The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex
Abstract
:1. Introduction
2. LD Terminology, Speech Task Specificity, and Clinical Assessment
3. LD Risk Factors
3.1. Genetic Risk Factors
3.2. Extrinsic Risk Factors
4. Patho- Neurophysiology of LD
4.1. Neural Structures and Function
4.2. Knowledge of the Neurophysiological Basis of LD
5. Focal LD Treatment Options
5.1. Standard Treatment with Botulinum Toxin (BoNT)
5.2. The Long Term Effects of BoNT
5.3. Review of the Literature on BoNT and Deep Brain Stimulation (DBS) Treatment
5.4. Pharmacological Treatment Possibilities and Effectiveness in Dystonia Treatment
5.5. Future Neuromodulation Treatment Options and Vibrotactile Stimulation
6. Case Reports of LD Patients
6.1. Patient with adLD
6.1.1. Clinical Findings
6.1.2. Evaluation of Corticobulbar and Corticospinal Excitability with Transcranial Magnetic Stimulation (TMS)
6.1.3. Electroneuronographic (ENG) Assessment of Motor and Sensory Nerves of Upper and Lower Extremity Muscles
6.1.4. Blood—DNA Analysis
6.1.5. Pharmacological Treatment Attempts
6.1.6. Patient with adLD Conclusion
6.2. Patient with abLD
6.2.1. Clinical Findings
6.2.2. Evaluation of Corticobulbar and Corticospinal Excitability with Transcranial Magnetic Stimulation (TMS)
6.2.3. Patient with adLD Conclusion
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amassian, V.E.; Anziska, B.J.; Cracco, J.B.; Cracco, R.Q.; Maccabee, P.J. Focal magnetic excitation of frontal cortex activates laryngeal muscles in man. J. Physiol. 1988, 398, 41. [Google Scholar]
- Ertekin, C.; Turman, B.; Tarlacı, S.; Celik, M.; Aydogdu, I.; Secil, Y.; Kiylioglu, N. Cricopharyngeal sphincter muscle responses to transcranial magnetic stimulation in normal subjects and in patients with dysphagia. Clin. Neurophysiol. 2000, 112, 86–94. [Google Scholar] [CrossRef]
- Rödel, R.M.; Olthoff, A.; Tergau, F.; Simonyan, K.; Kraemer, D.; Markus, H.; Kruse, E. Human Cortical Motor Representation of the Larynx as Assessed by Transcranial Magnetic Stimulation (TMS). Laryngoscope 2004, 114, 918–922. [Google Scholar] [CrossRef] [Green Version]
- Espadaler, J.; Rogić, M.; Deletis, V.; Leon, A.; Quijada, C.; Conesa, G. Representation of cricothyroid muscles at the primary motor cortex (M1) in healthy subjects, mapped by navigated transcranial magnetic stimulation (nTMS). Clin. Neurophysiol. 2012, 123, 2205–2211. [Google Scholar] [CrossRef]
- Deletis, V.; Rogić, M.; Fernández-Conejero, I.; Gabarrós, A.; Jerončić, A. Neurophysiologic markers in laryngeal muscles indicate functional anatomy of laryngeal primary motor cortex and premotor cortex in the caudal opercular part of inferior frontal gyrus. Clin. Neurophysiol. 2014, 125, 1912–1922. [Google Scholar] [CrossRef]
- Vidaković, M.R.; Schönwald, M.Z.; Rotim, K.; Jurić, T.; Vulević, Z.; Tafra, R.; Banožić, A.; Hamata, Ž.; Đogaš, Z. Excitability of contralateral and ipsilateral projections of corticobulbar pathways recorded as corticobulbar motor evoked potentials of the cricothyroid muscles. Clin. Neurophysiol. 2015, 126, 1570–1577. [Google Scholar] [CrossRef]
- Deletis, V.; Fernandez-Conejero, I.; Ulkatan, S.; Costantino, P. Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clin. Neurophysiol. 2009, 120, 336–341. [Google Scholar] [CrossRef]
- Chen, M.; Summers, R.; Goding, G.S.; Samargia, S.; Ludlow, C.L.; Prudente, C.N.; Kimberley, T.J. Evaluation of the Cortical Silent Period of the Laryngeal Motor Cortex in Healthy Individuals. Front. Neurosci. 2017, 11, 88. [Google Scholar] [CrossRef]
- Paulus, W.; Classen, J.; Cohen, L.G.; Large, C.H.; Di Lazzaro, V.; Nitsche, M.; Pascual-Leone, A.; Rosenow, F.; Rothwell, J.; Ziemann, U. State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul. 2008, 1, 151–163. [Google Scholar] [CrossRef]
- Wolters, A.; Ziemann, U.; Benecke, R. The cortical silent period. In Oxford Handbook of Transcranial Stimulation; Epstein, C.M., Wassermann, E.M., Ziemann, U., Eds.; Oxford University Press: New York, NY, USA, 2008; pp. 1–23. [Google Scholar]
- Chen, M.; Summers, R.L.; Prudente, C.N.; Goding, G.S.; Samargia-Grivette, S.; Ludlow, C.L.; Kimberley, T.J. Transcranial magnetic stimulation and functional magnet resonance imaging evaluation of adductor spasmodic dysphonia during phonation. Brain Stimul. 2020, 13, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Whurr, R.; Lorch, M. Review of differential diagnosis and management of spasmodic dysphonia. Curr. Opin. Otolaryngol. Head Neck Surg. 2016, 24, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonyan, K.; Barkmeier-Kraemer, J.; Blitzer, A.; Hallett, M.; Houde, J.F.; Kimberley, T.J.; Ozelius, L.J.; Pitman, M.J.; Richardson, R.M.; Sharma, N.; et al. Laryngeal Dystonia. Neurology 2021, 96, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Blitzer, A.; Brin, M.F.; Simonyan, K.; Ozelius, L.J.; Frucht, S. Phenomenology, genetics, and CNS network abnormalities in laryngeal dystonia: A 30-year experience. Laryngoscope 2017, 128, S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Guiry, S.; Worthley, A.; Simonyan, K. A separation of innate and learned vocal behaviors defines the symptomatology of spasmodic dysphonia. Laryngoscope 2018, 129, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Medical treatment of dystonia. Mov. Disord. 2013, 28, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Blitzer, A.; Brin, M.F.; Stewart, C.F. Botulinum toxin management of spasmodic dysphonia (laryngeal dystonia): A 12-year experience in more than 900 patients. Laryngoscope 2015, 125, 1751–1757. [Google Scholar] [CrossRef]
- Termsarasab, P.; Thammongkolchai, T.; Frucht, S.J. Medical treatment of dystonia. J. Clin. Mov. Disord. 2016, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Jinnah, H. Medical and Surgical Treatments for Dystonia. Neurol. Clin. 2020, 38, 325–348. [Google Scholar] [CrossRef]
- Domingo, A.; Yadav, R.; Ozelius, L.J. Isolated dystonia: Clinical and genetic updates. J. Neural Transm. 2020, 128, 405–416. [Google Scholar] [CrossRef]
- Lange, L.M.; Junker, J.; Loens, S.; Baumann, H.; Olschewski, L.; Schaake, S.; Madoev, H.; Petkovic, S.; Kuhnke, N.; Kasten, M.; et al. Genotype–Phenotype Relations for Isolated Dystonia Genes: MDSGene Systematic Review. Mov. Disord. 2021, 36, 1086–1103. [Google Scholar] [CrossRef]
- Xiao, J.; Bastian, R.W.; Perlmutter, J.S.; Racette, B.A.; Tabbal, S.D.; Karimi, M.; Paniello, R.C.; Blitzer, A.; Batish, S.D.; Wszolek, Z.K.; et al. High-throughput mutational analysis of TOR1A in primary dystonia. BMC Med. Genet. 2009, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcox, R.A.; Winkler, S.; Lohmann, K.; Klein, C. Whispering dysphonia in an Australian family (DYT4): A clinical and genetic reappraisal. Mov. Disord. 2011, 26, 2404–2408. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, K.; Wilcox, R.A.; Winkler, S.; Ramirez, A.; Rakovic, A.; Park, J.S.; Arns, B.; Lohnau, T.; Groen, J.; Kasten, M.; et al. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann. Neurol. 2013, 73, 537–545.17. [Google Scholar] [CrossRef]
- Djarmati, A.; Schneider, S.A.; Lohmann, K.; Winkler, S.; Pawlack, H.; Hagenah, J.; Brüggemann, N.; Zittel, S.; Fuchs, T.; Raković, A.; et al. Mutations in THAP1 (DYT6) and generalised dystonia with prominent spasmodic dysphonia: A genetic screening study. Lancet. Neurol. 2009, 8, 447–452. [Google Scholar] [CrossRef]
- Xiao, J.; Zhao, Y.; Bastian, R.W.; Perlmutter, J.S.; Racette, B.A.; Tabbal, S.D.; Karimi, M.; Paniello, R.C.; Wszolek, Z.K.; Uitti, R.J.; et al. Novel THAP1 sequence variants in primary dystonia. Neurology 2010, 74, 229–238. [Google Scholar] [CrossRef]
- Groen, J.L.; Yildirim, E.; Ritz, K.; Baas, F.; van Hilten, J.J.; van der Meulen, F.W.; Langeveld, T.P.; Tijssen, M.A. THAP1 mutations are infrequent in spasmodic dysphonia. Mov. Disord. 2011, 26, 1952–1954. [Google Scholar] [CrossRef]
- Groen, J.L.; Kallen, M.C.; van de Warrenburg, B.P.; Speelman, J.D.; van Hilten, J.J.; Aramideh, M.; Boon, A.J.; Klein, C.; Koel-man, J.H.; Langeveld, T.P.; et al. Phenotypes and genetic architecture of focal primary torsion dystonia. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1006–1011. [Google Scholar] [CrossRef]
- LeDoux, M.S.; Xiao, J.; Rudzińska, M.; Bastian, R.W.; Wszolek, Z.K.; Van Gerpen, J.A.; Puschmann, A.; Momčilović, D.; Vemula, S.R.; Zhao, Y. Genotype-phenotype correlations in THAP1 dystonia: Molecular foundations and description of new cases. Parkinsonism Relat. Disord. 2012, 18, 414–425. [Google Scholar] [CrossRef] [Green Version]
- de Gusmão, C.M.; Fuchs, T.; Moses, A.; Multhaupt-Buell, T.; Song, P.C.; Ozelius, L.J.; Franco, R.A.; Sharma, N. Dystonia-Causing Mutations as a Contribution to the Etiology of Spasmodic Dysphonia. Otolaryngol. Head Neck Surg. 2016, 155, 624–628. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.R.; Davis, R.L.; Tchan, M.C.; Wali, G.M.; Mahant, N.; Ng, K.; Kotschet, K.; Siow, S.F.; Gu, J.; Walls, Z.; et al. Whole genome sequencing for the genetic diagnosis of heterogenous dystonia phenotypes. Parkinsonism Relat. Disord. 2019, 69, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Gultekin, M.; Prakash, N.; Ganos, C.; Mirza, M.; Bayramov, R.; Bhatia, K.P.; Mencacci, N.E. A Novel SGCE Nonsense Variant Associated With Marked Intrafamilial Variability in a Turkish Family With Myoclonus-Dystonia. Mov. Disord. Clin. Pract. 2019, 6, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Camargos, S.; Scholz, S.; Simón-Sánchez, J.; Paisán-Ruiz, C.; Lewis, P.; Hernandez, D.; Ding, J.; Gibbs, J.R.; Cookson, M.R.; Bras, J.; et al. DYT16, a novel young-onset dysto-nia-parkinsonism disorder: Identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurol. 2008, 7, 207–215. [Google Scholar] [CrossRef]
- Camargos, S.; Lees, A.J.; Singleton, A.; Cardoso, F. DYT16: The original cases. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Zech, M.; Castrop, F.; Schormair, B.; Jochim, A.; Wieland, T.; Gross, N.; Lichtner, P.; Peters, A.; Gieger, C.; Meitinger, T.; et al. DYT16 revisited: Exome sequencing identifies PRKRA mutations in a European dystonia family. Mov. Disord. 2014, 29, 1504–1510. [Google Scholar] [CrossRef]
- Quadri, M.; Olgiati, S.; Sensi, M.; Gualandi, F.; Groppo, E.; Rispoli, V.; Graafland, J.; Breedveld, G.J.; Fabbrini, G.; Berardelli, A.; et al. PRKRA Mutation Causing Early-Onset Generalized Dystonia-Parkinsonism (DYT16) in an Italian Family. Mov. Disord. 2016, 31, 765–767. [Google Scholar] [CrossRef]
- Charlesworth, G.; Plagnol, V.; Holmström, K.M.; Bras, J.; Sheerin, U.M.; Preza, E.; Rubio-Agusti, I.; Ryten, M.; Schneider, S.A.; Stamelou, M.; et al. Mutations in ANO3 cause dominant craniocervical dystonia: Ion channel implicated in pathogenesis. Am. J. Hum. Genet. 2012, 91, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Stamelou, M.; Charlesworth, G.; Cordivari, C.; Schneider, S.A.; Kägi, G.; Sheerin, U.M.; Rubio-Agusti, I.; Batla, A.; Houlden, H.; Wood, N.W.; et al. The phenotypic spectrum of DYT24 due to ANO3 mutations. Mov. Disord. 2014, 29, 928–934. [Google Scholar] [CrossRef]
- Putzel, G.G.; Fuchs, T.; Battistella, G.; Rubien-Thomas, E.; Frucht, S.J.; Blitzer, A.; Ozelius, L.J.; Simonyan, K. GNAL mutation in isolated laryngeal dystonia. Mov. Disord. 2016, 31, 750–755. [Google Scholar] [CrossRef] [Green Version]
- Zech, M.; Lam, D.D.; Francescatto, L.; Schormair, B.; Salminen, A.V.; Jochim, A.; Wieland, T.; Lichtner, P.; Peters, A.; Gieger, C.; et al. Recessive mutations in the α3 (VI) collagen gene COL6A3 cause early-onset isolated dystonia. Am. J. Hum. Genet. 2015, 96, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.; Carss, K.J.; Rankin, J.; Nichols, J.M.; Grozeva, D.; Joseph, A.P.; Mencacci, N.E.; Papandreou, A.; Ng, J.; Barral, S.; et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat. Genet. 2017, 49, 223–237. [Google Scholar] [CrossRef]
- Brás, A.; Ribeiro, J.A.; Sobral, F.; Moreira, F.; Morgadinho, A.; Januário, C. Early-onset oromandibular-laryngeal dys-tonia and Charlot gait: New phenotype of DYT-KMT2B. Neurology 2019, 92, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carecchio, M.; Invernizzi, F.; Gonzàlez-Latapi, P.; Panteghini, C.; Zorzi, G.; Romito, L.; Leuzzi, V.; Galosi, S.; Reale, C.; Zibordi, F.; et al. Frequency and phenotypic spectrum of KMT2B dystonia in childhood: A single-center cohort study. Mov. Disord. 2019, 34, 1516–1527. [Google Scholar] [CrossRef] [PubMed]
- Cif, L.; Demailly, D.; Lin, J.P.; Barwick, K.E.; Sa, M.; Abela, L.; Malhotra, S.; Chong, W.K.; Steel, D.; Sanchis-Juan, A.; et al. KMT2B-related disorders: Expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain 2020, 143, 3242–3261. [Google Scholar] [CrossRef] [PubMed]
- Xavier, L.D.L.; Simonyan, K. The extrinsic risk and its association with neural alterations in spasmodic dysphonia. Park. Relat. Disord. 2019, 65, 117–123. [Google Scholar] [CrossRef]
- Walter, U.; Blitzer, A.; Benecke, R.; Grossmann, A.; Dressler, D. Sonographic detection of basal ganglia abnormalities in spasmodic dysphonia. Eur. J. Neurol. 2013, 21, 349–352. [Google Scholar] [CrossRef]
- Borujeni, M.J.S.; Esfandiary, E.; Almasi-Dooghaee, M. Childhood Laryngeal Dystonia Following Bilateral Globus Pallidus Abnormality: A Case Study and Review of Literature. Iran. J. Otorhinolaryngol. 2017, 29, 47–52. [Google Scholar]
- Kiyuna, A.; Kise, N.; Hiratsuka, M.; Kondo, S.; Uehara, T.; Maeda, H.; Ganaha, A.; Suzuki, M. Brain Activity in Patients With Adductor Spasmodic Dysphonia Detected by Functional Magnetic Resonance Imaging. J. Voice 2017, 31, 379. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Berman, B.; Herscovitch, P.; Hallett, M. Abnormal Striatal Dopaminergic Neurotransmission during Rest and Task Production in Spasmodic Dysphonia. J. Neurosci. 2013, 33, 14705–14714. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Ludlow, C.L. Abnormal Activation of the Primary Somatosensory Cortex in Spasmodic Dysphonia: An fMRI Study. Cereb. Cortex 2010, 20, 2749–2759. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Tovar-Moll, F.; Ostuni, J.; Hallett, M.; Kalasinsky, V.F.; Lewin-Smith, M.R.; Rushing, E.J.; Vortmeyer, A.O.; Ludlow, C.L. Focal white matter changes in spasmodic dysphonia: A combined diffusion tensor imaging and neuropathological study. Brain 2007, 131, 447–459. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, Y.; Kishimoto, Y.; Tateya, I.; Ishii, T.; Sanuki, T.; Hiroshiba, S.; Aso, T.; Omori, K.; Nakamura, K. Hyperactive sensorimotor cortex during voice perception in spasmodic dysphonia. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haslinger, B.; Erhard, P.; Dresel, C.; Castrop, F.; Roettinger, M.; Ceballos-Baumann, A.O. “Silent event-related” fMRI reveals reduced sensorimotor activation in laryngeal dystonia. Neurology 2005, 65, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.O.; Thomassen, M.; Schulz, G.M.; Hosey, L.A.; Varga, M.; Ludlow, C.L.; Braun, A.R. Alterations in CNS Activity Induced by Botulinum Toxin Treatment in Spasmodic Dysphonia: An H 2 15 O PET Study. J. Speech Lang. Hear. Res. 2006, 49, 1127–1146. [Google Scholar] [CrossRef]
- Kostic, V.S.; Agosta, F.; Sarro, L.; Tomić, A.; Kresojević, N.; Galantucci, S.; Svetel, M.; Valsasina, P.; Filippi, M. Brain structural changes in spasmodic dysphonia: A multimodal magnetic resonance imaging study. Park. Relat. Disord. 2016, 25, 78–84. [Google Scholar] [CrossRef]
- Kirke, D.N.; Battistella, G.; Kumar, V.; Rubien-Thomas, E.; Choy, M.; Rumbach, A.; Simonyan, K. Neural correlates of dystonic tremor: A multimodal study of voice tremor in spasmodic dysphonia. Brain Imaging Behav. 2016, 11, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Khosravani, S.; Mahnan, A.; Yeh, I.-L.; Aman, J.E.; Watson, P.J.; Zhang, Y.; Goding, G.; Konczak, J. Laryngeal vibration as a non-invasive neuromodulation therapy for spasmodic dysphonia. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Bianchi, S.; Fuertinger, S.; Ba, H.H.; Frucht, S.J.; Simonyan, K. Functional and structural neural bases of task specificity in isolated focal dystonia. Mov. Disord. 2019, 34, 555–563. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Pilato, F.; Dileone, M.; Profice, P.; Ranieri, F.; Ricci, V.; Bria, P.; Tonali, P.; Ziemann, U. Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: A TMS study. Clin. Neurophysiol. 2007, 118, 2207–2214. [Google Scholar] [CrossRef]
- Turco, C.V.; El-Sayes, J.; Locke, M.B.; Chen, R.; Baker, S.; Nelson, A.J. Effects of lorazepam and baclofen on short- and long-latency afferent inhibition. J. Physiol. 2018, 596, 5267–5280. [Google Scholar] [CrossRef]
- Turco, C.V.; El-Sayes, J.; Savoie, M.J.; Fassett, H.J.; Locke, M.B.; Nelson, A.J. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul. 2018, 11, 59–74. [Google Scholar] [CrossRef]
- Richardson, S.P.; Bliem, B.; Lomarev, M.; Shamim, E.; Dang, N.; Hallett, M. Changes in short afferent inhibition during phasic movement in focal dystonia. Muscle Nerve 2007, 37, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Simonetta-Moreau, M.; Lourenço, G.; Sangla, S.; Mazières, L.; Vidailhet, M.; Meunier, S. Lack of inhibitory interaction between somatosensory afferent inputs and intracortical inhibitory interneurons in focal hand dystonia. Mov. Disord. 2006, 21, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Zittel, S.; Helmich, R.C.; Demiralay, C.; Münchau, A.; Bäumer, T. Normalization of sensorimotor integration by repetitive transcranial magnetic stimulation in cervical dystonia. J. Neurol. 2015, 262, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- McCambridge, A.B.; Bradnam, L.V. Cortical neurophysiology of primary isolated dystonia and non-dystonic adults: A meta-analysis. Eur. J. Neurosci. 2020, 53, 1300–1323. [Google Scholar] [CrossRef]
- Aoki, K.R. Pharmacology and Immunology of Botulinum Neurotoxins. Int. Ophthalmol. Clin. 2005, 45, 25–37. [Google Scholar] [CrossRef]
- Blitzer, A.; Brin, M.F.; Stewart, C.F. Botulinum toxin management of spasmodic dysphonia (laryngeal dystonia): A 12-year experience in more than 900 patients. Laryngoscope 1998, 108, 1435–1441. [Google Scholar] [CrossRef]
- Meyer, T.K.; Blitzer, A.B. Spasmodic Dysphonia. In Handbook of Dystonia; Stacy, M.A., Ed.; Informa Healthcare USA Inc.: New York, NY, USA, 2007; pp. 179–188. [Google Scholar]
- Meyer, T.K. The treatment of laryngeal dystonia (spasmodic dysphonia) with botulinum toxin injections. Oper. Tech. Otolaryngol. Neck Surg. 2012, 23, 96–101. [Google Scholar] [CrossRef]
- Sulica, L.; Blitzer, A. Botulinum toxin treatment of upper esophageal sphincter hyperfunction. Oper. Tech. Otolaryngol. Neck Surg. 2004, 15, 107–109. [Google Scholar] [CrossRef]
- Naumann, M.; Jankovic, J. Safety of botulinum toxin type A: A systematic review and meta-analysis. Curr. Med. Res. Opin. 2004, 20, 981–990. [Google Scholar] [CrossRef]
- Mejia, N.I.; Vuong, K.D.; Jankovic, J. Long-term botulinum toxin efficacy, safety, and immunogenicity. Mov. Disord. 2005, 20, 592–597. [Google Scholar] [CrossRef]
- Currà, A.; Berardelli, A. Do the unintended actions of botulinum toxin at distant sites have clinical implications? Neurology 2009, 72, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Bomba-Warczak, E.; Vevea, J.D.; Brittain, J.M.; Figueroa-Bernier, A.; Tepp, W.H.; Johnson, E.A.; Yeh, F.L.; Chapman, E.R. Interneuronal Transfer and Distal Action of Tetanus Toxin and Botulinum Neurotoxins A and D in Central Neurons. Cell Rep. 2016, 16, 1974–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, B.J.; Ludlow, C.L. Long-Term Effects of Botulinum Toxin Injections in Spasmodic Dysphonia. Ann. Otol. Rhinol. Laryngol. 1996, 105, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Witmanowski, H.; Błochowiak, K. The whole truth about botulinum toxin—A review. Adv. Dermatol. Allergol. 2020, 37, 853–861. [Google Scholar] [CrossRef]
- Santos, V.J.B.; Mattioli, F.M.; Mattioli, W.M.; Daniel, R.J.; Cruz, V.P.M. Laryngeal dystonia: Case report and treatment with botulinum toxin. Braz. J. Otorhinolaryngol. 2006, 72, 425–427. [Google Scholar] [CrossRef] [Green Version]
- Evidente, V.G.H.; Ponce, F.A.; Evidente, M.H.; Lambert, M.; Garrett, R.; Sugumaran, M.; Lott, D.G. Adductor Spasmodic Dysphonia Improves with Bilateral Thalamic Deep Brain Stimulation: Report of 3 Cases Done Asleep and Review of Literature. Tremor Other Hyperkinetic Mov. 2020, 10. [Google Scholar] [CrossRef]
- Krüger, M.T.; Hu, A.; Honey, C.R. Deep Brain Stimulation for Spasmodic Dysphonia: A Blinded Comparison of Unilateral and Bilateral Stimulation in Two Patients. Ster. Funct. Neurosurg. 2020, 98, 200–205. [Google Scholar] [CrossRef]
- Poologaindran, A.; Ivanishvili, Z.; Morrison, M.D.; Rammage, L.A.; Sandhu, M.K.; Polyhronopoulos, N.E.; Honey, C.R. The effect of unilateral thalamic deep brain stimulation on the vocal dysfunction in a patient with spasmodic dysphonia: Interrogating cerebellar and pallidal neural circuits. J. Neurosurg. 2018, 128, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.F.; Sinclair, C.F.; Kling, I.F.; Diamond, B.E.; Blitzer, A. Adductor focal laryngeal Dystonia: Correlation between clinicians’ ratings and subjects’ perception of Dysphonia. J. Clin. Mov. Disord. 2017, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Fulmer, S.L.; Merati, A.L.; Blumin, J.H. Efficacy of laryngeal botulinum toxin injection: Comparison of two techniques. Laryngoscope 2011, 121, 1924–1928. [Google Scholar] [CrossRef] [Green Version]
- Risch, V.; Staiger, A.; Ziegler, W.; Ott, K.; Schölderle, T.; Pelykh, O.; Bötzel, K. How Does GPi-DBS Affect Speech in Primary Dystonia? Brain Stimul. 2015, 8, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Reese, R.; Gruber, D.; Schoenecker, T.; Bäzner, H.; Blahak, C.; Capelle, H.H.; Falk, D.; Herzog, J.; Pinsker, M.O.; Schneider, G.H.; et al. Long-term clinical outcome in meige syndrome treated with internal pallidum deep brain stimulation. Mov. Disord. 2011, 26, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Limotai, N.; Go, C.; Oyama, G.; Hwynn, N.; Zesiewicz, T.; Foote, K.; Bhidayasiri, R.; Malaty, I.; Zeilman, P.; Rodríguez, R.; et al. Mixed results for GPi-DBS in the treatment of cranio-facial and cranio-cervical dystonia symptoms. J. Neurol. 2011, 258, 2069–2074. [Google Scholar] [CrossRef] [PubMed]
- Tisch, S.; Kumar, K.R. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front. Neurol. 2021, 11, 630391. [Google Scholar] [CrossRef]
- Barrett, M.J.; Bressman, S. Genetics and Pharmacological Treatment of Dystonia. Int. Rev. Neurobiol. 2011, 98, 525–549. [Google Scholar] [CrossRef]
- Sy, M.A.C.; Fernandez, H.H. Dystonia and leveraging oral pharmacotherapy. J. Neural Transm. 2021, 128, 521–529. [Google Scholar] [CrossRef]
- Lizarraga, K.J.; Al-Shorafat, D.; Fox, S. Update on current and emerging therapies for dystonia. Neurodegener. Dis. Manag. 2019, 9, 135–147. [Google Scholar] [CrossRef]
- Simonyan, K.; Frucht, S.; Blitzer, A.; Sichani, A.H.; Rumbach, A.F. A novel therapeutic agent, sodium oxybate, improves dystonic symptoms via reduced network-wide activity. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Avidan, A.Y.; Kushida, C.A. The sodium in sodium oxybate: Is there cause for concern? Sleep Med. 2020, 75, 497–501. [Google Scholar] [CrossRef]
- Escobar, A.M.; Martino, D.; Goodarzi, Z. The prevalence of anxiety in adult-onset isolated dystonia: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 4238–4250. [Google Scholar] [CrossRef]
- Prudente, C.N.; Chen, M.; Stipancic, K.L.; Marks, K.L.; Samargia-Grivette, S.; Goding, G.S.; Green, J.R.; Kimberley, T.J. Effects of low-frequency repetitive transcranial magnetic stimulation in adductor laryngeal dystonia: A safety, feasibility, and pilot study. Exp. Brain Res. 2021, 240, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef] [PubMed]
- Soda, J.; Vidakovic, M.R.; Lorincz, J.; Jerkovic, A.; Vujovic, I. A Novel Latency Estimation Algorithm of Motor Evoked Potential Signals. IEEE Access 2020, 8, 193356–193374. [Google Scholar] [CrossRef]
- Deletis, V.; Fernández-Conejero, I.; Ulkatan, S.; Rogić, M.; Carbó, E.L.; Hiltzik, D. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin. Neurophysiol. 2011, 122, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.P.; Wegele, A.R.; Skipper, B.; Deligtisch, A.; Jinnah, H.; Dystonia Coalition Investigators. Dystonia treatment: Patterns of medication use in an international cohort. Neurology 2017, 88, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Creighton, F.X.; Hapner, E.; Klein, A.; Rosen, A.; Jinnah, H.A.; Johns, M.M. Diagnostic Delays in Spasmodic Dysphonia: A Call for Clinician Education. J. Voice 2015, 29, 592–594. [Google Scholar] [CrossRef] [Green Version]
- Macerollo, A.; Superbo, M.; Gigante, A.; Livrea, P.; Defazio, G. Diagnostic delay in adult-onset dystonia: Data from an Italian movement disorder center. J. Clin. Neurosci. 2015, 22, 608–610. [Google Scholar] [CrossRef]
Literature | No Subjects | Age | Sex (M/F) | Laryngeal Dystonia (Adductor/Abductor) | Clinical Presentation | Medical Treatment | Medical Treatment Outcome |
---|---|---|---|---|---|---|---|
Santos et al. [77] | 1 | 61 | F | Adductor | Tense voice, vocal tiredness, breathy voice, laryngeal pain, loss of voice extension, lack of frequency control | 5U of type A Botulin Toxin (Botox) in the left thyroarytenoid muscle | Increased respiratory capacity and maximum speech time |
Evidente et al. [78] | 3 | 74 71 65 | F F M | Adductor | Essential hand tremor with laryngeal dystonia | Bilateral ventralis intermedius (VIM) DBS | Could easily phonate with no vocal tremor, improvement of USDRS scores post-DBS compared to pre-DBS, and with stimulator on compared to stimulator off |
Krüger et al. [79] | 2 | 85 73 | F | Adductor | Essential limb tremor with laryngeal dystonia | Bilateral ventrointermediate (VIM) nucleus DBS of the thalamus | Unanticipated improvement of their SD symptom; powerful unilateral benefit in both patients; hand dominant related probably |
Poologaindran et al. [80] | 1 | 79 | F | Adductor | Right upper limb tremor with laryngeal dystonia | Left ventral intermediate (VIM) nucleus of the thalamus | Significantly improved SD vocal dysfunction compared with no stimulation (DBS off), as measured by the USDRS and VRQOL |
Stewart et al. [81] | 60 | 6078 | 42 F 18 M | Adductor | Roughness, strain-strangled voice quality, and increased expiratory effort | BoNT | Subjects reported benefit from BoNT injections, and had self-selected to return for continuing BoNT management of their voice symptoms when the benefits of the BoNT injections had diminished |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogić Vidaković, M.; Gunjača, I.; Bukić, J.; Košta, V.; Šoda, J.; Konstantinović, I.; Bošković, B.; Bilić, I.; Režić Mužinić, N. The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex. J. Clin. Med. 2022, 11, 3453. https://doi.org/10.3390/jcm11123453
Rogić Vidaković M, Gunjača I, Bukić J, Košta V, Šoda J, Konstantinović I, Bošković B, Bilić I, Režić Mužinić N. The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex. Journal of Clinical Medicine. 2022; 11(12):3453. https://doi.org/10.3390/jcm11123453
Chicago/Turabian StyleRogić Vidaković, Maja, Ivana Gunjača, Josipa Bukić, Vana Košta, Joško Šoda, Ivan Konstantinović, Braco Bošković, Irena Bilić, and Nikolina Režić Mužinić. 2022. "The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex" Journal of Clinical Medicine 11, no. 12: 3453. https://doi.org/10.3390/jcm11123453
APA StyleRogić Vidaković, M., Gunjača, I., Bukić, J., Košta, V., Šoda, J., Konstantinović, I., Bošković, B., Bilić, I., & Režić Mužinić, N. (2022). The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex. Journal of Clinical Medicine, 11(12), 3453. https://doi.org/10.3390/jcm11123453