Preventive Health Screening during the COVID-19 Pandemic: A Cross-Sectional Survey among 102,928 Internet Users in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measures
2.3. Ethics
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Preventive Health Screening among Adults in Poland
3.3. Factors Associated with Preventive Health Screening
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.M.; Bowen, D.J.; Lyle, J.; Clark, M.; Mohr, D.; Wardle, J.; Ceballos, R.; Emmons, K.; Gritz, E.; Marlow, L. Primary prevention, aging, and cancer: Overview and future perspectives. Cancer 2008, 113, 3484–3492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F. The roles of preventive and curative health care in economic development. PLoS ONE 2018, 13, e0206808. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Venkataramani, A.S.; Bhatt, D.L. Moving Toward Global Primordial Prevention in Cardiovascular Disease: The Heart of the Matter. J. Am. Coll. Cardiol. 2015, 66, 1535–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thériault, G.; Breault, P.; Dickinson, J.A.; Grad, R.; Bell, N.R.; Singh, H.; Szafran, O. Preventive health care and the media. Can. Fam. Physician 2020, 66, 811–816. [Google Scholar] [PubMed]
- Sabbath, E.L.; Sparer, E.H.; Boden, L.I.; Wagner, G.R.; Hashimoto, D.M.; Hopcia, K.; Sorensen, G. Preventive care utilization: Association with individual- and workgroup-level policy and practice perceptions. Prev. Med. 2018, 111, 235–240. [Google Scholar] [CrossRef]
- Loomans-Kropp, H.A.; Umar, A. Cancer prevention and screening: The next step in the era of precision medicine. NPJ Precis. Oncol. 2019, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Maxim, L.D.; Niebo, R.; Utell, M.J. Screening tests: A review with examples. Inhal. Toxicol. 2014, 26, 811–828. [Google Scholar] [CrossRef]
- National Cancer Institute. Understanding Laboratory Tests. Available online: https://www.cancer.gov/about-cancer/diagnosis-staging/understanding-lab-tests-fact-sheet (accessed on 25 May 2022).
- George-Gay, B.; Parker, K. Understanding the complete blood count with differential. J. Perianesth. Nurs. 2003, 18, 96–114. [Google Scholar] [CrossRef]
- Pippitt, K.; Li, M.; Gurgle, H.E. Diabetes Mellitus: Screening and Diagnosis. Am. Fam. Physician 2016, 93, 103–109. [Google Scholar]
- Tiyyagura, S.R.; Smith, D.A. Standard lipid profile. Clin. Lab. Med. 2006, 26, 707–732. [Google Scholar] [CrossRef]
- Simerville, J.A.; Maxted, W.C.; Pahira, J.J. Urinalysis: A comprehensive review. Am. Fam. Physician 2005, 71, 1153–1162. [Google Scholar] [PubMed]
- Lim, A.W.; Landy, R.; Castanon, A.; Hollingworth, A.; Hamilton, W.; Dudding, N.; Sasieni, P. Cytology in the diagnosis of cervical cancer in symptomatic young women: A retrospective review. Br. J. Gen. Pract. 2016, 66, e871–e879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landy, R.; Castanon, A.; Hamilton, W.; Lim, A.W.; Dudding, N.; Hollingworth, A.; Sasieni, P.D. Evaluating cytology for the detection of invasive cervical cancer. Cytopathology 2016, 27, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension 2019, 73, e35–e66. [Google Scholar] [CrossRef]
- Verberk, W.J.; Kroon, A.A.; Kessels, A.G.; de Leeuw, P.W. Home blood pressure measurement: A systematic review. J. Am. Coll. Cardiol. 2005, 46, 743–751. [Google Scholar] [CrossRef]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Rosiek, A.; Leksowski, K. The risk factors and prevention of cardiovascular disease: The importance of electrocardiogram in the diagnosis and treatment of acute coronary syndrome. Ther. Clin. Risk Manag. 2016, 12, 1223. [Google Scholar] [CrossRef] [Green Version]
- National Health Service. NHS Screening. Available online: https://www.nhs.uk/conditions/nhs-screening/ (accessed on 25 May 2022).
- Fang, C.; Otero, H.J.; Greenberg, D.; Neumann, P.J. Cost-utility analyses of diagnostic laboratory tests: A systematic review. Value Health 2011, 14, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Columbia University. Complete Guide to Annual Health Screenings by Age. Available online: https://www.columbianps.org/healthy-life-blog/guide-to-annual-health-screenings-by-age/ (accessed on 25 May 2022).
- Evidence-based Synthesis Program Center. Evidence Brief: Role of the Annual Comprehensive Physical Examination in the Asymptomatic Adult; Department of Veterans Affairs: Washington, DC, USA, 2011. Available online: www.hsrd.research.va.gov/publications/esp/physical.pdf (accessed on 25 May 2022).
- National Health Fund. List of Tests Available in Primary Care. Available online: https://www.nfz.gov.pl/dla-pacjenta/informacje-o-swiadczeniach/podstawowa-opieka-zdrowotna/ (accessed on 25 May 2022).
- Eurostat. Healthcare Activities Statistics-Preventive Services. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Healthcare_activities_statistics_-_preventive_services (accessed on 25 May 2022).
- World Health Organization. Screening and Early Detection. Available online: https://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/policy/screening-and-early-detection (accessed on 25 May 2022).
- Artac, M.; Dalton, A.R.; Majeed, A.; Car, J.; Millett, C. Effectiveness of a national cardiovascular disease risk assessment program (NHS Health Check): Results after one year. Prev. Med. 2013, 57, 129–134. [Google Scholar] [CrossRef]
- Schaufler, T.M.; Wolff, M. Cost effectiveness of preventive screening programmes for type 2 diabetes mellitus in Germany. Appl. Health Econ. Health Policy 2010, 8, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.D. Medical screening and biological monitoring for the effects of exposure in the workplace. Screening and monitoring: Tools for prevention. J. Occup. Med. 1986, 28, 544–546. [Google Scholar] [CrossRef] [PubMed]
- Murfin, J.; Irvine, F.; Meechan-Rogers, R.; Swift, A. Education, income and occupation and their influence on the uptake of cervical cancer prevention strategies: A systematic review. J. Clin. Nurs. 2020, 29, 393–415. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Kubzansky, L.D.; Smith, J. Life satisfaction and use of preventive health care services. Health Psychol. 2015, 34, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.Y.; Kim, S.; Neese, J.; Lee, M.H. Does health literacy affect the uptake of annual physical check-ups?: Results from the 2017 US health information national trends survey. Arch. Public Health. 2021, 79, 38. [Google Scholar] [CrossRef]
- Kelaher, M.; Stellman, J.M. The impact of medicare funding on the use of mammography among older women: Implications for improving access to screening. Prev. Med. 2000, 31, 658–664. [Google Scholar] [CrossRef]
- Jenkins, H.E.; Ayuk, S.; Puma, D.; Brooks, M.B.; Millones, A.K.; Jimenez, J.; Lecca, L.; Galea, J.T.; Becerra, M.; Keshavjee, S.; et al. Geographic accessibility to health facilities predicts uptake of community-based tuberculosis screening in an urban setting. Int. J. Infect Dis. 2022, 120, 125–131. [Google Scholar] [CrossRef]
- Sagan, A.; Panteli, D.; Borkowski, W.; Dmowski, M.; Domanski, F.; Czyzewski, M.; Gorynski, P.; Karpacka, D.; Kiersztyn, E.; Kowalska, I.; et al. Poland health system review. Health Syst. Transit 2011, 13, 1–193. [Google Scholar]
- Januszek-Michalecka, L.; Nowak-Markwitz, E.; Banach, P.; Spaczynski, M. Effectiveness of the National Population-Based Cervical Cancer Screening Programme in Poland--outcomes, problems and possible solutions 7 years after implementation. Ann. Agric. Environ. Med. 2013, 20, 859–864. [Google Scholar]
- Piwońska, A.; Piotrowski, W.; Kozela, M.; Pająk, A.; Nadrowski, P.; Kozakiewicz, K.; Tykarski, A.; Bielecki, W.; Puch-Walczak, A.; Zdrojewski, T.; et al. Cardiovascular diseases prevention in Poland: Results of WOBASZ and WOBASZ II studies. Kardiol. Pol. 2018, 76, 1534–1541. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, M.; Zieliński, J.; Górecka, D.; Grupy Poznaj Wiek Swoich Płuc. Charakterystyka nałogu palenia wśród uczestników narodowego programu wczesnego rozpoznawania i profilaktyki POChP w latach 2000–2002 [Characteristics of smoking habits in participants of the National Program of Early Detection and Prevention of COPD in the years 2000–2002]. Pneumonol. Alergol. Pol. 2005, 73, 122–127. [Google Scholar] [PubMed]
- Augustynowicz, A.; Czerw, A.; Borowska, M.; Deptała, A.; Dykowska, G.; Fronczak, A. Prevention of overweight and obesity undertaken by local government units in Poland. Health Policy 2019, 123, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Al-Kuwari, M.G.; Abdulmalik, M.A.; Al-Mudahka, H.R.; Bakri, A.H.; Al-Baker, W.A.; Abushaikha, S.S.; Kandy, M.C.; Gibb, J. The impact of COVID-19 pandemic on the preventive services in Qatar. J. Public Health Res. 2021, 10, 1910. [Google Scholar] [CrossRef] [PubMed]
- Wirtualna Polska. Pomyśl o Sobie-Sprawdzamy Zdrowie Polaków w Pandemii. Available online: https://testzdrowia.abczdrowie.pl/ (accessed on 25 May 2022).
- The Polish Society of Gynecologists and Obstetricians. Cervical Cancer Screening Scheme (RSM)-Polish Society of Gynecologists and Obstetricians (PTGiP)-Version XII 2021. Available online: https://ptgin.pl/artykul/schemat-postepowania-w-screeningu-raka-szyjki-macicy-rsm-ptgip-wersja-xii-2021 (accessed on 25 May 2022).
- Deng, D.; Liang, A.; Chui, J.N.; Wong, G.; Cooper, T.E. The COVID-19 pandemic and access to health care in people with chronic kidney disease: A systematic review and meta-analysis. Nephrology 2022, 27, 410–420. [Google Scholar] [CrossRef]
- Pinkas, J.; Jankowski, M.; Szumowski, Ł.; Lusawa, A.; Zgliczyński, W.S.; Raciborski, F.; Wierzba, W.; Gujski, M. Public Health Interventions to Mitigate Early Spread of SARS-CoV-2 in Poland. Med. Sci. Monit. 2020, 26, e924730. [Google Scholar] [CrossRef]
- Król, Z.; Szymański, P.; Bochnia, A.; Abramowicz, E.; Płachta, A.; Rzepliński, R.; Sługocki, M.; Nowak, B.; Zaczyński, A.; Kozłowski, K.; et al. Transformation of a large multi-speciality hospital into a dedicated COVID-19 centre during the coronavirus pandemic. Ann. Agric. Environ. Med. 2020, 27, 201–206. [Google Scholar] [CrossRef]
- Frankowska, A.; Szymkowiak, M.; Walkowiak, D. Teleconsultations Quality During the COVID-19 Pandemic in Poland in the Opinions of Generation Z Adults. Telemed. J. E-Health, 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Workplace Health Promotion. Available online: https://www.cdc.gov/workplacehealthpromotion/index.html (accessed on 25 May 2022).
- Wiszniewska, M.; Marcinkiewicz, A.; Lipińska-Ojrzanowska, A.; Kalska-Sochacka, K.; Walusiak Skorupa, J. The role of occupational health services in cancer prevention-which factors determine the implementation of preventive measures? Int. J. Occup. Med. Environ. Health 2021, 34, 723–736. [Google Scholar] [CrossRef]
- Nowakowski, A.; Cybulski, M.; Śliwczyński, A.; Chil, A.; Teter, Z.; Seroczyński, P.; Arbyn, M.; Anttila, A. The implementation of an organised cervical screening programme in Poland: An analysis of the adherence to European guidelines. BMC Cancer 2015, 15, 279. [Google Scholar] [CrossRef] [Green Version]
- Nessler, K.; Ball, F.; Chan, S.K.F.; Chwalek, M.; Krztoń-Królewiecka, A.; Windak, A. Barriers and attitudes towards cervical cancer screening in primary healthcare in Poland-doctors’ perspective. BMC Fam. Pract. 2021, 22, 260. [Google Scholar] [CrossRef]
Variable | n | % |
---|---|---|
Gender | ||
Female | 58,904 | 57.2 |
Male | 44,024 | 42.8 |
Age (years) | ||
18–34 | 19,083 | 18.5 |
35–49 | 38,871 | 37.8 |
50–64 | 28,942 | 28.1 |
65+ | 16,032 | 15.6 |
Educational level | ||
Primary | 2356 | 2.3 |
Vocational | 10,051 | 9.8 |
Secondary | 39,603 | 38.5 |
Higher | 50,918 | 49.5 |
Place of residence | ||
Rural | 21,353 | 20.7 |
City up to 50,000 residents | 22,306 | 21.7 |
City from 51,000 to 100,000 residents | 12,807 | 12.4 |
City from 101,000 to 200,000 residents | 10,356 | 10.1 |
City from 201,000 to 500,000 residents | 12,773 | 12.4 |
City above 500,000 residents | 23,333 | 22.7 |
Occupational status | ||
Active | 77,429 | 75.2 |
Passive | 25,499 | 24.8 |
Presence of chronic diseases | ||
Yes | 43,608 | 42.4 |
No | 59,320 | 57.6 |
Visiting a doctor in the past 12 months | ||
Yes | 72,471 | 70.4 |
No | 30,457 | 29.6 |
Please Indicate When You Last Performed the Following Screening Tests | In the Past 12 Months | More than 1 Year but Not More Than 2 Years Ago | More than 2 Years Ago but Not More than 3 Years Ago | More than 3 Years Ago | Never |
---|---|---|---|---|---|
% (95% CI) | |||||
Blood pressure measurement | 83.0 (82.8–83.3) | 7.2 (7.1–7.4) | 3.1 (3.0–3.2) | 3.7 (3.6–3.8) | 2.9 (2.8–3.0) |
Blood sugar test | 63.3 (63.0–63.6) | 12.4 (12.3–12.7) | 6.7 (6.6–6.9) | 9.4 (9.2–9.5) | 8.2 (8.0–8.3) |
Lipid panel | 55.1 (54.8–55.4) | 13.2 (13.0–13.4) | 7.3 (7.1–7.5) | 9.2 (9.0–9.4) | 15.2 (15.0–15.5) |
Blood count | 66.2 (65.9–66.5) | 13.6 (13.3–13.8) | 7.4 (7.2–7.5) | 9.6 (9.5–9.8) | 3.2 (3.1–3.4) |
Urinalysis | 53.1 (52.8–53.4) | 16.8 (16.5–17.0) | 9.9 (9.7–10.1) | 16.0 (15.8–16.3) | 4.2 (4.1–4.4) |
Electrocardiogram | 37.2 (36.9–37.5) | 15.6 (15.3–15.8) | 11.5 (11.3–11.7) | 22.6 (22.3–22.8) | 13.1 (13.0–13.4) |
Cervical cytology (question addressed only to women; n = 58,904) | 39.5 (39.1–39.9) | 17.6 (17.3–18.0) | 12.1 (11.8–12.4) | 21.5 (21.2–21.9) | 9.3 (9.0–9.5) |
Variable | Preventive Health Screening in the Past 12 Months—Percentage of Respondents Who Answered “Yes” by Sociodemographic Factors | |||||||
---|---|---|---|---|---|---|---|---|
Blood Pressure Measurement | Blood Sugar Test | Blood Count | Urinalysis | |||||
n (%) | p | n (%) | p | n (%) | p | n (%) | p | |
Gender | ||||||||
Female | 49,302 (83.7) | <0.001 | 37,839 (64.2) | <0.001 | 40,916 (69.5) | <0.001 | 32,243 (54.7) | <0.001 |
Male | 36,156 (82.1) | 27,329 (62.1) | 27,219 (61.8) | 22,377 (50.8) | ||||
Age (years) | ||||||||
18–34 | 13,866 (72.7) | <0.001 | 9604 (50.3) | <0.001 | 10,654 (55.8) | <0.001 | 7665 (40.2) | <0.001 |
35–49 | 30,990 (79.7) | 22,442 (57.7) | 24,107 (62.0) | 18,636 (47.9) | ||||
50–64 | 25,780 (89.1) | 20,455 (70.7) | 20,717 (71.6) | 17,265 (59.7) | ||||
65+ | 14,822 (92.5) | 12,667 (79.0) | 12,657 (78.9) | 11,054 (68.9) | ||||
Educational level | ||||||||
Primary | 1507 (64.0) | <0.001 | 1093 (46.4) | <0.001 | 1139 (48.3) | <0.001 | 922 (39.1) | <0.001 |
Vocational | 7712 (76.7) | 5749 (57.2) | 5956 (59.3) | 4837 (48.1) | ||||
Secondary | 32,745 (82.7) | 25,079 (63.3) | 25,684 (64.9) | 20,763 (52.4) | ||||
Higher | 43,494 (85.4) | 33,247 (65.3) | 35,356 (69.4) | 28,098 (55.2) | ||||
Place of residence | ||||||||
Rural | 17,409 (81.5) | <0.001 | 12,754 (59.7) | <0.001 | 13,283 (62.2) | <0.001 | 10,390 (48.7) | <0.001 |
City up to 50,000 residents | 18,858 (84.5) | 14,361 (64.4) | 14,755 (66.1) | 11,808 (52.9) | ||||
City from 51,000 to 100,000 residents | 10,679 (83.4) | 8255 (64.5) | 8650 (67.5) | 6884 (53.8) | ||||
City from 101,000 to 200,000 residents | 8569 (82.7) | 6593 (63.7) | 6853 (66.2) | 5547 (53.6) | ||||
City from 201,000 to 500,000 residents | 10,586 (82.9) | 8118 (63.6) | 8563 (67.0) | 6923 (54.2) | ||||
City above 500,000 residents | 19,357 (83.0) | 15,087 (64.7) | 16,031 (68.7) | 13,068 (56.0) | ||||
Occupational status | ||||||||
Active | 63,424 (81.9) | <0.001 | 47,436 (61.3) | <0.001 | 49,987 (64.6) | <0.001 | 39,332 (50.8) | <0.001 |
Passive | 22,034 (86.4) | 17,732 (69.5) | 18,148 (71.2) | 15,288 (60.0) | ||||
Presence of chronic diseases | ||||||||
Yes | 39,280 (90.1) | <0.001 | 32,244 (73.9) | <0.001 | 33,862 (77.7) | <0.001 | 27,529 (63.1) | <0.001 |
No | 46,178 (77.8) | 32,924 (55.5) | 34,273 (57.8) | 27,091 (45.7) | ||||
Visiting a doctor in the past 12 months | ||||||||
Yes | 63,130 (87.1) | <0.001 | 50,177 (69.2) | <0.001 | 53,915 (74.4) | <0.001 | 43,639 (60.2) | <0.001 |
No | 22,328 (73.3) | 14,991 (49.2) | 14,220 (46.7) | 10,981 (36.1) |
Cervical Cytology Test in the Last 3 Years—Percentage of Respondents Who Answered “Yes” by Sociodemographic Factors (n = 58,904) | ||
---|---|---|
Variable | n (%) | p |
Age (years) | ||
18–34 | 7003 (66.4) | <0.001 |
35–49 | 16,544 (75.9) | |
50–64 | 12,315 (69.5) | |
65+ | 4908 (55.6) | |
Educational level | ||
Primary | 657 (52.2) | <0.001 |
Vocational | 2780 (61.7) | |
Secondary | 14,263 (64.7) | |
Higher | 23,070 (74.2) | |
Place of residence | ||
Rural | 8372 (67.2) | <0.001 |
City up to 50,000 residents | 8014 (67.3) | |
City from 51,000 to 100,000 residents | 5175 (69.9) | |
City from 101,000 to 200,000 residents | 4191 (70.1) | |
City from 201,000 to 500,000 residents | 5196 (69.8) | |
City above 500,000 residents | 9822 (71.6) | |
Occupational status | ||
Active | 30,213 (72.8) | <0.001 |
Passive | 10,557 (60.6) | |
Presence of chronic diseases | ||
Yes | 19,651 (70.3) | <0.001 |
No | 21,119 (68.2) | |
Visiting a doctor in the past 12 months | ||
Yes | 32,331 (73.4) | <0.001 |
No | 8439 (56.9) |
Variable | Factors Associated with Preventive Health Screening in the Past 12 Months among Adults in Poland | |||||||
---|---|---|---|---|---|---|---|---|
Blood Pressure Measurement | Blood Sugar Test | Blood Count | Urinalysis | |||||
p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | |
Gender | ||||||||
Female | <0.001 | 0.91 (0.88–0.94) | <0.001 | 0.93 (0.91–0.96) | <0.001 | 1.18 (1.14–1.21) | 0.97 | 1.00 (0.97–1.03) |
Male | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Age (years) | ||||||||
18–34 | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
35–49 | <0.001 | 1.30 (1.25–1.36) | <0.001 | 1.21 (1.17–1.25) | <0.001 | 1.12 (1.08–1.16) | <0.001 | 1.24 (1.20–1.29) |
50–64 | <0.001 | 2.80 (2.66–2.94) | <0.001 | 2.17 (2.08–2.25) | <0.001 | 1.79 (1.72–1.86) | <0.001 | 2.05 (1.98–2.14) |
65+ | <0.001 | 4.11 (3.81–4.42) | <0.001 | 3.29 (3.11–3.47) | <0.001 | 2.64 (2.50–2.79) | <0.001 | 2.94 (2.79–3.10) |
Having higher education | ||||||||
Yes | <0.001 | 1.48 (1.43–1.53) | <0.001 | 1.23 (1.20–1.26) | <0.001 | 1.33 (1.29–1.37) | <0.01 | 1.21 (1.17–1.24) |
No | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Place of residence | ||||||||
Rural | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
City up to 50,000 residents | <0.05 | 1.07 (1.02–1.13) | <0.001 | 1.09 (1.05–1.14) | <0.001 | 1.10 (1.05–1.15) | <0.001 | 1.08 (1.04–1.12) |
City from 51,000 to 100,000 residents | 0.3 | 1.03 (0.97–1.10) | <0.001 | 1.15 (1.10–1.21) | <0.001 | 1.22 (1.16–1.28) | <0.001 | 1.17 (1.12–1.22) |
City from 101,000 to 200,000 residents | 0.3 | 0.97 (0.91–1.03) | <0.001 | 1.09 (1.04–1.15) | <0.001 | 1.11 (1.06–1.17) | <0.001 | 1.14 (1.08–1.20) |
City from 201,000 to 500,000 residents | 0.5 | 0.98 (0.92–1.04) | <0.001 | 1.08 (1.03–1.13) | <0.001 | 1.16 (1.10–1.21) | <0.001 | 1.17 (1.12–1.23) |
City above 500,000 residents | <0.05 | 0.95 (0.90–0.99) | <0.001 | 1.11 (1.07–1.16) | <0.001 | 1.22 (1.17–1.27) | <0.001 | 1.24 (1.17–1.24) |
Occupational status | ||||||||
Active | <0.001 | 1.17 (1.12–1.23) | <0.001 | 1.13 (1.08–1.17) | <0.001 | 1.19 (1.14–1.23) | <0.001 | 1.06 (1.03–1.10) |
Passive | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Presence of chronic diseases | ||||||||
Yes | <0.001 | 1.86 (1.79–1.93) | <0.001 | 1.71 (1.66–1.76) | <0.001 | 1.86 (1.80–1.91) | <0.001 | 1.49 (1.45–1.53) |
No | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Visiting a doctor in the past 12 months | ||||||||
Yes | <0.001 | 2.23 (2.16–2.31) | <0.001 | 2.15 (2.09–2.21) | <0.001 | 2.99 (2.90–3.08) | <0.001 | 2.52 (2.45–2.59) |
No | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Variable | Factors Associated with Performing Cervical Cytology in the Past 3 Years | |
---|---|---|
p-Value | OR (95% CI) | |
Age (years) | ||
18–34 | <0.001 | 1.42 (1.33–1.52) |
35–49 | <0.001 | 2.07 (1.95–2.21) |
50–64 | <0.001 | 1.68 (1.58–1.78) |
65+ | Reference | Reference |
Having higher education | ||
Yes | <0.001 | 1.46 (1.40–1.51) |
No | Reference | Reference |
Place of residence | ||
Rural | Reference | Reference |
City up to 50,000 residents | 0.3 | 1.03 (0.97–1.09) |
City from 51,000 to 100,000 residents | <0.001 | 1.15 (1.08–1.23) |
City from 101,000 to 200,000 residents | <0.001 | 1.16 (1.09–1.25) |
City from 201,000 to 500,000 residents | <0.001 | 1.15 (1.08–1.22) |
City above 500,000 residents | <0.001 | 1.23 (1.16–1.30) |
Occupational status | ||
Active | <0.001 | 1.32 (1.26–1.38) |
Passive | Reference | Reference |
Presence of chronic diseases | ||
Yes | <0.001 | 1.10 (1.06–1.15) |
No | Reference | Reference |
Visiting a doctor in the past 12 months | ||
Yes | <0.001 | 2.06 (1.98–2.14) |
No | Reference | Reference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mularczyk-Tomczewska, P.; Żarnowski, A.; Gujski, M.; Sytnik-Czetwertyński, J.; Pańkowski, I.; Smoliński, R.; Jankowski, M. Preventive Health Screening during the COVID-19 Pandemic: A Cross-Sectional Survey among 102,928 Internet Users in Poland. J. Clin. Med. 2022, 11, 3423. https://doi.org/10.3390/jcm11123423
Mularczyk-Tomczewska P, Żarnowski A, Gujski M, Sytnik-Czetwertyński J, Pańkowski I, Smoliński R, Jankowski M. Preventive Health Screening during the COVID-19 Pandemic: A Cross-Sectional Survey among 102,928 Internet Users in Poland. Journal of Clinical Medicine. 2022; 11(12):3423. https://doi.org/10.3390/jcm11123423
Chicago/Turabian StyleMularczyk-Tomczewska, Paulina, Adam Żarnowski, Mariusz Gujski, Janusz Sytnik-Czetwertyński, Igor Pańkowski, Rafał Smoliński, and Mateusz Jankowski. 2022. "Preventive Health Screening during the COVID-19 Pandemic: A Cross-Sectional Survey among 102,928 Internet Users in Poland" Journal of Clinical Medicine 11, no. 12: 3423. https://doi.org/10.3390/jcm11123423
APA StyleMularczyk-Tomczewska, P., Żarnowski, A., Gujski, M., Sytnik-Czetwertyński, J., Pańkowski, I., Smoliński, R., & Jankowski, M. (2022). Preventive Health Screening during the COVID-19 Pandemic: A Cross-Sectional Survey among 102,928 Internet Users in Poland. Journal of Clinical Medicine, 11(12), 3423. https://doi.org/10.3390/jcm11123423