Role of Deep Learning in Prostate Cancer Management: Past, Present and Future Based on a Comprehensive Literature Review
Abstract
:1. Introduction
2. Search Strategy
2.1. Inclusion Criteria
- Articles on the application of deep learning in prostate cancer diagnosis and treatment.
- Full-text articles, clinical trials and meta-Analysis on outcomes of analysis in Urology using deep learning.
2.2. Exclusion Criteria
- Animal, laboratory, or cadaveric studies
- Reviews, editorials, commentaries or book chapters
3. Results
Evidence Synthesis
4. Discussion
4.1. Diagnosis of Prostate Cancer Using MRI Images
4.2. Histopathological Diagnosis of Prostate Cancer Using DL Models
4.3. Diagnosis of Prostate Cancer Using MR Based Segmentation Techniques
4.4. Diagnosis of Prostate Cancer Using CT Images
4.5. Robot-Assisted Treatment Practices
4.6. Strengths, limitations, and Areas of Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pannala, R.; Krishnan, K.; Melson, J.; Parsi, M.A.; Schulman, A.R.; Sullivan, S.; Trikudanathan, G.; Trindade, A.J.; Watson, R.R.; Maple, J.T.; et al. Artificial intelligence in gastrointestinal endoscopy. VideoGIE 2020, 5, 598–613. [Google Scholar] [CrossRef]
- Chen, H.; Sung, J. Potentials of AI in medical image analysis in Gastroenterology and Hepatology. J. Gastroenterol. Hepatol. 2021, 36, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, N.; Patel, A. A comprehensive study of deep learning architectures, applications and tools. Int. J. Comput. Sci. Eng. 2018, 6, 701–705. [Google Scholar] [CrossRef]
- Asgari, S.; Scalzo, F.; Kasprowicz, M. Pattern recognition in medical decision support. BioMed Res. Int. 2019, 2019, 2. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Frandsen, T. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, T.; Hattori-Kato, M.; Okuno, Y.; Iwai, S.; Mikami, K. Prediction of prostate cancer by deep learning with multilayer artificial neural network. Can. Urol. Assoc. J. 2018, 13, E145–E150. [Google Scholar] [CrossRef] [PubMed]
- Schelb, P.; Kohl, S.; Radtke, J.P.; Wiesenfarth, M.; Kickingereder, P.V.; Bickelhaupt, S.; Kuder, T.A.; Stenzinger, A.; Hohenfellner, M.; Schlemmer, H.-P.; et al. Classification of cancer at prostate MRI: Deep learning versus clinical PI-RADS assessment. Radiology 2019, 293, 607–617. [Google Scholar] [CrossRef]
- Shao, W.; Banh, L.; Kunder, C.A.; Fan, R.E.; Soerensen, S.J.; Wang, J.B.; Teslovich, N.C.; Madhuripan, N.; Jawahar, A.; Ghanouni, P.; et al. ProsRegNet: A deep learning framework for registration of MRI and histopathology images of the prostate. Med. Image Anal. 2021, 68, 101919. [Google Scholar] [CrossRef]
- Hiremath, A.; Shiradkar, R.; Fu, P.; Mahran, A.; Rastinehad, A.R.; Tewari, A.; Tirumani, S.H.; Purysko, A.; Ponsky, L.; Madabhushi, A. An integrated nomogram combining deep learning, Prostate Imaging-Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: A retrospective multicentre study. Lancet Digit. Health 2021, 3, e445–e454. [Google Scholar] [CrossRef]
- Hiremath, A.; Shiradkar, R.; Merisaari, H.; Prasanna, P.; Ettala, O.; Taimen, P.; Aronen, H.J.; Boström, P.J.; Jambor, I.; Madabhushi, A. Test-retest repeatability of a deep learning architecture in detecting and segmenting clinically significant prostate cancer on apparent diffusion coefficient (ADC) maps. Eur. Radiol. 2020, 31, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Schelb, P.; Wang, X.; Radtke, J.P.; Wiesenfarth, M.; Kickingereder, P.; Stenzinger, A.; Hohenfellner, M.; Schlemmer, H.-P.; Maier-Hein, K.H.; Bonekamp, D. Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI assessment. Eur. Radiol. 2021, 31, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Shao, L.; Liu, Z.; He, W.; Yang, G.; Liu, J.; Xia, H.; Zhang, Y.; Chen, H.; Liu, C.; et al. Deep learning with quantitative features of magnetic resonance images to predict biochemical recurrence of radical prostatectomy: A multi-center study. Cancers 2021, 13, 3098. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, P.; Lysandrou, M.; Eljalby, M.; Li, Q.; Kazemi, E.; Zisimopoulos, P.; Sigaras, A.; Brendel, M.; Barnes, J.; Ricketts, C.; et al. A deep learning approach to diagnostic classification of prostate cancer using pathology-radiology fusion. J. Magn. Reson. Imaging 2021, 54, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Shiradkar, R.; Panda, A.; Leo, P.; Janowczyk, A.; Farre, X.; Janaki, N.; Li, L.; Pahwa, S.; Mahran, A.; Buzzy, C.; et al. T1 and T2 MR fingerprinting measurements of prostate cancer and prostatitis correlate with deep learning–derived estimates of epithelium, lumen, and stromal composition on corresponding whole mount histopathology. Eur. Radiol. 2020, 31, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Winkel, D.J.; Wetterauer, C.; Matthias, M.O.; Lou, B.; Shi, B.; Kamen, A.; Comaniciu, D.; Seifert, H.-H.; Rentsch, C.A.; Boll, D.T. Autonomous detection and classification of PI-RADS lesions in an MRI screening population incorporating multicenter-labeled deep learning and biparametric imaging: Proof of concept. Diagnostics 2020, 10, 951. [Google Scholar] [CrossRef]
- Aldubayan, S.H.; Conway, J.R.; Camp, S.Y.; Witkowski, L.; Kofman, E.; Reardon, B.; Han, S.; Moore, N.; Elmarakeby, H.; Salari, K.; et al. Detection of pathogenic variants with germline genetic testing using deep learning vs standard methods in patients with prostate cancer and melanoma. JAMA 2020, 324, 1957. [Google Scholar] [CrossRef]
- Kott, O.; Linsley, D.; Amin, A.; Karagounis, A.; Jeffers, C.; Golijanin, D.; Serre, T.; Gershman, B. Development of a deep learning algorithm for the histopathologic diagnosis and gleason grading of prostate cancer biopsies: A pilot study. Eur. Urol. Focus 2021, 7, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.; Jansen, I.; Savci-Heijink, C.D.; Meijer, S.L.; de Boer, O.J.; van Leeuwen, T.G.; de Bruin, D.M.; Marquering, H.A. Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Arch. 2019, 475, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Sumitomo, M.; Teramoto, A.; Toda, R.; Fukami, N.; Fukaya, K.; Zennami, K.; Ichino, M.; Takahara, K.; Kusaka, M.; Shiroki, R. Deep learning using preoperative magnetic resonance imaging information to predict early recovery of urinary continence after robot-assisted radical prostatectomy. Int. J. Urol. 2020, 27, 922–928. [Google Scholar] [CrossRef]
- Lai, C.-C.; Wang, H.-K.; Wang, F.-N.; Peng, Y.-C.; Lin, T.-P.; Peng, H.-H.; Shen, S.-H. Autosegmentation of prostate zones and cancer regions from biparametric magnetic resonance images by using deep-learning-based neural networks. Sensors 2021, 21, 2709. [Google Scholar] [CrossRef] [PubMed]
- Van Sloun, R.J.; Wildeboer, R.R.; Mannaerts, C.K.; Postema, A.W.; Gayet, M.; Beerlage, H.P.; Salomon, G.; Wijkstra, H.; Mischi, M. Deep learning for real-time, automatic, and scanner-adapted prostate (zone) segmentation of transrectal ultrasound, for example, magnetic resonance imaging–transrectal ultrasound fusion prostate biopsy. Eur. Urol. Focus 2021, 7, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Schelb, P.; Tavakoli, A.A.; Tubtawee, T.; Hielscher, T.; Radtke, J.-P.; Görtz, M.; Schütz, V.; Kuder, T.A.; Schimmöller, L.; Stenzinger, A.; et al. Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning system. RöFo—Fortschr. Geb. Röntgenstrahlen Bildgeb. Verfahr. 2020, 193, 559–573. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, S.J.C.; Fan, R.E.; Seetharaman, A.; Chen, L.; Shao, W.; Bhattacharya, I.; Kim, Y.H.; Sood, R.; Borre, M.; Chung, B.I.; et al. Deep learning improves speed and accuracy of prostate gland segmentations on magnetic resonance imaging for targeted biopsy. J. Urol. 2021, 206, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Netzer, N.; Weißer, C.; Schelb, P.; Wang, X.; Qin, X.; Görtz, M.; Schütz, V.; Radtke, J.P.; Hielscher, T.; Schwab, C.; et al. Fully automatic deep learning in bi-institutional prostate magnetic resonance imaging: Effects of cohort size and heterogeneity. Investig. Radiol. 2021, 56, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Polymeri, E.; Sadik, M.; Kaboteh, R.; Borrelli, P.; Enqvist, O.; Ulén, J.; Ohlsson, M.; Trägårdh, E.; Poulsen, M.H.; Simonsen, J.A.; et al. Deep learning-based quantification of PET/CT prostate gland uptake: Association with overall survival. Clin. Physiol. Funct. Imaging 2019, 40, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Gentile, F.; Ferro, M.; Della Ventura, B.; La Civita, E.; Liotti, A.; Cennamo, M.; Bruzzese, D.; Velotta, R.; Terracciano, D. Optimised identification of high-grade prostate cancer by combining different PSA molecular forms and PSA density in a deep learning model. Diagnostics 2021, 11, 335. [Google Scholar] [CrossRef]
- Ma, L.; Guo, R.; Zhang, G.; Tade, F.; Schuster, D.M.; Nieh, P.; Master, V.; Fei, B. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion. Med. Imaging 2017, 10133, 101332O. [Google Scholar]
- Hung, A.J.; Chen, J.; Ghodoussipour, S.; Oh, P.J.; Liu, Z.; Nguyen, J.; Purushotham, S.; Gill, I.S.; Liu, Y. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int. 2019, 124, 487–495. [Google Scholar] [CrossRef]
Author | Year | Objective | Sample Size (n = Patients/Images) | Study Design | Model | AUC | DSC | SDI | MAE | Sn | Sp |
---|---|---|---|---|---|---|---|---|---|---|---|
A. MRI images | |||||||||||
Takeuchi et al. [7] | 2018 | To predict PCa using DL and multilayer ANN | 334 patients | Prospective | Stepwise ANN 5-hidden-layers | 0.76 (Step 200) | N/A | N/A | N/A | N/A | N/A |
Schelb et al. [8] | 2019 | To compare clinical evaluation performance with segmentation-optimized DL system in PCa diagnosis. | 312 patients; T2W and diffusion images used | Retrospective | U-Net | N/A | N/A | N/A | N/A | 96% | 22% |
Shao et al. [9] | 2021 | For PCa diagnosis using ProsRegNet (DL system) using MRI and histopathological data. | 152 patients; T2W images and HPE slices used. | Prospective | ProsRegNet and CNNGeometric | N/A | Cohort 1: 0.979 Cohort 2: 0.971 Cohort 3: 0.976 | N/A | N/A | N/A | N/A |
Hiremath et al. [10] | 2021 | To detect csPCa using integrated nomogram using DL, PI-RADS grading and clinical factors. | 592 patients; T2W and ADC images used | Retrospective | AlexNet and DenseNet | 0.76 | N/A | N/A | N/A | N/A | N/A |
Hiremath et al. [11] | 2020 | To assess the test-retest repeatability of U-Net (DL system) in identification of csPCa. | 112 patients; ADC/DWI images used | Prospective | U-Net | 0.8 | 0.8 | N/A | N/A | N/A | N/A |
Schelb et al. [12] | 2019 | The use DL algorithm (U-Net) for detection, localization, and segmentation of csPCa | 259 patients; T2W and DW images used. | Retrospective | U-Net | N/A | N/A | N/A | N/A | 98% | 24% |
Yan et al. [13] | 2021 | For deep combination learning of multi-level features for MR prostate segmentation using a propagation DNN | 80 patients; only T2W images used | Retrospective | MatConvNet | N/A | 0.84 | N/A | N/A | N/A | N/A |
Khosravi et al. [14] | 2021 | To develop an AI-based model for the early detection of PCa using MR pictures tagged with histopathology information. | 400 patients; T2W images used | Retrospective | GoogLenet | 0.89 | N/A | N/A | N/A | N/A | N/A |
Shiradkar et al. [15] | 2020 | To find any links between T1W and T2W MR fingerprinting data and the appropriate tissue compartment ratios in PCa and prostatitis whole mount histology. | 14 patients; T1W and T2 W images used | Retrospective | U-Net | 0.997 | N/A | N/A | N/A | N/A | N/A |
Winkel et al. [16] | 2020 | To incorporate DL and biparametric imaging for autonomous detection and classification of PI-RADS lesions. | 49 patients; T2W and DWI used | Prospective | ProstateAI | N/A | N/A | N/A | N/A | 87% | 50% |
B. Pathology | |||||||||||
AlDubayan et al. [17] | 2020 | To detect germline harmful mutations in PCa using DL techniques. | 1295 patients | Retrospective | Deep Variant and Genome Analysis Toolkit | 0.94 | N/A | N/A | N/A | CI:0.91–0.97 | N/A |
Kott et al. [18] | 2021 | To apply DL methods on biopsy specimen for histopathologic diagnosis and Gleason grading. | 85 images 25 patients | Prospective | 18-layer CNN | 0.83 | N/A | N/A | N/A | N/A | N/A |
Lucas et al. [19] | 2019 | To determine Gleason pattern and grade group in biopsy specimen using DL | 96 images 38 patients | Retrospective | Inception-v3 CNN | 0.92 | N/A | N/A | N/A | 90% | 93% |
Author | Year | Objective | Sample Size | Study Design | Model | AUC | DSC | SDI | MAE | Sn | Sp |
---|---|---|---|---|---|---|---|---|---|---|---|
Sumitomo et al. [20] | 2020 | To predict risk of urinary incontinence following RARP using DL model based on MRI images | 400 patients | Retrospective | CNN model | 0.775 | N/A | N/A | N/A | N/A | N/A |
Lai et al. [21] | 2021 | To apply DL methods for auto-segmentation of biparametric images into prostate zones and cancer regions. | 204 patients; T2W, DWI, ADC images used. | Retrospective | Segnet | 0.958 | N/A | N/A | N/A | N/A | N/A |
Sloun et al. [22] | 2020 | To use DL for automated real-time prostate segmentation on TRUS pictures. | 436 images 181 patients | Prospective | U-Net | 0.98 | N/A | N/A | N/A | N/A | N/A |
Schelb et al. [23] | 2020 | To compare DL system and multiple radiologists agreement on prostate MRI lesion segmentation | 165 patients; T2W and DWI used | Retrospective | U-Net | N/A | 0.22 | N/A | N/A | N/A | N/A |
Soerensen et al. [24] | 2021 | To develop a DL model for segmenting the prostate on MRI, and apply it in clinics as part of regular MR-US fusion biopsy. | 905 patients; T2W images | Prospective | ProGNet and U-Net | N/A | 0.92 | N/A | N/A | N/A | N/A |
Nils et al. [25] | 2021 | To assess the effects of diverse training data on DL performance in detecting and segmenting csPCa. | 1488 images; T2W and DWI images | Retrospective | U-Net | N/A | 0.90 | N/A | N/A | 97% | 90% |
Polymeri et al. [26] | 2019 | To validate DL model for automated PCa assessment on PET/CT and evaluation of PET/CT measurements as prognostic indicators | 100 patients | Retrospective | Fully CNN | N/A | N/A | 0.78 | N/A | N/A | N/A |
Gentile et al. [27] | 2021 | To identify high grade PCa using a combination of different PSA molecular forms and PSA density in a DL model. | 222 patients | Prospective | 7-hidden-layer CNN | N/A | N/A | N/A | N/A | 86% | 89% |
Ma et al. [28] | 2017 | To autonomously segment CT images using DL and multi-atlas fusion. | 92 patients | NA | CNN model | N/A | 0.86 | N/A | N/A | N/A | N/A |
Hung et al. [29] | 2019 | To develop a DL model to predict urinary continence recovery following RARP and then use it to evaluate the surgeon’s past medical results. | 79 patients | Prospective | DeepSurv | N/A | N/A | N/A | 85.9 | N/A | N/A |
Diagnosis Using MRI Images | Diagnosis Using CT Images | Treatment Using MRI Images | Treatment Using CT Images |
---|---|---|---|
DenseNet | NiftyNet | SegNet | 7-Hidden Layer CNN |
U-Net | InceptionV3 | U-Net | |
AlexNet | Stepwise Neural Network with five hidden layers | U-Net | ProgNet |
MatConvNet | 18-layer CNN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naik, N.; Tokas, T.; Shetty, D.K.; Hameed, B.M.Z.; Shastri, S.; Shah, M.J.; Ibrahim, S.; Rai, B.P.; Chłosta, P.; Somani, B.K. Role of Deep Learning in Prostate Cancer Management: Past, Present and Future Based on a Comprehensive Literature Review. J. Clin. Med. 2022, 11, 3575. https://doi.org/10.3390/jcm11133575
Naik N, Tokas T, Shetty DK, Hameed BMZ, Shastri S, Shah MJ, Ibrahim S, Rai BP, Chłosta P, Somani BK. Role of Deep Learning in Prostate Cancer Management: Past, Present and Future Based on a Comprehensive Literature Review. Journal of Clinical Medicine. 2022; 11(13):3575. https://doi.org/10.3390/jcm11133575
Chicago/Turabian StyleNaik, Nithesh, Theodoros Tokas, Dasharathraj K. Shetty, B.M. Zeeshan Hameed, Sarthak Shastri, Milap J. Shah, Sufyan Ibrahim, Bhavan Prasad Rai, Piotr Chłosta, and Bhaskar K. Somani. 2022. "Role of Deep Learning in Prostate Cancer Management: Past, Present and Future Based on a Comprehensive Literature Review" Journal of Clinical Medicine 11, no. 13: 3575. https://doi.org/10.3390/jcm11133575
APA StyleNaik, N., Tokas, T., Shetty, D. K., Hameed, B. M. Z., Shastri, S., Shah, M. J., Ibrahim, S., Rai, B. P., Chłosta, P., & Somani, B. K. (2022). Role of Deep Learning in Prostate Cancer Management: Past, Present and Future Based on a Comprehensive Literature Review. Journal of Clinical Medicine, 11(13), 3575. https://doi.org/10.3390/jcm11133575