Coagulation Factor XIII Val34Leu Polymorphism in the Prediction of Premature Cardiovascular Events—The Results of Two Meta-Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion/Exclusion Criteria for Analysed Studies
2.3. Data Extraction and Methodological Quality
2.4. Statistical Analyses
3. Results
3.1. Ischemic Stroke
3.1.1. Characteristics of the Studies Included
3.1.2. Association between FXIII Val34Leu Polymorphism and IS in Young Patients
3.1.3. Sensitivity Analyses
3.1.4. Publication Bias in the Total Group of Studies Analysing Val34Leu Polymorphism in the FXIII Gene and IS in Young Patients
3.2. Myocardial Infarction
3.2.1. Characteristics of the Studies
3.2.2. Association between FXIII Val34Leu Polymorphism and MI in Young Patients
3.2.3. Sensitivity Analyses
3.2.4. Publication Bias in the Total Group of Studies Analysing Val34Leu Polymorphism in the FXIII Gene and MI in Young Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ariëns, R.A.; Lai, T.S.; Weisel, J.W.; Greenberg, C.S.; Grant, P.J. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 2002, 100, 743–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muszbek, L.; Bagoly, Z.; Bereczky, Z.; Katona, E. The involvement of blood coagulation factor XIII in fibrinolysis and thrombosis. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komáromi, I.; Katona, É. Factor XIII: A coagulation factor with multiple plasmatic and cellular functions. Physiol. Rev. 2011, 91, 931–972. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, V.; Kohler, H.P. New developments in the area of factor XIII. J. Thromb. Haemost. 2013, 11, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Töröcsik, D.; Szeles, L.; Paragh, G., Jr.; Rakosy, Z.; Bardos, H.; Nagy, L.; Balazs, M.; Inbal, A.; Adány, R. Factor XIII-A is involved in the regulation of gene expression in alternatively activated human macrophages. Thromb. Haemost. 2010, 104, 709–717. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Shemirani, A.H.; Katona, E. Factor XIII and atherothrombotic diseases. Semin. Thromb. Hemost. 2010, 36, 18–33. [Google Scholar] [CrossRef]
- Shemirani, A.H.; Haramura, G.; Bagoly, Z.; Muszbek, L. The combined effect of fibrin formation and factor XIII A subunit Val34Leu polymorphism on the activation of factor XIII in whole plasma. Biochim. Biophys. Acta 2006, 1764, 1420–1423. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.C.; Ariens, R.A.; Carter, A.M.; Weisel, J.W.; Grant, P.J. Genetic regulation of fibrin structure and function: Complex gene-environment interactions may modulate vascular risk. Lancet 2003, 361, 1424–1431. [Google Scholar] [CrossRef]
- Salomi, B.S.; Solomon, R.; Turaka, V.P.; Aaron, S.; Christudass, C.S. Cryptogenic Stroke in the Young: Role of Candidate Gene Polymorphisms in Indian Patients with Ischemic Etiology. Neurol. India 2021, 69, 1655–1662. [Google Scholar]
- Silvain, J.; Pena, A.; Vignalou, J.B.; Hulot, J.S.; Galier, S.; Cayla, G.; Bellemain-Appaix, A.; Barthélémy, O.; Beygui, F.; Bal-dit-Sollier, C.; et al. FXIII-A Leu34 genetic variant in premature coronary artery disease: A genotype-phenotype case control study. Thromb. Haemost. 2011, 106, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Wypasek, E.; Stepien, E.; Pieculewicz, M.; Podolec, P.; Undas, A. Factor XIII Val34Leu polymorphism and ischaemic stroke in patients with patent foramen ovale. Thromb. Haemost. 2009, 102, 1280–1282. [Google Scholar] [CrossRef] [PubMed]
- Reiner, A.P.; Frank, M.B.; Schwartz, S.M.; Linenberger, M.L.; Longstreth, W.T.; Teramura, G.; Rosendaal, F.R.; Psaty, B.M.; Siscovick, D.S. Coagulation factor XIII polymorphisms and the risk of myocardial infarction and ischaemic stroke in young women. Br. J. Haematol. 2002, 116, 376–382. [Google Scholar] [CrossRef]
- Franco, R.F.; Pazin-Filho, A.; Tavella, M.H.; Simões, M.V.; Marin-Neto, J.A.; Zago, M.A. Factor XIII val34leu and the risk of myocardial infarction. Haematologica 2000, 85, 67–71. [Google Scholar] [PubMed]
- Putaala, J.; Metso, A.J.; Metso, T.M.; Konkola, N.; Kraemer, Y.; Haapaniemi, E.; Kaste, M.; Tatlisumak, T. Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: The Helsinki young stroke registry. Stroke 2009, 40, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, J.M.; Massaro, A.R.; Mas, J.L. Aetiological diagnosis of ischaemic stroke in young adults. Lancet Neurol. 2010, 9, 1085–1096. [Google Scholar] [CrossRef]
- Lamy, C.; Giannesini, C.; Zuber, M.; Arquizan, C.; Meder, J.F.; Trystram, D.; Coste, J.; Mas, J.L. Clinical and imaging findings in cryptogenic stroke patients with and without patent foramen ovale: The PFO-ASA Study. Atrial Septal Aneurysm. Stroke 2002, 33, 706–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nah, H.W.; Lee, J.W.; Chung, C.H.; Choo, S.J.; Kwon, S.U.; Kim, J.S.; Warach, S.; Kang, D.W. New brain infarcts on magnetic resonance imaging after coronary artery bypass graft surgery: Lesion patterns, mechanism, and predictors. Ann. Neurol. 2014, 76, 347–355. [Google Scholar] [CrossRef]
- Horner, S.; Niederkorn, K.; Gattringer, T.; Furtner, M.; Topakian, R.; Lang, W.; Maier, R.; Gamillscheg, A.; Fazekas, F. Management of right-to-left shunt in cryptogenic cerebrovascular disease: Results from the observational Austrian paradoxical cerebral embolism trial (TACET) registry. J. Neurol. 2013, 260, 260–267. [Google Scholar] [CrossRef]
- Bushnell, C.; Siddiqi, Z.; Morgenlander, J.C.; Goldstein, L.B. Use of specialized coagulation testing in the evaluation of patients with acute ischemic stroke. Neurology 2001, 56, 624–627. [Google Scholar] [CrossRef]
- Yaghi, S.; Bernstein, R.A.; Passman, R.; Okin, P.M.; Furie, K.L. Cryptogenic Stroke: Research and Practice. Circ. Res. 2017, 120, 527–540. [Google Scholar] [CrossRef]
- Carroll, B.J.; Piazza, G. Hypercoagulable states in arterial and venous thrombosis: When, how, and who to test? Vasc. Med. 2018, 23, 388–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palasubramaniam, J.; Wang, X.; Peter, K. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2019, 39, e176–e185. [Google Scholar] [CrossRef] [PubMed]
- Beck-Joseph, J.; Lehoux, S. Molecular Interactions Between Vascular Smooth Muscle Cells and Macrophages in Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 737934. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Libby, P.; Falk, E.; Casscells, S.W.; Litovsky, S.; Rumberger, J.; Badimon, J.J.; Stefanadis, C.; Moreno, P.; Pasterkamp, G.; et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation 2003, 108, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Bhindi, R.; Ashley, E.A.; Figtree, G.A. Genetic analysis in cardiovascular disease: A clinical perspective. Cardiol. Rev. 2011, 19, 81–89. [Google Scholar] [CrossRef]
- Pruissen, D.M.; Slooter, A.J.; Rosendaal, F.R.; van der Graaf, Y.; Algra, A. Coagulation factor XIII gene variation, oral contraceptives, and risk of ischemic stroke. Blood 2008, 111, 1282–1286. [Google Scholar] [CrossRef] [Green Version]
- Ranellou, K.; Paraskeva, A.; Kyriazopoulos, P.; Batistatou, A.; Evangelou, A.; El-Aly, M.; Zis, P.; Tavernarakis, A.; Charalabopoulos, K. Polymorphisms in prothrombotic genes in young stroke patients in Greece: A case-controlled study. Blood Coagul. Fibrinolysis 2015, 26, 430–435. [Google Scholar] [CrossRef]
- Shemirani, A.H.; Pongrácz, E.; Antalfi, B.; Adány, R.; Muszbek, L. Factor XIII A subunit Val34Leu polymorphism in patients suffering atherothrombotic ischemic stroke. Thromb. Res. 2010, 126, 159–162. [Google Scholar] [CrossRef]
- Alkhiary, W.; Azzam, H.; Yossof, M.M.; Aref, S.; Othman, M.; El-Sharawy, S. Association of Hemostatic Gene Polymorphisms With Early-Onset Ischemic Heart Disease in Egyptian Patients. Clin. Appl. Thromb. Hemost. 2016, 22, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Ambroziak, M.; Kuryłowicz, A.; Budaj, A. Increased coagulation factor XIII activity but not genetic variants of coagulation factors is associated with myocardial infarction in young patients. J. Thromb. Thrombolysis 2019, 48, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Atherosclerosis, Thrombosis, and Vascular Biology Italian Study Group. No evidence of association between prothrombotic gene polymorphisms and the development of acute myocardial infarction at a young age. Circulation 2003, 107, 1117–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, C.; Zheng, H.; Randell, E.; Robb, D.; Parfrey, P.; Xie, Y.G. Combined carrier status of prothrombin 20210A and factor XIII-A Leu34 alleles as a strong risk factor for myocardial infarction: Evidence of a gene-gene interaction. Blood 2003, 101, 3037–3041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancer, V.S.; Diz-Kucukkaya, R.; Bilge, A.K.; Ozben, B.; Oncul, A.; Ergen, G.; Nalcaci, M. The association between factor XIII Val34Leu polymorphism and early myocardial infarction. Circ. J. 2006, 70, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.M.; Othman, G.O.; Saeed, C.H.; Al Allawi, S.; Gedeon, G.S.; Qadir, S.M.; Al-Allawi, N. Genetic polymorphisms in early-onset myocardial infarction in a sample of Iraqi patients: A pilot study. BMC Res. Notes 2020, 13, 541. [Google Scholar] [CrossRef] [PubMed]
- Rallidis, L.S.; Politou, M.; Komporozos, C.; Panagiotakos, D.B.; Belessi, C.I.; Travlou, A.; Lekakis, J.; Kremastinos, D.T. Factor XIII Val34Leu polymorphism and the risk of myocardial infarction under the age of 36 years. Thromb. Haemost. 2008, 99, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Roldán, V.; Corral, J.; Marín, F.; Rivera, J.; Pineda, J.; González-Conejero, R.; Sogorb, F.; Vicente, V. Role of factor XIII Val34Leu polymorphism in patients. Am. J. Cardiol. 2003, 91, 1242–1245. [Google Scholar] [CrossRef]
- Siegerink, B.; Algra, A.; Rosendaal, F.R. Genetic variants of coagulation factor XIII and the risk of myocardial infarction in young women. Br. J. Haematol. 2009, 146, 459–461. [Google Scholar] [CrossRef]
- Vishwajeet, V.; Jamwal, M.; Sharma, P.; Das, R.; Ahluwalia, J.; Dogra, R.K.; Rohit, M.K. Coagulation F13A1 V34L, fibrinogen and homocysteine versus conventional risk factors in the pathogenesis of MI in young persons. Acta Cardiol. 2018, 73, 328–334. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 21 March 2022).
- Minelli, C.; Thompson, J.R.; Abrams, K.R.; Thakkinstian, A.; Attia, J. How should we use information about HWE in the meta-analyses of genetic association studies? Int. J. Epidemiol. 2008, 37, 136–146. [Google Scholar] [CrossRef]
- Jin, G.; Feng, B.; Chen, P.; Tang, O.; Wang, J.; Ma, J.; Shi, Y.; Xu, G. Coagulation factor XIII-A Val34Leu polymorphism and the risk of coronary artery disease and myocardial infarction in a Chinese Han population. Clin. Appl. Thromb. Hemost. 2011, 17, 208–213. [Google Scholar] [CrossRef]
- Elbaz, A.; Poirier, O.; Canaple, S.; Chédru, F.; Cambien, F.; Amarenco, P. The association between the Val34Leu polymorphism in the factor XIII gene and brain infarction. Blood 2000, 95, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Gemmati, D.; Serino, M.L.; Ongaro, A.; Tognazzo, S.; Moratelli, S.; Resca, R.; Moretti, M.; Scapoli, G.L. A common mutation in the gene for coagulation factor XIII-A (VAL34Leu): A risk factor for primary intracerebral hemorrhage is protective against atherothrombotic diseases. Am. J. Hematol. 2001, 67, 183–188. [Google Scholar] [CrossRef]
- Catto, A.J.; Kohler, H.P.; Coore, J.; Mansfield, M.W.; Stickland, M.H.; Grant, P.J. Association of a common polymorphism in the factor XIII gene with venous thrombosis. Blood 1999, 93, 906–908. [Google Scholar] [CrossRef]
- Salazar-Sánchez, L.; Chaves, L.; Cartin, M.; Schuster, G.; Wulff, K.; Schröder, W.; Herrmann, F.H. Common polymorphisms and cardiovascular factors in patients with myocardial infarction of Costa Rica. Rev. Biol. Trop. 2006, 54, 1–11. [Google Scholar] [CrossRef]
- Cho, K.H.; Kim, B.C.; Kim, M.K.; Shin, B.A. No association of factor XIII Val34Leu polymorphism with primary intracerebral hemorrhage and healthy controls in Korean population. J. Korean Med. Sci. 2002, 17, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, N.; Trabetti, E.; Pinotti, M.; Olivieri, O.; Sandri, M.; Friso, S.; Pizzolo, F.; Bozzini, C.; Caruso, P.P.; Cavallari, U.; et al. Combined effect of hemostatic gene polymorphisms and the risk of myocardial infarction in patients with advanced coronary atherosclerosis. PLoS ONE 2008, 3, e1523. [Google Scholar] [CrossRef] [Green Version]
- Sarecka-Hujar, B.; Zak, I.; Krauze, J. The TT genotype of the MTHFR 677C > T polymorphism increases susceptibility to premature coronary artery disease in interaction with some of the traditional risk factors. Acta Med. 2012, 55, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Liu, E.H.; Higgins, J.P.; Keavney, B.D.; Lowe, G.D.; Collins, R.; Danesh, J. Seven haemostatic gene polymorphisms in coronary disease: Meta-analysis of 66,155 cases and 91,307 controls. Lancet 2006, 367, 651–688. [Google Scholar] [CrossRef]
- Hadjiev, D.I.; Mineva, P.P.; Vukov, M.I. Multiple modifiable risk factors for first ischemic stroke: A population-based epidemiological study. Eur. J. Neurol. 2003, 10, 577–582. [Google Scholar] [CrossRef]
- Gillum, L.A.; Mamidipudi, S.K.; Johnston, S.C. Ischemic stroke risk with oral contraceptives: A metaanalysis. JAMA 2000, 284, 72–78. [Google Scholar] [CrossRef]
- Jung, J.H.; Song, G.G.; Kim, J.H.; Seo, Y.H.; Choi, S.J. Association of factor XIII Val34Leu polymorphism and coronary artery disease: A meta-analysis. Cardiol. J. 2017, 24, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagoly, Z.; Katona, E.; Muszbek, L. Factor XIII and inflammatory cells. Thromb. Res. 2012, 129 (Suppl. S2), S77–S81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskau, S.; Smolka, K.; Semmler, A.; Schweichel, D.; Harbrecht, U.; Müller, J.; Pohl, C.; Klockgether, T.; Linnebank, M. Common genetic coagulation variants are not associated with ischemic stroke in a case-control study. Neurol. Res. 2010, 32, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas, J.P.; Hingorani, A.D.; Bautista, L.E.; Sharma, P. Meta-analysis of genetic studies in ischemic stroke: Thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch. Neurol. 2004, 61, 1652–1661. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.K.; Griffiths, L.R.; Kooi, C.W.; Irene, L. Meta-Analysis of Factor V, Factor VII, Factor XII, and Factor XIII-A Gene Polymorphisms and Ischemic Stroke. Medicina 2019, 55, 101. [Google Scholar]
- Endler, G.; Funk, M.; Haering, D.; Lalouschek, W.; Lang, W.; Mirafzal, M.; Wagner, O.; Mannhalter, C. Is the factor XIII 34Val/Leu polymorphism a protective factor for cerebrovascular disease? Br. J. Haematol. 2003, 120, 310–314. [Google Scholar] [CrossRef]
- Kamberi, B.; Kamberi, F.; Spiroski, M. Vascular Genetic Variants and Ischemic Stroke Susceptibility in Albanians from the Republic of Macedonia. Open Access Maced. J. Med. Sci. 2016, 4, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corral, J.; González-Conejero, R.; Iniesta, J.A.; Rivera, J.; Martínez, C.; Vicente, V. The FXIII Val34Leu polymorphism in venous and arterial thromboembolism. Haematologica 2000, 85, 293–297. [Google Scholar] [PubMed]
- Undas, A.; Sydor, W.J.; Brummel, K.; Musial, J.; Mann, K.G.; Szczeklik, A. Aspirin alters the cardioprotective effects of the factor XIII Val34Leu polymorphism. Circulation 2003, 107, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Gladstone, D.J.; Spring, M.; Dorian, P.; Panzov, V.; Thorpe, K.E.; Hall, J.; Vaid, H.; O’Donnell, M.; Laupacis, A.; Côté, R.; et al. Atrial fibrillation in patients with cryptogenic stroke. N. Engl. J. Med. 2014, 370, 2467–2477. [Google Scholar] [CrossRef] [Green Version]
- Sanna, T.; Diener, H.C.; Passman, R.S.; Di Lazzaro, V.; Bernstein, R.A.; Morillo, C.A.; Rymer, M.M.; Thijs, V.; Rogers, T.; Beckers, F.; et al. Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 2014, 370, 2478–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Khoury, M.J.; Friedman, J.; Little, J.; Flanders, W.D. How many genes underlie the occurrence of common complex diseases in the population? Int. J. Epidemiol. 2005, 34, 1129–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzini, A.; Grassi, M.; Del Zotto, E.; Archetti, S.; Spezi, R.; Vergani, V.; Assanelli, D.; Caimi, L.; Padovaniet, A. Cumulative effect of predisposing genotypes and their interaction with modifiable factors of the risk of ischemic stroke in young adults. Stroke 2005, 36, 533–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Conejero, R.; Fernández-Cadenas, I.; Iniesta, J.A.; Marti-Fabregas, J.; Obach, V.; Alvarez-Sabín, J.; Vicente, V.; Corral, J.; Montaner, J.; Proyecto Ictus Research Group. Role of fibrinogen levels and factor XIII V34L polymorphism in thrombolytic therapy in stroke patients. Stroke 2006, 37, 2288–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Sun, K.; Bai, Y.; Zhang, W.; Wang, X.; Wang, Y.; Hu Wang, H.; Chen, J.; Song, X.; Xin, Y.; et al. Association of three gene interaction among MTHFR, ALOX5AP and NOTCH3 with thrombotic stroke: A multicenter case-control study. Hum. Genet. 2009, 125, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Botto, N.; Spadoni, I.; Giusti, S.; Ait-Ali, L.; Sicari, R.; Andreassi, M.G. Prothrombotic mutations as risk factors for cryptogenic ischemic cerebrovascular events in young subjects with patent foramen ovale. Stroke 2007, 38, 2070–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study (year) | Patients with Premature Ischemic Stroke | Controls | Genotyping Method | Indicated Relation | HWE (for Controls) (ꭓ2; p) | QUALITY (Newcastle-Ottawa Scale) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | Age | N | Genotypes of FXIII Val34Leu Polymorphism | Age | N | Genotypes of FXIII Val34Leu Polymorphism | |||||||||
Val/Val | Val/Leu | Leu/Leu | Val/Val | Val/Leu | Leu/Leu | ||||||||||
Pruissen et al. [26] | Netherlands | Mean age: 39.8 years | 189 | 121 | 60 | 8 | Mean age: 38.6 years | 747 | 419 | 283 | 45 | 5′nuclease/TaqMan assay | No | 0.093; 0.95 | 8 |
Ranellou et al. [27] | Greece | Mean age: 37.8 years | 38 | 18 | 19 | 1 | Mean age: 38 years | 66 | 38 | 22 | 6 | PCR–RFLP method | No | 1.089; 0.58 | 8 |
Reiner et al. [12] | USA | Mean age: 37.9 years | 36 | 16 | 14 | 6 | Mean age: 37.7 years | 345 | 187 | 138 | 20 | PCR–RFLP method | Yes, between Leu34 homozygotes and IS | 0.693; 0.71 | 8 |
Salomi et al. [10] | India | Mean range: 32.7 years | 105 | 88 | 15 | 2 | Mean age: 31.8 years | 215 | 192 | 22 | 1 | PCR-RFLP method | No | 0.183; 0.91 | 9 |
Shemirani et al. [28] | Hungary | Median age: 47 years | 159 | 91 | 61 | 7 | Median age: 47 years | 159 | 83 | 67 | 9 | Real time PCR | No | 0.913; 0.63 | 9 |
Wypasek et al. [11] | Poland | Mean age: 43.4 years | 100 | 44 | 51 | 5 | Mean age 43.6 years | 107 | 72 | 30 | 5 | Single nucleotide polymorphism (SNP) analysis | Yes | 0.644; 0.72 | 6 |
TOTAL | 627 | 378 | 220 | 29 | TOTAL | 1639 | 1001 | 562 | 86 |
Genetic Model | Egger’s Test | Begg’s Test | |||
---|---|---|---|---|---|
Intercept | 95% CI | p | Kendall’s Tau | p | |
Dominant | 4.543 | −0.584 to 9.670 | 0.070 | 0.200 | 0.719 |
Recessive | 0.359 | −4.509 to 5.227 | 0.848 | 0.200 | 0.719 |
Additive | 0.975 | −3.906 to 5.857 | 0.609 | 0.333 | 0.469 |
Heterozygous | 3.990 | −1.174 to 9.154 | 0.098 | 0.467 | 0.272 |
Allelic | 4.508 | −0.644 to 9.660 | 0.072 | 0.200 | 0.719 |
Study (year) | Patients with Premature Myocardial Infarction | Controls | Genotyping Method | Indicated Relation | HWE(for Controls) (χ2; p) | QUALITY (Newcastle-Ottawa Scale) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | Age | N | Genotypes of FXIII Val34Leu Polymorphism | Age | N | Genotypes of FXIII Val34Leu Polymorphism | |||||||||
Val/Val | Val/Leu | Leu/Leu | Val/Val | Val/Leu | Leu/Leu | ||||||||||
Alkhiary et al. [29] | Egypt | Mean age: 34.16 ± 3.65 years | 31 | 24 | 7 | 0 | Mean age: 32.25 ± 3.89 years | 20 | 15 | 4 | 1 | The CVD Strip Assay method | No | 0.930; 0.33 | 7 |
Amboziak et al. [30] | Poland | Age < 50 years | 143 | 76 | 48 | 19 | Age-matched to patients | 150 | 85 | 53 | 12 | PCR–RFLP method | No | 0.822; 0.36 | 8 |
Atherosclerosis, Thrombosis, and Vascular Biology Italian Study Group [31] | Italian | Age < 45 years | 1210 | 779 | 375 | 56 | Age-matched to patients | 1210 | 789 | 363 | 58 | PCR–RFLP method | No | 3.681; 0.06 | 9 |
Butt et al. [32] | Canada | Age < 50 years | 46 | 27 | 19 carriers of 34Leu allele | Age < 50 years | 373 | 197 | 176 carriers of 34Leu allele | PCR–RFLP method | No | 6 | |||
Franco et al. [13] | Brazil | Mean range: 43 years | 150 | 96 | 50 | 4 | Mean age: 42 years | 150 | 77 | 61 | 12 | PCR–RFLP method | Yes, protective role for carriers of 34Leu allele | 0.003; 0.99 | 8 |
Hancer et al. [33] | Turkey | Age range: 18–50 years | 95 | 85 | 10 | 0 | Age range: 18-50 years | 112 | 68 | 44 | 0 | PCR–RFLP method | Yes, protective role for carriers of 34Leu allele | 6.692; 0.01 | 9 |
Mohammad et al. [34] | Iraq | Mean age: 42.4 ± 6.19 years | 102 | 76 | 22 | 4 | Mean age: 41.6 ± 7.09 years | 77 | 55 | 21 | 1 | The CVD Strip Assay method | No | 0.414; 0.52 | 8 |
Rallidis et al. [35] | Greece | Mean age: 32.1 ± 3.6 years | 159 | 111 | 43 | 5 | Mean age: 31.6 ± 3.8 years | 121 | 64 | 50 | 7 | The CVD Strip Assay method | Yes, protective role was observed | 0.467; 0.49 | 8 |
Reiner et al. [12] | USA | Mean age: 39.8 years | 68 | 41 | 24 | 3 | Mean age: 37.7 years | 345 | 187 | 138 | 20 | PCR–RFLP method | No | 0.693; 0.71 | 8 |
Roldan et al. [36] | Spain | Mean age: 44.8 ± 6.7 years | 30 | 19 | 6 | 5 | Mean age: 47.6 ± 19.8 years | 585 | 368 | 195 | 22 | PCR– allele-specific restriction assay method | Yes | 0.376; 0.54 | 7 |
Siegerink et al. [37] | The Netherlands | Mean age: 42.9 ± 6.0 years | 218 | 124 | 80 | 14 | Mean age: 38.6 ± 8.0 years | 767 | 419 | 283 | 45 | The 5′ nuclease/TaqMan assay | No | 0.093; 0.76 | 6 |
Silvain et al. [10] | France | Mean age: 39.1 ± 5.3 years | 242 | 141 | 87 | 14 | Mean age: 39.1 ± 5.3 years | 242 | 128 | 99 | 15 | PCR–RFLP method | No | 0.519; 0.47 | 8 |
Vishwajeet et al. [38] | India | Mean age: 37.1 ± 4.3 years | 101 | 73 | 27 | 1 | Mean age: 30.6 ± 5.9 years | 103 | 81 | 20 | 2 | Amplification-created restriction enzyme sitePCR | No | 0.332; 0.56 | 8 |
TOTAL | 2595 | 1672 | 779 | 125 | TOTAL | 4255 | 2533 | 1331 | 195 |
Genetic Model | Egger’s Test | Begg’s Test | |||
---|---|---|---|---|---|
Intercept | 95% CI | p | Kendall’s Tau | p | |
Dominant | −1.462 | −3.350 to 0.427 | 0.116 | −0.102 | 0.590 |
Recessive | −0.169 | −2.058 to 1.719 | 0.844 | −0.164 | 0.445 |
Additive | −0.322 | −2.203 to 1.559 | 0.708 | −0.200 | 0.359 |
Heterozygous | −1.592 | −3.517 to 0.334 | 0.095 | −0.242 | 0.249 |
Allelic | −1.258 | −3.426 to 0.910 | 0.225 | −0.242 | 0.250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarecka-Hujar, B.; Łoboda, D.; Paradowska-Nowakowska, E.; Gołba, K.S. Coagulation Factor XIII Val34Leu Polymorphism in the Prediction of Premature Cardiovascular Events—The Results of Two Meta-Analyses. J. Clin. Med. 2022, 11, 3454. https://doi.org/10.3390/jcm11123454
Sarecka-Hujar B, Łoboda D, Paradowska-Nowakowska E, Gołba KS. Coagulation Factor XIII Val34Leu Polymorphism in the Prediction of Premature Cardiovascular Events—The Results of Two Meta-Analyses. Journal of Clinical Medicine. 2022; 11(12):3454. https://doi.org/10.3390/jcm11123454
Chicago/Turabian StyleSarecka-Hujar, Beata, Danuta Łoboda, Elżbieta Paradowska-Nowakowska, and Krzysztof S. Gołba. 2022. "Coagulation Factor XIII Val34Leu Polymorphism in the Prediction of Premature Cardiovascular Events—The Results of Two Meta-Analyses" Journal of Clinical Medicine 11, no. 12: 3454. https://doi.org/10.3390/jcm11123454
APA StyleSarecka-Hujar, B., Łoboda, D., Paradowska-Nowakowska, E., & Gołba, K. S. (2022). Coagulation Factor XIII Val34Leu Polymorphism in the Prediction of Premature Cardiovascular Events—The Results of Two Meta-Analyses. Journal of Clinical Medicine, 11(12), 3454. https://doi.org/10.3390/jcm11123454