What Does Bone Corticalization around Dental Implants Mean in Light of Ten Years of Follow-Up?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudek, D.; Kozakiewicz, M. Szerokość beleczek kostnych w szczęce i żuchwie człowieka na podstawie cyfrowych radiologicznych zdjęć wewnąrzustnych [Bone trabecula width in the human maxilla and mandible based on digital intraoral radiographs]. Mag. Stomat. 2012, 236, 77–80. [Google Scholar]
- Frost, H.M. Bone’s mechanostat: A 2003 update. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003, 275, 1081–1101. [Google Scholar] [CrossRef] [PubMed]
- Rauch, F.; Travers, R.; Glorieux, F.H. Intracortical remodeling during human bone development—A histomorphometric study. Bone 2007, 40, 274–280. [Google Scholar] [CrossRef]
- Kuroshima, S.; Nakano, T.; Ishimoto, T.; Sasaki, M.; Inoue, M.; Sawase, T. Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading. Acta Biomater. 2017, 48, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Robling, A.G.; Duijvelaar, K.M.; Geevers, J.V.; Ohashi, N.; Turner, C.H. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 2001, 29, 105–113. [Google Scholar] [CrossRef]
- Robling, A.G.; Turner, C.H. Mechanical signaling for bone modeling and remodeling. Crit. Rev. Eukaryot. Gene Expr. 2009, 19, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Frost, H.M. Tetracycline-based histological analysis of bone remodeling. Calcif. Tissue Res. 1969, 3, 211–237. [Google Scholar] [CrossRef]
- Petrtýl, M.; Hert, J.; Fiala, P. Spatial organization of the haversian bone in man. J. Biomech. 1996, 29, 161–169. [Google Scholar] [CrossRef]
- Smit, T.H.; Burger, E.H. Is BMU-coupling a strain-regulated phenomenon? A finite element analysis. J. Bone Min. Res. 2000, 15, 301–307. [Google Scholar] [CrossRef]
- Joos, U.; Wiesmann, H.P.; Szuwart, T.; Meyer, U. Mineralization at the interface of implants. Int. J. Oral Maxillofac. Surg. 2006, 35, 783–790. [Google Scholar] [CrossRef]
- Kungsadalpipob, K.; Supanimitkul, K.; Manopattanasoontorn, S.; Sophon, N.; Tangsathian, T.; Arunyanak, S.P. The lack of keratinized mucosa is associated with poor peri-implant tissue health: A cross-sectional study. Int. J. Implant Dent. 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Brånemark, P.I.; Hansson, H.A.; Lindstrom, J. Osseointegrated titanium implants: Requirements for ensuring a long-lasting direct bone anchorage in man. Acta Orthop. Scand. 1981, 52, 155–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brånemark, P.I.; Adell, R.; Albrektsson, T.; Lekholm, U.; Lundkvist, S.; Rockler, B. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials 1983, 4, 25–28. [Google Scholar] [CrossRef]
- Linkevicius, T.; Puisys, A.; Linkeviciene, L.; Peciuliene, V.; Schlee, M. Crestal Bone Stability around Implants with Horizontally Matching Connection after Soft Tissue Thickening: A Prospective Clinical Trial. Clin. Implant Dent. Relat. Res. 2015, 17, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Vlachodimou, E.; Fragkioudakis, I.; Vouros, I. Is There an Association between the Gingival Phenotype and the Width of Keratinized Gingiva? A Systematic Review. Dent. J. 2021, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Baer, R.A.; Nölken, R.; Colic, S.; Heydecke, G.; Mirzakhanian, C.; Behneke, A.; Behneke, N.; Gottesman, E.; Ottria, L.; Pozzi, A.; et al. Immediately provisionalized tapered conical connection implants for single-tooth restorations in the maxillary esthetic zone: A 5-year prospective single-cohort multicenter analysis. Clin. Oral Investig. 2022, 26, 3593–3604. [Google Scholar] [CrossRef]
- Kinaia, B.M.; Shah, M.; Neely, A.L.; Goodis, H.E. Crestal bone level changes around immediately placed implants: A systematic review and meta-analyses with at least 12 months’ follow-up after functional loading. J. Periodontol. 2014, 85, 1537–1548. [Google Scholar] [CrossRef]
- Linkevicius, T.; Linkevicius, R.; Gineviciute, E.; Alkimavicius, J.; Mazeikiene, A.; Linkeviciene, L. The influence of new immediate tissue level abutment on crestal bone stability of subcrestally placed implants: A 1-year randomized controlled clinical trial. Clin. Implant Dent. Relat. Res. 2021, 23, 259–269. [Google Scholar] [CrossRef]
- Linkevicius, T.; Puisys, A.; Linkevicius, R.; Alkimavicius, J.; Gineviciute, E.; Linkeviciene, L. The influence of submerged healing abutment or subcrestal implant placement on soft tissue thickness and crestal bone stability. A 2-year randomized clinical trial. Clin. Implant Dent. Relat. Res. 2020, 22, 497–506. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nuclear Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Wilamski, M. Technika standaryzacji wewnątrzustnych zdjęć rentgenowskich [Standardization technique for intraoral radiographs]. Czas Stomat 1999, 52, 673–677. [Google Scholar]
- Kozakiewicz, M.; Bogusiak, K.; Hanclik, M.; Denkowski, M.; Arkuszewski, P. Noise in subtraction images made from pairs of intraoral radiographs: A comparison between four methods of geometric alignment. Dentomaxillofac. Radiol. 2008, 37, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Kołaciński, M.; Kozakiewicz, M.; Materka, A. Textural entropy as a potential feature for quantitative assessment of jaw bone healing process. Arch. Med. Sci. 2015, 11, 78–84. [Google Scholar] [CrossRef]
- Wach, T.; Kozakiewicz, M. Are recent available blended collagen-calcium phosphate better than collagen alone or crystalline calcium phosphate? Radiotextural analysis of a 1-year clinical trial. Clin. Oral Investig. 2021, 25, 3711–3718. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Szymor, P.; Wach, T. Influence of General Mineral Condition on Collagen-Guided Alveolar Crest Augmentation. Materials 2020, 13, 3649. [Google Scholar] [CrossRef]
- Wach, T.; Kozakiewicz, M. Fast-Versus Slow-Resorbable Calcium Phosphate Bone Substitute Materials—Texture Analysis after 12 Months of Observation. Materials 2020, 13, 3854. [Google Scholar] [CrossRef]
- Haralick, R. Statistical and Structural Approaches to Texture. Proceed IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Materka, A.; Strzelecki, M. Texture Analysis Methods—A Review, COST B11 Report (Presented and Distributed at MC Meeting and Workshop in Brussels, June 1998); Technical University of Lodz: Lodz, Poland, 1998. [Google Scholar]
- Kozakiewicz, M.; Wach, T. New oral surgery materials for bone reconstruction—A comparison of five bone substitute materials for dentoalveolar augmentation. Materials 2020, 13, 2935. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Hadrowicz, P.; Hadrowicz, J.M.; Gesing, A. Can Torque Force During Dental Implant Placement Combined with Bone Mineral Density of Lumbar Spine Be Prediction Factors for Crestal Bone Structure Alterations? Dent. Med. Probl. 2014, 51, 448–457. [Google Scholar]
- Trisi, P.; Falco, A.; Berardini, M. Single-drill implant induces bone corticalization during submerged healing: An in vivo pilot study. Int. J. Implant Dent. 2020, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Traini, T.; Neugebauer, J.; Thams, U.; Zöller, J.E.; Caputi, S.; Piattelli, A. Peri-Implant Bone Organization under Immediate Loading Conditions: Collagen Fiber Orientation and Mineral Density Analyses in the Minipig Model. Clin. Implant Dent. Relat. Res. 2009, 11, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Büchter, A.; Kleinheinz, J.; Wiesmann, H.P.; Kersken, J.; Nienkemper, M.; Weyhrother, H.; Joos, U.; Meyer, U. Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin. Oral Implant. Res. 2005, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hadrowicz, J.; Hadrowicz, P.; Gesing, A.; Kozakiewicz, M. Age dependent alteration in bone surrounding dental implants. Dent. Med. Probl. 2014, 51, 27–34. [Google Scholar]
- Hadrowicz, P.; Hadrowicz, J.; Kozakiewicz, M.; Gesing, A. Assessment of Parathyroid Hormone Serum Level as a Predictor for Bone Condition around Dental Implants. Int. J. Oral Maxillofac. Implant 2017, 32, e207–e212. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Zamparini, F.; Iezzi, G.; Degidi, M.; Botticelli, D.; Piattelli, A.; Prati, C. Microchemical and Micromorphologic ESEM-EDX Analysis of Bone Mineralization at the Thread Interface in Human Dental Implants Retrieved for Mechanical Complications After 2 Months to 17 Years. Int. J. Periodontics Restor. Dent. 2018, 38, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Tumedei, M.; Piattelli, A.; Degidi, M.; Mangano, C.; Iezzi, G. A Narrative Review of the Histological and Histomorphometrical Evaluation of the Peri-Implant Bone in Loaded and Unloaded Dental Implants. A 30-Year Experience (1988–2018). Int. J. Environ. Res. Public Health 2020, 17, 2088. [Google Scholar] [CrossRef] [Green Version]
- Abuhussein, H.; Pagni, G.; Rebaudi, A.; Wang, H.L. The effect of thread pattern upon implant osseointegration. Clin. Oral Implant. Res. 2010, 21, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Szyszkowski, A.; Kozakiewicz, M. Effect of implant-abutment connection type on bone around dental implants in long-term observation: Internal cone versus internal hex. Implant Dent. 2019, 28, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Chong, L.; Khocht, A.; Suzuki, J.B.; Gaughan, J. Effect of implant design on initial stability of tapered implants. J. Oral Implantol. 2009, 35, 130–135. [Google Scholar] [CrossRef]
- Falco, A.; Berardini, M.; Trisi, P. Correlation between Implant Geometry, Implant Surface, Insertion Torque, and Primary Stability: In Vitro Biomechanical Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.G., Jr.; Miller, R.J.; Trushkowsky, R.; Dard, M. Tapered Implants in Dentistry: Revitalizing Concepts with Technology: A Review. Adv. Dent. Res. 2016, 28, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Skedros, J.G.; Bloebaum, R.D.; Mason, M.W.; Bramble, D.M. Analysis of a tension/compression skeletal system: Possible strain-specific differences in the hierarchical organization of bone. Anat. Rec. 1994, 239, 396–404. [Google Scholar] [CrossRef]
- Lemos, C.A.A.; Verri, F.R.; Santiago Junior, J.F.; de Souza Batista, V.E.; Kemmoku, D.T.; Noritomi, P.Y.; Pellizzer, E.P. Splinted and Nonsplinted Crowns with Different Implant Lengths in the Posterior Maxilla by Three-Dimensional Finite Element Analysis. J. Healthc. Eng. 2018, 2018, 3163096. [Google Scholar] [CrossRef] [PubMed]
- Alhammadi, S.H.; Burnside, G.; Milosevic, A. Clinical outcomes of single implant supported crowns versus 3-unit implant-supported fixed dental prostheses in Dubai Health Authority: A retrospective study. BMC Oral Health 2021, 21, 171. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Szyszkowski, A. Evaluation of selected prognostic factors in dental implant treatment—Two-year follow-up. Dent. Med. Probl. 2014, 51, 439–447. [Google Scholar]
- Butera, A.; Gallo, S.; Pascadopoli, M.; Luraghi, G.; Scribante, A. Ozonized Water Administration in Peri-Implant Mucositis Sites: A Randomized Clinical Trial. Appl. Sci. 2021, 11, 7812. [Google Scholar] [CrossRef]
- Nicolae, V.; Chiscop, I.; Cioranu, V.S.; Martu, M.A.; Luchian, A.I.; Martu, S.; Solomon, S.M. The use of photoactivated blue-o toluidine for periimplantitis treatment in patients with periodontal disease. Rev. Chim. 2015, 66, 2121–2123. [Google Scholar]
- Macovei-Surdu, A.; Rudnic, I.; Martu, I.; Solomon, S.; Pasarin, L.; Martu, S. Studies regarding the bidirectional relationship between the periodontal disease and hyperlipidaemia. Rom. J. Oral Rehabil. 2013, 5, 76–81. [Google Scholar]
- Martu, M.A.; Solomon, S.M.; Toma, V.; Maftei, G.A.; Iovan, A.; Gamen, A.; Hurjui, L.; Rezus, E.; Foia, L.; Forna, N.C. The importance of cytokines in periodontal disease and rheumatoid arthritis. Review. Rom. J. Oral Rehabil. 2019, 11, 220–240. [Google Scholar]
- Ursarescu, I.R.; Martu-Stefanache, M.A.; Solomon, S.M.; Pasarin, L.; Boatca, R.M.; Caruntu, I.D.; Martu, S. The Assessment of IL-6 and Rankl in the Association between Chronic Periodontitis and Osteoporosis. Rev. Chim. 2016, 67, 386–389. [Google Scholar]
- Obinata, K.; Shirai, S.; Ito, H.; Nakamura, M.; Carrozzo, M.; Macleod, I.; Carr, A.; Yamazaki, Y.; Tei, K. Image findings of bisphosphonate related osteonecrosis of jaws comparing with osteoradionecrosis. Dentomaxillofac. Radiol. 2017, 46, 20160281. [Google Scholar] [CrossRef] [PubMed]
- Takaishi, Y.; Ikeo, T.; Nakajima, M.; Miki, T.; Fujita, T. A pilot case-control study on the alveolar bone density measurement in risk assessment for bisphosphonate-related osteonecrosis of the jaw. Osteoporos. Int. 2010, 21, 815–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heim, N.; Götz, W.; Kramer, F.J.; Faron, A. Antiresorptive drug-related changes of the mandibular bone densitiy in medication-related osteonecrosis of the jaw patients. Dentomaxillofac. Radiol. 2019, 48, 20190132. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.G.; Silva, C.O.; Souza, A.B.; Sukekava, F. Socket healing with and without immediate implant placement. Periodontology 2000 2019, 79, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T. Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochemistry and Cell Biology. 2018, 149, 289–304. [Google Scholar] [CrossRef]
- Hessle, L.; Johnson, K.A.; Anderson, H.C.; Narisawa, S.; Sali, A.; Goding, J.W.; Terkeltaub, R.; Millan, J.L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. USA 2002, 99, 9445–9449. [Google Scholar] [CrossRef] [Green Version]
- Puisys, A.; Auzbikaviciute, V.; Minkauskaite, A.; Simkunaite-Rizgeliene, R.; Razukevicius, D.; Linkevicius, R.; Linkevicius, T. Early crestal bone loss: Is it really loss? Clin. Case Rep. 2019, 7, 1913–1915. [Google Scholar] [CrossRef] [Green Version]
- Puisys, A.; Auzbikaviciute, V.; Vindasiute-Narbute, E.; Pranskunas, M.; Razukevicus, D.; Linkevicius, T. Immediate implant placement vs. early implant treatment in the esthetic area. A 1-year randomized clinical trial. Clin. Oral Implant. Res. 2022, 33, 634–655. [Google Scholar] [CrossRef]
- Puisys, A.; Auzbikaviciute, V.; Vindasiute-Narbute, E.; Zukauskas, S.; Vaicekauskas, K.; Razukevicus, D. Crestal bone stability after flapless placement of sloped implants with immediate temporization in edentulous mandible. A prospective comparative clinical trial. Clin. Exp. Dent. Res. 2021, 7, 131–136. [Google Scholar] [CrossRef]
- Al-Omari, F.A.; Nagasawa, M.; Suliman, M.; Khraisat, A.; Uoshima, K. Peri-implant bone alterations under the influence of abutment screw preload stress. A preclinical vivo study. Clin. Oral Implant. Res. 2020, 31, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Pokrowiecki, R.; Szałaj, U.; Fudala, D.; Zaręba, T.; Wojnarowicz, J.; Łojkowski, W.; Tyski, S.; Dowgierd, K.; Mielczarek, A. Dental Implant Healing Screws as Temporary Oral Drug Delivery Systems for Decrease of Infections in the Area of the Head and Neck. Int. J. Nanomed. 2022, 17, 1679–1693. [Google Scholar] [CrossRef] [PubMed]
Manufacturer Implant | Titanium Alloy | Level | Connection Type | Connection Shape | Neck Shape | Neck Microthreads | Body Shape | Body Threads | Apex Shape | Apex Hole | Apex Groove |
---|---|---|---|---|---|---|---|---|---|---|---|
AB Dental Devices I5 | Grade 5 | Bone level | Internal | Hexagon | Straight | No | Tapered | Square | Flat | No hole | Yes |
ADIN Dental Implants Touareg | Grade 5 | Bone level | Internal | Hexagon | Straight | Yes | Tapered | Square | Flat | No hole | Yes |
Alpha Bio ARRP | Grade 5 | Tissue level | Custom | One-piece abutment | Straight | No | Tapered | Reverse buttress | Cone | No hole | No |
Alpha Bio ATI | Grade 5 | Bone level | Internal | Hexagon | Straight | Yes | Straight | Square | Flat | No hole | Yes |
Alpha Bio OCI | Grade 5 | Bone level | Internal | Hexagon | Straight | No | Straight | No Threads | Dome | Round | No |
Alpha Bio DFI | Grade 5 | Bone level | Internal | Hexagon | Straight | Yes | Tapered | Square | Flat | No hole | Yes |
Alpha Bio SFB | Grade 5 | Bone level | Internal | Hexagon | Straight | No | Tapered | V-shaped | Flat | No hole | Yes |
Alpha Bio SPI | Grade 5 | Bone level | Internal | Hexagon | Straight | Yes | Tapered | Square | Flat | No hole | Yes |
Argon Medical Prod. K3pro Rapid | Grade 4 | Subcrestal | Internal | Conical | Straight | Yes | Tapered | V-shaped | Dome | No hole | Yes |
Bego Semados RI | Grade 4 | Bone level | Internal | Hexagon | Straight | Yes | Tapered | Reverse buttress | Cone | No hole | Yes |
Dentium Super Line | Grade 5 | Bone level | Internal | Conical | Straight | No | Tapered | Buttress | Dome | No hole | Yes |
Friadent Ankylos C/X | Grade 4 | Subcrestal | Internal | Conical | Straight | No | Tapered | V-shaped | Dome | No hole | Yes |
Implant Direct InterActive | Grade 5 | Bone level | Internal | Conical | Straight | Yes | Tapered | Reverse buttress | Dome | No hole | Yes |
Implant Direct Legacy 3 | Grade 5 | Bone level | Internal | Hexagon | Straight | Yes | Tapered | Reverse buttress | Dome | No hole | Yes |
MIS BioCom M4 | Grade 5 | Bone level | Internal | Hexagon | Straight | No | Straight | V-shaped | Flat | No hole | Yes |
MIS C1 | Grade 5 | Bone level | Internal | Conical | Straight | Yes | Tapered | Reverse buttress | Dome | No hole | Yes |
MIS Seven | Grade 5 | Bone level | Internal | Hexagon | Straight | Yes | Tapered | Reverse buttress | Dome | No hole | Yes |
MIS UNO One Piece | Grade 5 | Tissue level | Custom | One-piece abutment | Straight | No | Tapered | Square | Dome | No hole | Yes |
Osstem Implant Company GS III | Grade 5 | Bone level | Internal | Conical | Straight | Yes | Tapered | V-shaped | Dome | No hole | Yes |
SGS Dental P7N | Grade 5 | Bone level | Internal | Hexagon | Straight | Yes | Tapered | V-shaped | Flat | No hole | Yes |
TBR Implanté | Grade 5 | Bone level | Internal | Octagon | Straight | No | Straight | No threads | Flat | Round | Yes |
Wolf Dental Conical Screw-Type | Grade 4 | Bone level | Internal | Hexagon | Straight | No | Tapered | V-shaped | Cone | No Hole | Yes |
Region of Interest/Period | Bone Index | Marginal Bone Loss (mm) | Simple Regression |
---|---|---|---|
Reference cancellous site | 0.85 ± 0.18 | n.a. | n.a. |
Initial peri-Implant observation | 0.73 ± 0.21 | 0.00 ± 0.00 | n.a. |
5-year peri-implant observation | 0.47 ± 0.21 | 0.88 ± 1.27 | CC = −0.26; R2 = 7%; p < 0.0001 |
10-year peri-implant observation | 0.48 ± 0.21 | 1.49 ± 1.94 | CC = −0.28; R2 = 8%; p < 0.0001 |
Design Parameter | Option | Feature | Initial | 5 Years | 10 Years |
---|---|---|---|---|---|
Titanium alloy n = 1447 | Grade 4 | MBL | 0.00 | 0.00 L | 0.00 L |
BI | 0.74 | 0.66 H | 0.64 H | ||
Grade 5 | MBL | 0.00 | 0.00 H | 1.09 H | |
BI | 0.74 | 0.46 L | 0.46 L | ||
Immersion level n = 1275 | Subcrestal | MBL | 0.00 | 0.00 L | 0.00 L |
BI | 0.68 | 0.68 H | 0.69 H | ||
Bone level | MBL | 0.00 | 0.00 H | 1.09 H | |
BI | 0.74 | 0.46 L | 0.46 H | ||
Tissue level | MBL | 0.00 | 1.33 H | 0.48 H | |
BI | 0.68 | 0.36 L | 0.20 L | ||
Connection type n = 1275 | Internal | MBL | 0.00 | 0.00 | 1.09 |
BI | 0.74 | 0.47 | 0.46 H | ||
Custom | MBL | 0.00 | 1.33 | 0.48 | |
BI | 0.68 | 0.36 | 0.20 L | ||
Connection shape n = 1275 | Conical | MBL | 0.00 | 0.00 | 0.00 L |
BI | 0.67 | 0.50 | 0.54 H | ||
Internal hexagon | MBL | 0.00 | 0.00 | 1.09 | |
BI | 0.76 H | 0.46 | 0.46 H | ||
Internal octagon | MBL | 0.00 | 0.67 | 2.91 H | |
BI | 0.45 L | 0.44 | 0.32 | ||
One-piece abutm. | MBL | 0.00 | 1.33 | 0.00 L | |
BI | 0.68 | 0.36 | 0.20 L | ||
Head microthreads n = 1275 | Yes | MBL | 0.00 | 0.00 | 0.87 |
BI | 0.73 | 0.47 | 0.47 | ||
No | MBL | 0.00 | 0.61 | 1.15 | |
BI | 0.77 | 0.45 | 0.42 | ||
Body shape n = 1447 | Tapered | MBL | 0.00 | 0.00 L | 0.91 L |
BI | 0.73 L | 0.46 L | 0.47 | ||
Straight | MBL | 0.00 | 1.57 H | 1.82 H | |
BI | 0.82 H | 0.56 H | 0.44 | ||
Body threads n = 1447 | Buttress | MBL | 0.00 | 2.15 H | n.a. |
BI | 0.32 L | 0.21 L | n.a. | ||
Reverse buttress | MBL | 0.00 | 0.00 L | 0.79 | |
BI | 0.72 | 0.45 | 0.47 | ||
V-shape | MBL | 0.00 | 0.00 L | 0.00 L | |
BI | 0.78 H | 0.58 H | 0.56 H | ||
Square | MBL | 0.00 | 0.39 | 1.21 H | |
BI | 0.76 | 0.47 | 0.45 | ||
No threads | MBL | 0.00 | 1.24 | 2.42 H | |
BI | 0.69 | 0.51 | 0.39 L | ||
Apex shape n = 1447 | Cone | MBL | 0.00 | 0.00 | 0.00 |
BI | 0.92 H | 0.53 | 0.53 | ||
Dome | MBL | 0.00 | 0.00 L | 0.79 | |
BI | 0.72 L | 0.46 | 0.46 | ||
Flat | MBL | 0.00 | 0.45 H | 1.21 | |
BI | 0.79 H | 0.47 | 0.45 | ||
Apex hole n = 1447 | Round | MBL | 0.00 | 1.24 | 2.42 H |
BI | 0.69 | 0.47 | 0.39 | ||
No or other | MBL | 0.00 | 0.00 | 0.97 L | |
BI | 0.73 | 0.51 | 0.47 | ||
Apex groove n = 1275 | Yes | MBL | 0.00 | 0.00 L | 0.98 L |
BI | 0.74 | 0.47 | 0.46 H | ||
No | MBL | 0.00 | 1.63 H | 1.69 H | |
BI | 0.66 | 0.31 | 0.37 L |
Prosthetic | n | Feature | Initial | 5 Years | 10 Years |
---|---|---|---|---|---|
Single crown | 493 | MBL | 0.00 | 0.00 | 0.90 |
BI | 0.78 H | 0.53 H | 0.55 H | ||
Splinted crowns | 510 | MBL | 0.00 | 0.08 | 1.29 H |
BI | 0.73 | 0.46 | 0.44 L | ||
Bridge | 384 | MBL | 0.00 | 0.00 L | 0.00 L |
BI | 0.69 L | 0.39 L | 0.41 L | ||
Overdenture | 89 | MBL | 0.00 | 0.48 | 0.00 L |
BI | 0.65 L | 0.30 L | 0.31 | ||
Platform switching | 383 | MBL | 0.00 | 0.00 | 0.00 |
BI | 0.67 L | 0.48 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozakiewicz, M.; Skorupska, M.; Wach, T. What Does Bone Corticalization around Dental Implants Mean in Light of Ten Years of Follow-Up? J. Clin. Med. 2022, 11, 3545. https://doi.org/10.3390/jcm11123545
Kozakiewicz M, Skorupska M, Wach T. What Does Bone Corticalization around Dental Implants Mean in Light of Ten Years of Follow-Up? Journal of Clinical Medicine. 2022; 11(12):3545. https://doi.org/10.3390/jcm11123545
Chicago/Turabian StyleKozakiewicz, Marcin, Małgorzata Skorupska, and Tomasz Wach. 2022. "What Does Bone Corticalization around Dental Implants Mean in Light of Ten Years of Follow-Up?" Journal of Clinical Medicine 11, no. 12: 3545. https://doi.org/10.3390/jcm11123545
APA StyleKozakiewicz, M., Skorupska, M., & Wach, T. (2022). What Does Bone Corticalization around Dental Implants Mean in Light of Ten Years of Follow-Up? Journal of Clinical Medicine, 11(12), 3545. https://doi.org/10.3390/jcm11123545