 ± 0.62 | 0.95 ± 0.79 | N/A | N/A | N/A | N/A | polymyxin B sulphate and sulfamethoxazole-trimethoprim | polymyxin B sulphate and sulfamethoxazole-trimethoprim | non-significant | ||||
Radiotherapy treatment | |||||||||||||||||
Shu-Xu Du et al. [37] | CTCAE 3.0 1–14.3 2–42.9 3–42.9 4–0 | CTCAE 3.0 1–10 2–50 3–40 4–0 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | improvement |
Study | Duration (Days) | Frequency and Character (Percentage of Patients, %) | Wexner Score (Percentage of Patients, %) | Gener Result 1 | |||
---|---|---|---|---|---|---|---|
Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | ||
ADULTS POPULATION | |||||||
Chemotherapy treatment | |||||||
Liu J. et al. [36] | N/A | N/A | Markedly 2: 18 Effective 3: 78 Invalid 4: 4 | Markedly: 8 Effective: 24 Invalid: 68 | 0–10: 37 11–20:13 21–30:0 | 0–10: 35 11–20: 15 21–30: 0 | improvement |
CHILD POPULATION | |||||||
Chemotherapy treatment | |||||||
Reyna-Figueroa J. et al. [38] | up to 5 | up to 7 | N/A | N/A | N/A | N/A | improvement |
Study | Duration of Vomiting (Days) | Duration of Nausea (Days) | Nausea Grade (CTCAE 2 3.0, Percentage of Patients, %) | Vomiting Grade (CTCAE 3.0, Percentage of Patients, %) | General Result 1 | ||||
---|---|---|---|---|---|---|---|---|---|
Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | Study Group | Control Group | ||
CHILDREN POPULATION | |||||||||
Chemotherapy treatment | |||||||||
Reyna-Figueroa J. et al. [38] | up to 6 | up to 7 | up to 7 | up to 7 | N/A | N/A | N/A | N/A | improvement |
Radiotherapy treatment | |||||||||
Shu-Xu Du et al. [37] | N/A | N/A | N/A | N/A | I 16.25 II 30 III 16.25 IV 3.75 | I 12.5 II 36.25 III 26.25 IV 7.5 | I 6.25 II 16.25 III 12.5 IV 35 | I 7.5 II 26.25 III 16.25 IV 2.5 | improvement |
Study | Localization of Mucositis | Grade (Percentage of Patients, %) | Time to Onset of Mucositis (Days) | Time to Resolution or Healing (Days, Median) | Administration of Additional Nutrition (Percentage of Patients, %) | General Result 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Study | Control | Study | Control | Study | Control | Study | Control | |||
ADULT POPULATION | ||||||||||
Radiotherapy and chemotherapy treatment | ||||||||||
de Sanctis V. et al. [30] | oral cavity | CTCAE 2 4.0 III or IV— 40.6 | CTCAE 4.0 III or IV— 41.6 | N/A | N/A | N/A | N/A | enteral nutrition 37.5 | enteral nutrition 16.6 | non-significant 3 |
Sharma A. et al. [20] | oral cavity | NCI CTC 4 2.0 0—28 I—11 II—8 III—2 IV—50 | NCI CTC 2.0 0—7 I—10 II—5 III—8 IV—69 | 22 (±13.2) | 18 (±11.6) | 43 | 43 | parenteral nutrition or insertion of a Ryle’s tube 22 | parenteral nutrition or insertion of a Ryle’s tube 34 | improvement |
Topuz E. et al. [34] | oral cavity | NCI CTC 2.0 0 72.7 I 12.1 II 12.1 III 1.0 IV 2.0 | NCI CTC 2.0 0 78.3 I 13.2 II 7.5 III 0.9 | N/A | N/A | N/A | N/A | N/A | N/A | non-significant |
Jiang C. et al. [25] | oral cavity | CTCAE 4.0 0—12.07 I—55.17 II—17.24 III—15.52 | CTCAE 4.0 0—0 I—0 II—54.29 III—45.71 | N/A | N/A | N/A | N/A | N/A | N/A | improvement |
Xia C. et al. [27] | oral cavity | CTCAE 4.0 0—13.9 I—36.1 II—25 III—22.2 IV—2.8 | CTCAE 4.0 0—0 I—14.7 II—38.2 III—32.4 IV—14.7 | N/A | N/A | N/A | N/A | N/A | N/A | improvement |
CHILD POPULATION | ||||||||||
Radiotherapy treatment | ||||||||||
Shu-Xu Du et al. [37] | oral cavity | CTCAE 3.0 I—66.7 II—33.3 III—0 IV—0 | CTCAE 3.0 I—31.8 II—45.45 III—22.7 IV—0 | N/A | N/A | N/A | N/A | N/A | N/A | improvement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garczyk, A.; Kaliciak, I.; Drogowski, K.; Horwat, P.; Kopeć, S.; Staręga, Z.; Bogdański, P.; Stelmach-Mardas, M.; Mardas, M. Influence of Probiotics in Prevention and Treatment of Patients Who Undergo Chemotherapy or/and Radiotherapy and Suffer from Mucositis, Diarrhoea, Constipation, Nausea and Vomiting. J. Clin. Med. 2022, 11, 3412. https://doi.org/10.3390/jcm11123412
Garczyk A, Kaliciak I, Drogowski K, Horwat P, Kopeć S, Staręga Z, Bogdański P, Stelmach-Mardas M, Mardas M. Influence of Probiotics in Prevention and Treatment of Patients Who Undergo Chemotherapy or/and Radiotherapy and Suffer from Mucositis, Diarrhoea, Constipation, Nausea and Vomiting. Journal of Clinical Medicine. 2022; 11(12):3412. https://doi.org/10.3390/jcm11123412
Chicago/Turabian StyleGarczyk, Aleksandra, Iwona Kaliciak, Konstanty Drogowski, Paulina Horwat, Stanisław Kopeć, Zuzanna Staręga, Paweł Bogdański, Marta Stelmach-Mardas, and Marcin Mardas. 2022. "Influence of Probiotics in Prevention and Treatment of Patients Who Undergo Chemotherapy or/and Radiotherapy and Suffer from Mucositis, Diarrhoea, Constipation, Nausea and Vomiting" Journal of Clinical Medicine 11, no. 12: 3412. https://doi.org/10.3390/jcm11123412
APA StyleGarczyk, A., Kaliciak, I., Drogowski, K., Horwat, P., Kopeć, S., Staręga, Z., Bogdański, P., Stelmach-Mardas, M., & Mardas, M. (2022). Influence of Probiotics in Prevention and Treatment of Patients Who Undergo Chemotherapy or/and Radiotherapy and Suffer from Mucositis, Diarrhoea, Constipation, Nausea and Vomiting. Journal of Clinical Medicine, 11(12), 3412. https://doi.org/10.3390/jcm11123412