Multimorbidity Profile of COVID-19 Deaths in Portugal during 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Sources
2.2. Population Characteristics and Morbidity
2.3. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Comorbidities
3.3. Multimorbidity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. CHARLSON Morbidity Index ICD-10 Codes
- Myocardial infarction: I21.x, I22.x, and I25.2.
- Congestive heart failure: I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5–I42.9, I43.x, I50.x, and P29.0.
- Peripheral vascular disease: I70.x, I71.x, I73.1, I73.8, I73.9, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8, and Z95.9.
- Cerebrovascular disease: G45.x, G46.x, H34.0, and I60.x–I69.x.
- Dementia: F00.x–F03.x, F05.1, G30.x, and G31.1.
- Chronic pulmonary disease: I27.8, I27.9, J40.x–J47.x, J60.x–J67.x, J68.4, J70.1, and J70.3.
- Rheumatic disease: M05.x, M06.x, M31.5, M32.x–M34.x, M35.1, M35.3, and M36.0.
- Peptic ulcer disease: K25.x–K28.x.
- Mild liver disease: B18.x, K70.0–K70.3, K70.9, K71.3–K71.5, K71.7, K73.x, K74.x, K76.0, K76.2–K76.4, K76.8, K76.9, and Z94.4.
- Diabetes without chronic complication: E10.0, E10.1, E10.6, E10.8, E10.9, E11.0, E11.1, E11.6, E11.8, E11.9, E12.0, E12.1, E12.6, E12.8, E12.9, E13.0, E13.1, E13.6, E13.8, E13.9, E14.0, E14.1, E14.6, E14.8, and E14.9.
- Diabetes with chronic complication: E10.2–E10.5, E10.7, E11.2–E11.5, E11.7, E12.2–E12.5, E12.7, E13.2–E13.5, E13.7, E14.2–E14.5, and E14.7.
- Hemiplegia or paraplegia: G04.1, G11.4, G80.1, G80.2, G81.x, G82.x, G83.0–G83.4, and G83.9.
- Renal disease: I12.0, I13.1, N03.2–N03.7, N05.2–N05.7, N18.x, N19.x, N25.0, Z49.0–Z49.2, Z94.0, and Z99.2.
- Any malignancy, including lymphoma and leukemia, except malignant neoplasm of skin: C00.x–C26.x, C30.x–C34.x, C37.x–C41.x, C43.x, C45.x–C58.x, C60.x–C76.x, C81.x–C85.x, C88.x, and C90.x–C97.x.
- Moderate or severe liver disease: I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K72.1, K72.9, K76.5, K76.6, and K76.7.
- Metastatic solid tumor: C77.x–C80.x.
- AIDS/HIV: B20.x–B22.x and B24.x.
Appendix A.2. ELIXHAUSER Morbidity List ICD-10 Codes
- Congestive heart failure: I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5–I42.9, I43.x, I50.x, and P29.0.
- Cardiac arrhythmias: I44.1–I44.3, I45.6, I45.9, I47.x–I49.x, R00.0, R00.1, R00.8, T82.1, Z45.0, and Z95.0.
- Valvular disease: A52.0, I05.x–I08.x, I09.1, I09.8, I34.x–I39.x, Q23.0–Q23.3, and Z95.2–Z95.4.
- Pulmonary circulation disorders: I26.x, I27.x, I28.0, I28.8, and I28.9.
- Peripheral vascular disorders: I70.x, I71.x, I73.1, I73.8, I73.9, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8, and Z95.9.
- Hypertension, uncomplicated: I10.x.
- Hypertension, complicated: I11.x–I13.x and I15.x.
- Paralysis: G04.1, G11.4, G80.1, G80.2, G81.x, G82.x, G83.0–G83.4, and G83.9.
- Other neurological disorders: G10.x–G13.x, G20.x–G22.x, G25.4, G25.5, G31.2, G31.8, G31.9, G32.x, G35.x–G37.x, G40.x, G41.x, G93.1, G93.4, R47.0, and R56.x.
- Chronic pulmonary disease: I27.8, I27.9, J40.x–J47.x, J60.x–J67.x, J68.4, J70.1, and J70.3.
- Diabetes, uncomplicated: E10.0, E10.1, E10.9, E11.0, E11.1, E11.9, E12.0, E12.1, E12.9, E13.0, E13.1, E13.9, E14.0, E14.1, and E14.9.
- Diabetes, complicated: E10.2–E10.8, E11.2–E11.8, E12.2–E12.8, E13.2–E13.8, and E14.2–E14.8.
- Hypothyroidism: E00.x–E03.x and E89.0.
- Renal failure: I12.0, I13.1, N18.x, N19.x, N25.0, Z49.0–Z49.2, Z94.0, and Z99.2.
- Liver disease: B18.x, I85.x, I86.4, I98.2, K70.x, K71.1, K71.3–K71.5, K71.7, K72.x–K74.x, K76.0, K76.2–K76.9, and Z94.4.
- Peptic ulcer disease, excluding bleeding: K25.7, K25.9, K26.7, K26.9, K27.7, K27.9, K28.7, and K28.9.
- AIDS/HIV: B20.x–B22.x and B24.x.
- Lymphoma: C81.x–C85.x, C88.x, C96.x, C90.0, and C90.2.
- Metastatic cancer: C77.x–C80.x.
- Solid tumor without metastasis: C00.x–C26.x, C30.x–C34.x, C37.x–C41.x, C43.x, C45.x–C58.x, C60.x–C76.x, and C97.x.
- Rheumatoid arthritis/collagen vascular diseases: L94.0, L94.1, L94.3, M05.x, M06.x, M08.x, M12.0, M12.3, M30.x, M31.0–M31.3, M32.x–M35.x, M45.x, M46.1, M46.8, and M46.9.
- Coagulopathy: D65–D68.x, D69.1, and D69.3–D69.6.
- Obesity: E66.x.
- Weight loss: E40.x–E46.x, R63.4, and R64.
- Fluid and electrolyte disorders: E22.2, E86.x, and E87.x.
- Blood loss anemia: D50.0.
- Deficiency anemia: D50.8, D50.9, and D51.x–D53.x.
- Alcohol abuse: F10, E52, G62.1, I42.6, K29.2, K70.0, K70.3, K70.9, T51.x, Z50.2, Z71.4, and Z72.1.
- Drug abuse: F11.x–F16.x, F18.x, F19.x, Z71.5, and Z72.2.
- Psychoses: F20.x, F22.x–F25.x, F28.x, F29.x, F30.2, F31.2, and F31.5.
- Depression: F20.4, F31.3–F31.5, F32.x, F33.x, F34.1, F41.2, and F43.2.
References
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Instituto Nacional de Estatística. A Mortalidade em Portugal n Contexto da Pandemia COVID-19. Available online: https://www.ine.pt/ngt_server/attachfileu.jsp?look_parentBoui=472955720&att_display=n&att_download=y (accessed on 20 December 2021).
- Harrison, S.L.; Fazio-Eynullayeva, E.; Lane, D.A.; Underhill, P.; Lip, G.Y.H. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLOS Med. 2020, 17, e1003321. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, W.; Liu, K.; Fang, Y.-Y.; Shang, J.; Zhou, L.; Wang, K.; Leng, F.; Wei, P.-F.; Chen, L.; et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: A retrospective study. Chin. Med. J. 2020, 133, 1261–1267. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, X.; Qiu, Y.; Song, Y.; Feng, F.; Feng, J.Y.; Song, Q.; Jia, Q.; Wang, J. Clinical characteristics of 82 cases of death from COVID-19. PLoS ONE 2020, 15, e0235458. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.; Pan, D.; Nevill, C.R.; Gray, L.J.; Martin, C.A.; Nazareth, J.; Minhas, J.S.; Divall, P.; Khunti, K.; Abrams, K.R.; et al. Ethnicity and clinical outcomes in COVID-19: A systematic review and meta-analysis. EClinicalMedicine 2020, 29, 100630. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, Q.; Chi, J.; Dong, B.; Lv, W.; Shen, L.; Wang, Y. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 99, 47–56. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Elixhauser, A.; Steiner, C.; Harris, D.R.; Coffey, R.M. Comorbidity Measures for Use with Administrative Data. Med. Care 1998, 36, 8–27. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Statistical Classification of Diseases and Related Health Problems, 10th ed.; WHO: Geneva, Switzerland, 2011.
- Zhou, W.; Qin, X.; Hu, X.; Lu, Y.; Pan, J. Prognosis models for severe and critical COVID-19 based on the Charlson and Elixhauser comorbidity indices. Int. J. Med. Sci. 2020, 17, 2257–2263. [Google Scholar] [CrossRef] [PubMed]
- Kuswardhani, R.T.; Henrina, J.; Pranata, R.; Lim, M.A.; Lawrensia, S.; Suastika, K. Charlson comorbidity index and a composite of poor outcomes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 2103–2109. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Guidelines for Certification and Classification (Coding) of COVID-19 as Cause of Death; WHO: Geneva, Switzerland, 2020.
- Portal do Instituto Nacional de Estatística. População residente (No) por Local de residência (NUTS-2013), Sexo e Grupo etário; Anual. 2020. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0008273&xlang=en (accessed on 20 December 2021).
- Moore, B.J.; White, S.; Washington, R.; Coenen, N.; Elixhauser, A. Identifying Increased Risk of Readmission and In-hospital Mortality Using Hospital Administrative Data: The AHRQ Elixhauser Comorbidity Index. Med. Care 2017, 55, 698–705. [Google Scholar] [CrossRef] [PubMed]
- van Walraven, C.; Austin, P.C.; Jennings, A.; Quan, H.; Forster, A.J. A Modification of the Elixhauser Comorbidity Measures Into a Point System for Hospital Death Using Administrative Data. Med. Care 2009, 47, 626–633. [Google Scholar] [CrossRef]
- Ahmad, O.B.; Boschi-Pinto, C.; Lopez, A.D.; Murray, C.J.L.; Lozano, R.; Inoue, M. Age Standardization of Rates: A New WHO Standard; Citeseer: Geneva, Switzerland, 2001; Volume 9. [Google Scholar]
- Gasparini, A. comorbidity: An R package for computing comorbidity scores. J. Open Source Softw. 2018, 3, 648. [Google Scholar] [CrossRef] [Green Version]
- Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 2020, 20, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Bertakis, K.D.; Azari, R.; Helms, L.J.; Callahan, E.J.; Robbins, J.A. Gender differences in the utilization of health care services. J. Fam. Pract. 2000, 49, 147–152. [Google Scholar]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Machida, M.; Nakamura, I.; Saito, R.; Nakaya, T.; Hanibuchi, T.; Takamiya, T.; Odagiri, Y.; Fukushima, N.; Kikuchi, H.; Kojima, T.; et al. Adoption of personal protective measures by ordinary citizens during the COVID-19 outbreak in Japan. Int. J. Infect. Dis. 2020, 94, 139–144. [Google Scholar] [CrossRef]
- Suen, L.K.P.; Siu, G.K.H.; Guo, Y.P.; Yeung, S.K.W.; Lo, K.Y.K.; O’Donoghue, M. The public washroom-friend or foe? An observational study of washroom cleanliness combined with microbiological investigation of hand hygiene facilities. Antimicrob. Resist. Infect. Control 2019, 8, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aylin, P.; Bottle, A.; Majeed, A. Use of administrative data or clinical databases as predictors of risk of death in hospital: Comparison of models. BMJ 2007, 334, 1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, M.C.; Crilly, M.; Black, C.; Prescott, G.J.; Mercer, S.W. Defining and measuring multimorbidity: A systematic review of systematic reviews. Eur. J. Public Health 2019, 29, 182–189. [Google Scholar] [CrossRef]
- Kaplan, M.H.; Feinstein, A.R. The importance of classifying initial co-morbidity in evaluating the outcome of diabetes mellitus. J. Chronic Dis. 1974, 27, 387–404. [Google Scholar] [CrossRef]
- Sharabiani, M.T.A.; Aylin, P.; Bottle, A. Systematic Review of Comorbidity Indices for Administrative Data. Med. Care 2012, 50, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Southern, D.; Quan, H.; Ghali, W.A. Comparison of the Elixhauser and Charlson/Deyo Methods of Comorbidity Measurement in Administrative Data. Med. Care 2004, 42, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Thompson, N.R.; Fan, Y.; Dalton, J.E.; Jehi, L.; Rosenbaum, B.P.; Vadera, S.; Griffith, S.D. A New Elixhauser-based Comorbidity Summary Measure to Predict In-Hospital Mortality. Med. Care 2015, 53, 374–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izcovich, A.; Ragusa, M.A.; Tortosa, F.; Marzio, M.A.L.; Agnoletti, C.; Bengolea, A.; Ceirano, A.; Espinosa, F.; Saavedra, E.; Sanguine, V.; et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS ONE 2020, 15, e0241955. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, P.J.; Nobre, M.D.A.; Costa, A.; Ribeiro, R.M.; Furtado, C.; Nicolau, L.B.; Camarinha, C.; Luís, M.; Abrantes, R.; Carneiro, A.V. The Role of Health Preconditions on COVID-19 Deaths in Portugal: Evidence from Surveillance Data of the First 20293 Infection Cases. J. Clin. Med. 2020, 9, 2368. [Google Scholar] [CrossRef]
- Tian, W.; Jiang, W.; Yao, J.; Nicholson, C.J.; Li, R.; Sigurslid, H.; Wooster, L.; Rotter, J.I.; Guo, X.; Malhotra, R. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Med. Virol. 2020, 92, 1875–1883. [Google Scholar] [CrossRef]
- Dorjee, K.; Kim, H.; Bonomo, E.; Dolma, R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS ONE 2020, 15, e0243191. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, H.; Ou, C.; Liang, J.; Wang, Y.; Jiang, M.; Li, S. Clinical symptoms, comorbidities and complications in severe and non-severe patients with COVID-19: A systematic review and meta-analysis without cases duplication. Medicine 2020, 99, e23327. [Google Scholar] [CrossRef]
- Miller, L.E.; Bhattacharyya, R.; Miller, A.L. Diabetes mellitus increases the risk of hospital mortality in patients with COVID-19: Systematic review with meta-analysis. Medicine 2020, 99, e22439. [Google Scholar] [CrossRef]
- Alguwaihes, A.M.; Al-Sofiani, M.E.; Megdad, M.; Albader, S.S.; Alsari, M.H.; Alelayan, A.; Alzahrani, S.H.; Sabico, S.; Al-Daghri, N.M.; Jammah, A.A. Diabetes and COVID-19 among hospitalized patients in Saudi Arabia: A single-centre retrospective study. Cardiovasc. Diabetol. 2020, 19, 205. [Google Scholar] [CrossRef]
- Yang, J.; Tian, C.; Chen, Y.; Zhu, C.; Chi, H.; Li, J. Obesity aggravates COVID-19: An updated systematic review and meta-analysis. J. Med. Virol. 2021, 93, 2662–2674. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Huang, Y.-M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.-L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef]
- Nogueira, P.J.; Nobre, M.D.A.; Nicola, P.J.; Furtado, C.; Carneiro, A.V. Excess Mortality Estimation During the COVID-19 Pandemic: Preliminary Data from Portugal. Acta. Med. Port. 2020, 33, 376–383. [Google Scholar] [CrossRef]
- Hajek, A.; Kretzler, B.; König, H.-H. Multimorbidity, Loneliness, and Social Isolation. A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8688. [Google Scholar] [CrossRef]
- Fernández-Niño, J.A.; Guerra-Gómez, J.A.; Idrovo, A.J. Multimorbidity patterns among COVID-19 deaths: Proposal for the construction of etiological models. Rev. Panam. Salud Pública 2020, 44, e166. [Google Scholar] [CrossRef]
- Zhang, C.H.; Schwartz, G.G. Spatial Disparities in Coronavirus Incidence and Mortality in the United States: An Ecological Analysis as of May 2020. J. Rural Health 2020, 36, 433–445. [Google Scholar] [CrossRef]
- Peixoto, V.R.; Vieira, A.; Aguiar, P.; Sousa, P.; Carvalho, C.; Thomas, D.; Abrantes, A.; Nunes, C. COVID-19: Determinants of Hospitalization, ICU and Death among 20,293 reported cases in Portugal. medRxiv 2020. [Google Scholar] [CrossRef]
- Bialek, S.; Bowen, V.; Chow, N.; Curns, A.; Gierke, R.; Hall, A.; Hughes, M.; Pilishvili, T.; Ritchey, M.; Roguski, K.; et al. Geographic Differences in COVID-19 Cases, Deaths, and Incidence—United States, February 12–April 7, 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Davies, N.G.; Jarvis, C.I.; Edmunds, W.J.; Jewell, N.P.; Diaz-Ordaz, K.; Keogh, R.H. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021, 593, 270–274. [Google Scholar] [CrossRef]
- Mieno, M.N.; Tanaka, N.; Arai, T.; Kawahara, T.; Kuchiba, A.; Ishikawa, S.; Sawabe, M. Accuracy of Death Certificates and Assessment of Factors for Misclassification of Underlying Cause of Death. J. Epidemiol. 2016, 26, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Nunes, A.M. Tecnologias de informação e comunicação no registro de óbitos em Portugal. J. Health Inform. 2017, 9, 137–141. [Google Scholar]
- Sousa Pinto, C.; Anderson, R.N.; Marques, C.; Maia, C.; Martins, H.; do Carmo Borralho, M. Improving the mortality information system in Portugal. Eurohealth 2016, 22, 48–51. [Google Scholar]
- Eisfeld, J. International Statistical Classification of Diseases and Related Health Problems. TSQ Transgender Stud. Q. 2014, 1, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Pinto, C.S.; Anderson, R.N.; Martins, H.; Marques, C.; Maia, C.; Borralho, M.D.C. Mortality Information System in Portugal: Transition to e-death certification. Eurohealth 2016, 22, 1–53. [Google Scholar] [PubMed]
- Brooks, E.G.; Reed, K.D. Principles and Pitfalls: A Guide to Death Certification. Clin. Med. Res. 2015, 13, 74–82. [Google Scholar] [CrossRef] [Green Version]
Total | Sex | Ratio Rates M/F | Ratio Deaths M/F | p 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Female | Male | |||||||||||
n | % | Rate /105 | n | % | Rate /105 | n | % | Rate /105 | ||||
Total | 6701 | 100.0 | 3199 | 47.5 | 3502 | 52.5 | 1.1 | 0.001 | ||||
Age Group | <0.001 | |||||||||||
0 to 9 years | 1 | 0.0 | 0.1 | 1 | 0.0 | 0.0 | 0 | - | 0.0 | 0.0 | - | |
10 to 19 years | 2 | 0.0 | 0.2 | 1 | 0.0 | 0.0 | 1 | 0.0 | 0.2 | 5.0 | 1.0 | |
20 to 29 years | 5 | 0.1 | 0.4 | 2 | 0.1 | 0.1 | 3 | 0.1 | 0.5 | 6.6 | 1.5 | |
30 to 39 years | 13 | 0.2 | 1.1 | 5 | 0.2 | 0.2 | 8 | 0.2 | 1.3 | 7.9 | 1.6 | |
40 to 49 years | 60 | 0.9 | 3.8 | 21 | 0.7 | 0.5 | 39 | 1.1 | 5.2 | 11.3 | 1.9 | |
50 to 59 years | 165 | 2.5 | 11.1 | 53 | 1.7 | 1.4 | 112 | 3.2 | 16.0 | 11.4 | 2.1 | |
60 to 69 years | 537 | 8.0 | 40.9 | 146 | 4.6 | 5.8 | 391 | 11.2 | 64.6 | 11.2 | 2.7 | |
70 to 79 years | 1372 | 20.5 | 137.2 | 515 | 16.1 | 24.2 | 857 | 24.5 | 197.3 | 8.1 | 1.7 | |
>80 years | 4532 | 67.6 | 664.9 | 2448 | 76.5 | 152.4 | 2084 | 59.5 | 849.2 | 5.6 | 0.9 | |
Unknown | 1 | 0.0 | 0.1 | 1 | 0.0 | 0.0 | 0 | - | 0.0 | 0.0 | - | |
Crude Mortality Rate | 65.5 | 58.8 | 72.1 | 1.2 | ||||||||
Age-Standardized Mortality Rate | 20.2 | 4.0 | 27.7 | 6.9 | ||||||||
District of Residence | 0.094 | |||||||||||
Aveiro | 439 | 6.6 | 64.6 | 193 | 6.0 | 54.0 | 246 | 7.0 | 68.8 | 1.3 | 1.3 | |
Beja | 60 | 0.9 | 42.9 | 34 | 1.1 | 47.2 | 26 | 0.7 | 36.1 | 0.8 | 0.8 | |
Braga | 652 | 9.7 | 78.9 | 329 | 10.3 | 76.0 | 323 | 9.2 | 74.6 | 1.0 | 1.0 | |
Bragança | 153 | 2.3 | 124.4 | 70 | 2.2 | 107.9 | 83 | 2.4 | 127.9 | 1.2 | 1.2 | |
Castelo Branco | 122 | 1.8 | 68.7 | 63 | 2.0 | 67.4 | 59 | 1.7 | 63.1 | 0.9 | 0.9 | |
Coimbra | 212 | 3.2 | 52.1 | 100 | 3.1 | 46.4 | 112 | 3.2 | 52.0 | 1.1 | 1.1 | |
Évora | 87 | 1.3 | 57.6 | 50 | 1.6 | 63.2 | 37 | 1.1 | 46.8 | 0.7 | 0.7 | |
Faro | 59 | 0.9 | 13.5 | 30 | 0.9 | 13.0 | 29 | 0.8 | 12.6 | 1.0 | 1.0 | |
Guarda | 123 | 1.8 | 86.1 | 70 | 2.2 | 92.3 | 53 | 1.5 | 69.9 | 0.8 | 0.8 | |
Leiria | 222 | 3.3 | 48.4 | 109 | 3.4 | 45.3 | 113 | 3.2 | 47.0 | 1.0 | 1.0 | |
Lisboa | 1451 | 21.7 | 63.1 | 674 | 21.1 | 55.1 | 777 | 22.2 | 63.6 | 1.2 | 1.2 | |
Portalegre | 66 | 1.0 | 64.0 | 35 | 1.1 | 64.4 | 31 | 0.9 | 57.0 | 0.9 | 0.9 | |
Porto | 1659 | 24.8 | 93.1 | 768 | 24.0 | 81.4 | 891 | 25.4 | 94.5 | 1.2 | 1.2 | |
Santarém | 250 | 3.7 | 58.2 | 120 | 3.8 | 53.0 | 130 | 3.7 | 57.5 | 1.1 | 1.1 | |
Setúbal | 480 | 7.2 | 56.3 | 230 | 7.2 | 51.2 | 250 | 7.1 | 55.6 | 1.1 | 1.1 | |
Viana do Castelo | 130 | 1.9 | 56.8 | 65 | 2.0 | 52.8 | 65 | 1.9 | 52.8 | 1.0 | 1.0 | |
Vila Real | 156 | 2.3 | 82.0 | 72 | 2.3 | 71.4 | 84 | 2.4 | 83.3 | 1.2 | 1.2 | |
Viseu | 205 | 3.1 | 57.9 | 97 | 3.0 | 52.0 | 108 | 3.1 | 57.8 | 1.1 | 1.1 | |
Madeira Island | 13 | 0.2 | 5.2 | 9 | 0.3 | 6.8 | 4 | 0.1 | 3.0 | 0.4 | 0.4 | |
Santa Maria Island | 17 | 0.3 | 12.4 | 14 | 0.4 | 19.8 | 3 | 0.1 | 112.7 | 5.7 | 0.2 | |
Terceira Island | 2 | 0.0 | 3.6 | 1 | 0.0 | 3.5 | 1 | 0.0 | 33.7 | 9.6 | 1.0 | |
Graciosa Island | 1 | 0.0 | 23.9 | 0 | - | 0.0 | 1 | 0.0 | 1.4 | - | - | |
Unknown | 142 | 2.1 | - | 66 | 2.1 | - | 76 | 2.2 | - | - | 1.2 | |
Health Region of Residence | 0.013 | |||||||||||
ARS Alentejo | 228 | 3.4 | 32.6 | 130 | 4.1 | 35.7 | 98 | 2.8 | 29.2 | 0.8 | 0.8 | |
ARS Algarve | 59 | 0.9 | 24.4 | 30 | 0.9 | 24.0 | 29 | 0.8 | 24.8 | 1.0 | 1.0 | |
ARS Centro | 964 | 14.4 | 43.2 | 468 | 14.6 | 39.9 | 496 | 14.2 | 47.0 | 1.2 | 1.1 | |
ARS LVT | 2236 | 33.4 | 77.9 | 1049 | 32.8 | 68.7 | 1187 | 33.9 | 88.5 | 1.3 | 1.1 | |
ARS Norte | 3039 | 45.4 | 85.2 | 1432 | 44.8 | 76.0 | 1607 | 45.9 | 95.5 | 1.3 | 1.1 | |
AR Açores | 20 | 0.3 | 7.9 | 15 | 0.5 | 11.1 | 5 | 0.1 | 4.2 | 0.4 | 0.3 | |
AR Madeira | 13 | 0.2 | 3.0 | 9 | 0.3 | 3.9 | 4 | 0.1 | 1.9 | 0.5 | 0.4 | |
Unknown | 142 | 2.1 | - | 66 | 2.1 | - | 76 | 2.2 | - | - | 1.2 | |
Location of Death | <0.001 | |||||||||||
Unknown | 41 | 0.6 | - | 27 | 0.8 | - | 14 | 0.4 | - | - | 0.5 | |
In a public health institution | 6083 | 90.8 | - | 2815 | 88.0 | - | 3268 | 93.3 | - | - | 1.2 | |
At home | 286 | 4.3 | - | 159 | 5.0 | - | 127 | 3.6 | - | - | 0.8 | |
Nursing home | 280 | 4.2 | 193 | 6.0 | 87 | 2.5 | 0.5 | |||||
Private health institution | 11 | 0.2 | - | 5 | 0.2 | - | 6 | 0.2 | - | - | 1.2 |
Conditions | Total | Male | Female | p 1 | <40 Years | 40–49 Years | 50–59 Years | 60–69 Years | 70–79 Years | 80+ Years | p 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Hypertension, uncomplicated | 30.00 | 31.01 | 29.07 | 0.147 | 4.76 | 13.33 | 18.79 | 28.86 | 31.85 | 30.32 | <0.001 |
Diabetes, uncomplicated | 16.83 | 17.35 | 16.36 | 0.325 | 4.76 | 15.00 | 19.39 | 20.11 | 22.23 | 14.81 | <0.001 |
Congestive heart failure | 14.48 | 16.85 | 12.31 | <0.001 | 9.52 | 3.33 | 9.70 | 9.68 | 12.83 | 15.91 | <0.001 |
Renal failure | 12.83 | 12.25 | 13.36 | 0.205 | 14.29 | 5.00 | 12.73 | 10.61 | 13.19 | 13.11 | <0.001 |
Cardiac arrhythmias | 10.63 | 10.57 | 10.68 | 0.886 | 4.76 | 3.33 | 7.88 | 7.45 | 9.69 | 11.52 | <0.001 |
Chronic pulmonary disease | 7.13 | 6.75 | 7.48 | 0.264 | 0.00 | 5.00 | 10.91 | 8.94 | 7.65 | 6.69 | <0.001 |
Solid tumor, without metastasis | 7.06 | 5.97 | 8.05 | 0.001 | 4.76 | 13.33 | 13.33 | 8.57 | 8.09 | 6.27 | <0.001 |
Obesity | 5.24 | 5.85 | 4.68 | 0.038 | 4.76 | 8.33 | 7.88 | 10.61 | 6.20 | 4.19 | <0.001 |
Other neurological disorders | 4.86 | 4.41 | 5.28 | 0.105 | 0.00 | 11.67 | 5.45 | 7.08 | 4.66 | 4.55 | <0.001 |
Fluid and electrolyte disorders | 3.84 | 4.00 | 3.68 | 0.507 | 0.00 | 5.00 | 2.42 | 3.54 | 3.28 | 4.10 | <0.001 |
Blood loss anemia | 0.03 | 0.03 | 0.03 | 0.949 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.323 |
Charlson Weighted Index | AHRQ Elixhauser Comorbidity Index | VW Elixhauser Comorbidity Index | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1–2 | 3–4 | ≥5 | p | <0 | 0 | 1–4 | ≥5 | p | <0 | 0 | 1–4 | ≥5 | p | |
Total | 40.2 | 42.0 | 13.6 | 4.1 | 15.4 | 42.9 | 7.4 | 34.2 | 4.1 | 49.7 | 9.5 | 36.7 | |||
Sex | |||||||||||||||
Female | 40.1 | 42.3 | 13.9 | 3.8 | 0.599 | 15.9 | 42.7 | 6.9 | 34.5 | 0.277 | 4.8 | 49.5 | 8.8 | 37 | 0.011 |
Male | 40.5 | 41.8 | 13.4 | 4.4 | 14.9 | 43.1 | 7.9 | 34 | 3.5 | 49.9 | 10.2 | 36.5 | |||
Age Group | |||||||||||||||
0 to 18 years | 100 | 0 | 0 | 0 | <0.001 | 0 | 100 | 0 | 0 | 0.103 | 0 | 100 | 0 | 0 | <0.001 |
19 to 49 years | 50 | 31.2 | 10 | 8.8 | 10 | 50 | 5 | 35 | 6.2 | 50 | 11.2 | 32.5 | |||
50 to 59 years | 39.4 | 40 | 13.9 | 6.7 | 13.3 | 38.8 | 9.7 | 38.2 | 4.8 | 43 | 13.3 | 38.8 | |||
60 to 69 years | 40 | 40.6 | 13.2 | 6.1 | 16.4 | 39.7 | 9.5 | 34.5 | 7.1 | 44.9 | 13.2 | 34.8 | |||
70 to 79 years | 37.7 | 43.1 | 13.5 | 5.8 | 16.8 | 41.5 | 8.5 | 33.2 | 4.2 | 49.3 | 11.7 | 34.8 | |||
80 to 106 years | 40.9 | 42.2 | 13.8 | 3.2 | 15 | 43.8 | 6.8 | 34.4 | 3.7 | 50.5 | 8.2 | 37.6 | |||
Health Region of Residence | |||||||||||||||
ARS Alentejo | 39 | 43.4 | 14 | 3.5 | 0.028 | 19.7 | 38.6 | 7.5 | 34.2 | <0.001 | 7 | 47.4 | 7 | 38.6 | <0.001 |
ARS Algarve | 30.5 | 44.1 | 16.9 | 8.5 | 20.3 | 35.6 | 3.4 | 40.7 | 3.4 | 47.5 | 10.2 | 39 | |||
ARS Centro | 39.7 | 43.4 | 13.2 | 3.7 | 14.6 | 43.4 | 7.5 | 34.5 | 2.2 | 50.4 | 8.4 | 39 | |||
ARS LVT | 37.2 | 42.4 | 15.1 | 5.3 | 15.8 | 38.2 | 7.7 | 38.2 | 3.9 | 45.8 | 10.4 | 39.9 | |||
ARS Norte | 42.6 | 41.4 | 12.7 | 3.3 | 14.9 | 46.4 | 7.4 | 31.3 | 4.7 | 52.2 | 9.4 | 33.7 | |||
AR Açores | 30 | 35 | 25 | 10 | 25 | 30 | 5 | 40 | 0 | 50 | 10 | 40 | |||
AR Madeira | 38.5 | 46.2 | 0 | 15.4 | 7.7 | 53.8 | 0 | 38.5 | 0 | 38.5 | 30.8 | 30.8 | |||
District of Residence | |||||||||||||||
Aveiro | 45.8 | 39.2 | 10.9 | 4.1 | <0.001 | 12.8 | 51.5 | 6.6 | 29.2 | <0.001 | 2.5 | 57.4 | 9.6 | 30.5 | <0.001 |
Beja | 40 | 48.3 | 11.7 | 0 | 26.7 | 30 | 11.7 | 31.7 | 11.7 | 40 | 11.7 | 36.7 | |||
Braga | 39.3 | 40.8 | 15.6 | 4.3 | 16 | 42.2 | 8.6 | 33.3 | 4.8 | 48.6 | 10.1 | 36.5 | |||
Bragança | 34 | 45.8 | 15 | 5.2 | 12.4 | 37.9 | 6.5 | 43.1 | 4.6 | 41.2 | 6.5 | 47.7 | |||
Castelo Branco | 41 | 47.5 | 9.8 | 1.6 | 18 | 45.1 | 6.6 | 30.3 | 4.9 | 54.9 | 5.7 | 34.4 | |||
Coimbra | 38.7 | 44.8 | 12.3 | 4.2 | 9.9 | 42.5 | 8 | 39.6 | 1.9 | 45.3 | 10.4 | 42.5 | |||
Évora | 43.7 | 41.4 | 12.6 | 2.3 | 17.2 | 43.7 | 5.7 | 33.3 | 4.6 | 55.2 | 4.6 | 35.6 | |||
Faro | 30.5 | 44.1 | 16.9 | 8.5 | 20.3 | 35.6 | 3.4 | 40.7 | 3.4 | 47.5 | 10.2 | 39 | |||
Guarda | 40.7 | 39.8 | 17.1 | 2.4 | 15.4 | 41.5 | 6.5 | 36.6 | 1.6 | 46.3 | 5.7 | 46.3 | |||
Leiria | 38.7 | 41.9 | 13.5 | 5.9 | 17.1 | 41 | 4.5 | 37.4 | 1.8 | 50 | 8.1 | 40.1 | |||
Lisboa | 36 | 42.5 | 15.4 | 6.1 | 15.4 | 37.6 | 6.9 | 40 | 3.9 | 45.3 | 10.3 | 40.5 | |||
Portalegre | 39.4 | 34.8 | 16.7 | 9.1 | 16.7 | 43.9 | 4.5 | 34.8 | 7.6 | 47 | 6.1 | 39.4 | |||
Porto | 44.1 | 41.7 | 11.8 | 2.5 | 15.7 | 46.8 | 7.9 | 29.5 | 5.2 | 53 | 10.4 | 31.3 | |||
Santarém | 39.2 | 39.6 | 16 | 5.2 | 14.8 | 40.4 | 6.8 | 38 | 3.2 | 46.8 | 8.8 | 41.2 | |||
Setúbal | 38.1 | 45.2 | 14.2 | 2.5 | 17.7 | 37.3 | 11.5 | 33.5 | 4.2 | 45.8 | 11.9 | 38.1 | |||
Viana do Castelo | 43.8 | 41.5 | 10.8 | 3.8 | 12.3 | 54.6 | 4.6 | 28.5 | 3.1 | 60.8 | 5.4 | 30.8 | |||
Vila Real | 37.8 | 42.9 | 16 | 3.2 | 13.5 | 47.4 | 3.8 | 35.3 | 4.5 | 50.6 | 3.2 | 41.7 | |||
Viseu | 40.5 | 43.9 | 12.7 | 2.9 | 14.1 | 43.9 | 9.8 | 32.2 | 1.5 | 50.7 | 7.3 | 40.5 | |||
Madeira Island | 38.5 | 46.2 | 0 | 15.4 | 7.7 | 53.8 | 0 | 38.5 | 0 | 38.5 | 30.8 | 30.8 | |||
Santa Maria Island | 29.4 | 29.4 | 29.4 | 11.8 | 23.5 | 23.5 | 5.9 | 47.1 | 0 | 41.2 | 11.8 | 47.1 | |||
Terceira Island | 50 | 50 | 0 | 0 | 50 | 50 | 0 | 0 | 0 | 100 | 0 | 0 | |||
Graciosa Island | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | |||
Place of Death | |||||||||||||||
Public heath institution | 39.8 | 42 | 13.9 | 4.3 | <0.001 | 15.5 | 42 | 7.5 | 35 | <0.001 | 4.3 | 48.7 | 9.5 | 37.5 | <0.001 |
At home | 57 | 30.8 | 9.8 | 2.4 | 12.2 | 57.7 | 4.2 | 25.9 | 2.1 | 63.3 | 8.7 | 25.9 | |||
Nursing home | 34.6 | 51.8 | 11.4 | 2.1 | 16.1 | 46.8 | 10 | 27.1 | 2.5 | 55 | 10.7 | 31.8 | |||
Private health institution | 18.2 | 63.6 | 18.2 | 0 | 27.3 | 27.3 | 9.1 | 36.4 | 9.1 | 45.5 | 9.1 | 36.4 | |||
Unknown | 46.3 | 46.3 | 7.3 | 0 | 17.1 | 53.7 | 4.9 | 24.4 | 4.9 | 56.1 | 2.4 | 36.6 | |||
Time Periods | |||||||||||||||
T1 | 42.7 | 40 | 13.8 | 3.5 | 0.017 | 14 | 47 | 6.4 | 32.6 | 0.004 | 3.5 | 52.5 | 9.2 | 34.8 | 0.326 |
T2 | 34.1 | 46.6 | 11.7 | 7.6 | 18.6 | 35.2 | 5.3 | 40.9 | 4.9 | 46.2 | 9.8 | 39 | |||
T3 | 40 | 42.3 | 13.7 | 4 | 15.6 | 42.4 | 7.8 | 34.2 | 4.2 | 49.2 | 9.5 | 37.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, P.J.; de Araújo Nobre, M.; Elias, C.; Feteira-Santos, R.; Martinho, A.C.-V.; Camarinha, C.; Bacelar-Nicolau, L.; Costa, A.S.; Furtado, C.; Morais, L.; et al. Multimorbidity Profile of COVID-19 Deaths in Portugal during 2020. J. Clin. Med. 2022, 11, 1898. https://doi.org/10.3390/jcm11071898
Nogueira PJ, de Araújo Nobre M, Elias C, Feteira-Santos R, Martinho AC-V, Camarinha C, Bacelar-Nicolau L, Costa AS, Furtado C, Morais L, et al. Multimorbidity Profile of COVID-19 Deaths in Portugal during 2020. Journal of Clinical Medicine. 2022; 11(7):1898. https://doi.org/10.3390/jcm11071898
Chicago/Turabian StyleNogueira, Paulo Jorge, Miguel de Araújo Nobre, Cecília Elias, Rodrigo Feteira-Santos, António C.-V. Martinho, Catarina Camarinha, Leonor Bacelar-Nicolau, Andreia Silva Costa, Cristina Furtado, Liliane Morais, and et al. 2022. "Multimorbidity Profile of COVID-19 Deaths in Portugal during 2020" Journal of Clinical Medicine 11, no. 7: 1898. https://doi.org/10.3390/jcm11071898
APA StyleNogueira, P. J., de Araújo Nobre, M., Elias, C., Feteira-Santos, R., Martinho, A. C. -V., Camarinha, C., Bacelar-Nicolau, L., Costa, A. S., Furtado, C., Morais, L., Rachadell, J., Pinto, M. P., Pinto, F., & Vaz Carneiro, A. (2022). Multimorbidity Profile of COVID-19 Deaths in Portugal during 2020. Journal of Clinical Medicine, 11(7), 1898. https://doi.org/10.3390/jcm11071898