A Case Report of Immunotherapy-Resistant MSI-H Gastric Cancer with Significant Intrapatient Tumoral Heterogeneity Characterized by Histologic Dedifferentiation
Abstract
:1. Introduction
2. Case Report
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, B.A.; Gowen, K.; Lee, T.K.; Ou, S.-H.I.; Bristow, R.; Krill, L.; Almira-Suarez, M.I.; Ali, S.M.; Miller, V.A.; Liu, S.V.; et al. Comprehensive Genomic Profiling Aids in Distinguishing Metastatic Recurrence from Second Primary Cancers. Oncologist 2017, 22, 152–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, J.I.; Walsh, P.C.; Sanfilippo, F. Clinical and cost impact of second-opinion pathology. Review of prostate biopsies prior to radical prostatectomy. Am. J. Surg. Pathol. 1996, 20, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Marco, V.; Muntal, T.; García-Hernandez, F.; Cortes, J.; Gonzalez, B.; Rubio, I.T. Changes in Breast Cancer Reports after Pathology Second Opinion. Breast J. 2014, 20, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Shipitsin, M.; Small, C.E.; Choudhury, S.; Giladi, E.; Friedlander, S.F.; Nardone, J.; Hussain, S.; Hurley, A.D.; Ernst, C.; Huang, Y.E.; et al. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br. J. Cancer 2014, 111, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Dahlman, K.H.; Knol, J.; Gilbert, J.; Puzanov, I.; Means-Powell, J.; Balko, J.M.; Lovly, C.M.; Murphy, B.A.; Goff, L.W.; et al. Enabling a genetically informed approach to cancer medicine: A retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel. Oncologist 2014, 19, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pectasides, E.; Stachler, M.D.; Derks, S.; Liu, Y.; Maron, S.; Islam, M.; Alpert, L.; Kwak, H.; Kindler, H.; Polite, B.; et al. Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov. 2018, 8, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, J.R.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in Combination With Capecitabine Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2-Positive Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: TRIO-013/LOGiC—A Randomized Phase III Trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.A.; Bang, Y.J.; Lordick, F.; Alsina, M.; Chen, M.; Hack, S.P.; Bruey, J.M.; Smith, D.; McCaffery, I.; Shames, D.S.; et al. Effect of Fluorouracil, Leucovorin, and Oxaliplatin with or Without Onartuzumab in HER2-Negative, MET-Positive Gastroesophageal Adenocarcinoma: The METGastric Randomized Clinical Trial. JAMA Oncol. 2017, 3, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, D.V.T.; Tebbutt, N.C.; Davidenko, I.; Murad, A.M.; Al-Batran, S.-E.; Ilson, D.H.; Tjulandin, S.; Gotovkin, E.; Karaszewska, B.; Bondarenko, I.; et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1467–1482. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Bang, Y.J.; Mansoor, W.; Petty, R.D.; Chao, Y.; Cunningham, D.; Ferry, D.R.; Smith, N.R.; Frewer, P.; Ratnayake, J.; et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann Oncol. 2017, 28, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Kang, Y.-K.; Chung, H.; Salman, P.; Oh, S.C.; Bodoky, G.; Kurteva, G.; Volovat, C.; Moiseyenko, V.; Gorbunova, V.; et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 490–499. [Google Scholar] [CrossRef]
- Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.C.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; Ferry, D.; et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): Final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- White, T.; Szelinger, S.; LoBello, J.; King, A.; Aldrich, J.; Garinger, N.; Halbert, M.; Richholt, R.F.; Mastrian, S.D.; Babb, C.; et al. Analytic validation and clinical utilization of the comprehensive genomic profiling test, GEM ExTra®. Oncotarget 2021, 12, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Ostrovnaya, I.; Seshan, V.E.; Olshen, A.B.; Begg, C.B. Clonality: An R package for testing clonal relatedness of two tumors from the same patient based on their genomic profiles. Bioinformatics 2011, 27, 1698–1699. [Google Scholar] [CrossRef] [Green Version]
- Kwon, M.; An, M.; Klempner, S.J.; Lee, H.; Kim, K.-M.; Sa, J.K.; Cho, H.J.; Hong, J.Y.; Lee, T.; Min, Y.W.; et al. Determinants of Response and Intrinsic Resistance to PD-1 Blockade in Microsatellite Instability-High Gastric Cancer. Cancer Discov. 2021, 11, 2168–2185. [Google Scholar] [CrossRef]
- Wolf, Y.; Bartok, O.; Patkar, S.; Eli, G.B.; Cohen, S.; Litchfield, K.; Levy, R.; Jiménez-Sánchez, A.; Trabish, S.; Lee, J.S.; et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell 2019, 179, 219–235.e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gejman, R.S.; Chang, A.Y.; Jones, H.F.; DiKun, K.; Hakimi, A.A.; Schietinger, A.; Scheinberg, D.A. Rejection of immunogenic tumor clones is limited by clonal fraction. eLife 2018, 7, e41090. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018, 24, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
Tumor Histology | Adenocarcinoma | SCC | SCC | SCC | Adenocarcinoma |
---|---|---|---|---|---|
Tissue Source | Stomach | Right Axilla Lymph Node | Peritoneal biopsy | Greater Curvature Lymph Node | Greater Curvature Lymph Node |
Timing of Tumor collection relative to start of therapy | 15 days prior | 11 days prior | 41 days post | 86 days post | 86 days post |
Alterations associated with FDA on/off label therapies | |||||
ATM:p.R2034* | 0.15 | ||||
FBXW7:p.E78* | 0.17 | 0.26 | 0.12 | 0.07 | |
MSI-High | Yes | Yes | Yes | Yes | Yes |
PMS2:p.E109fs | 0.15 | ||||
POLD1:p.D1013fs | 0.28 | ||||
PTCH1:p.S1203fs | 0.16 | 0.15 | |||
TMB-High (≥20 mutations/Mb) | Yes | Yes | Yes | No | No |
Alterations with clinical trial enrollment available | |||||
ARID1A:p.G240fs | 0.14 | ||||
ARID1A:p.N1784fs | 0.24 | 0.15 | 0.06 | ||
ARID2:p.V681fs | 0.20 | 0.37 | 0.20 | 0.10 | |
ASXL1:p.G645fs | 0.27 | ||||
ATR:p.F1134fs | 0.14 | ||||
CHEK1:p.T226fs | 0.17 | ||||
ERCC5:p.K917fs | 0.14 | ||||
FANCM:p.V1336fs | 0.22 | ||||
GNAS:p.R844C | 0.02 | 0.03 | |||
KRAS:p.G13D | 0.38 | 0.19 | 0.10 | ||
MLH3:p.N674fs | 0.23 | ||||
MSH3:p.K383fs | 0.24 | 0.09 | |||
RNF43:p.G659fs | 0.17 | 0.27 | 0.14 | ||
SLX4:p.P469fs | 0.11 | ||||
TMB-Intermediate (6–19 mutations/Mb) | No | No | No | Yes | No |
TP53:p.D281G | 0.02 | ||||
Additional alterations of interest in each tumor type | |||||
ACVR2A:p.K437fs | 0.28 | 0.12 | |||
ARID1B:p.T71fs | 0.05 | ||||
B2M:c.68-2A>G | 0.12 | 0.05 | |||
B2M:pL15fs | 0.12 | ||||
B2M:p.V69fs | 0.07 | ||||
CLDN18/ARHGAP26 Fusion | Detected | ||||
CREBBP:p.I1084fs | 0.16 | ||||
JAK1:p.K860fs | 0.26 | ||||
JAK1:p.P430fs | 0.24 | ||||
KMT2B:pQ575fs | 0.16 | 0.26 | 0.08 | 0.05 | |
KMT2C:p.K2797fs | 0.24 | 0.39 | |||
KMT2C:p.N2842fs | 0.18 | 0.19 | 0.07 | ||
KMT2C:p.S2237* | 0.20 | 0.23 | 0.06 | ||
KMT2D:p.A5076fs | 0.19 | 0.12 | 0.06 | ||
KMT2D:p.Q827fs | 0.44 | 0.27 | 0.14 | ||
SETDB1:pP451fs | 0.20 | ||||
TET1:p.K23fs | 0.23 | 0.15 |
Site1_Origin | Site2_Origin | n1 | n2 | Match | LRstat | maxKSI | LR (p-Value) |
---|---|---|---|---|---|---|---|
Stomach_Gastric | RightAxilla_SCC | 858 | 1021 | 79 | 448 | 0.08 | <0.01 |
Stomach_Gastric | Peritoneal_SCC | 858 | 842 | 71 | 402 | 0.08 | <0.01 |
Stomach_Gastric | Lymph_SCC | 858 | 683 | 59 | 330 | 0.08 | <0.01 |
Stomach_Gastric | Lymph_Gastric | 858 | 171 | 146 | 1037 | 0.28 | <0.01 |
Right Axilla_SCC | Peritoneal_SCC | 1021 | 842 | 683 | 5900 | 0.73 | <0.01 |
Right Axilla_SCC | Lymph_SCC | 1021 | 683 | 567 | 4776 | 0.67 | <0.01 |
Right Axilla_SCC | Lymph_Gastric | 1021 | 171 | 12 | 51 | 0.02 | <0.01 |
Peritoneal_SCC | Lymph_SCC | 842 | 683 | 556 | 4794 | 0.73 | <0.01 |
Peritoneal_SCC | Lymph_Gastric | 842 | 171 | 13 | 59 | 0.03 | <0.01 |
Lymph_Gastric | Lymph_SCC | 171 | 683 | 11 | 50 | 0.03 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kethireddy, N.; Arvanitis, L.; LoBello, J.; Woo, Y.; Szelinger, S.; Chao, J. A Case Report of Immunotherapy-Resistant MSI-H Gastric Cancer with Significant Intrapatient Tumoral Heterogeneity Characterized by Histologic Dedifferentiation. J. Clin. Med. 2022, 11, 3413. https://doi.org/10.3390/jcm11123413
Kethireddy N, Arvanitis L, LoBello J, Woo Y, Szelinger S, Chao J. A Case Report of Immunotherapy-Resistant MSI-H Gastric Cancer with Significant Intrapatient Tumoral Heterogeneity Characterized by Histologic Dedifferentiation. Journal of Clinical Medicine. 2022; 11(12):3413. https://doi.org/10.3390/jcm11123413
Chicago/Turabian StyleKethireddy, Nikhila, Leonidas Arvanitis, Janine LoBello, Yanghee Woo, Szabolcs Szelinger, and Joseph Chao. 2022. "A Case Report of Immunotherapy-Resistant MSI-H Gastric Cancer with Significant Intrapatient Tumoral Heterogeneity Characterized by Histologic Dedifferentiation" Journal of Clinical Medicine 11, no. 12: 3413. https://doi.org/10.3390/jcm11123413
APA StyleKethireddy, N., Arvanitis, L., LoBello, J., Woo, Y., Szelinger, S., & Chao, J. (2022). A Case Report of Immunotherapy-Resistant MSI-H Gastric Cancer with Significant Intrapatient Tumoral Heterogeneity Characterized by Histologic Dedifferentiation. Journal of Clinical Medicine, 11(12), 3413. https://doi.org/10.3390/jcm11123413