Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MR Protocol and PI-RADS 3 Lesion Selection
2.3. Pathological Examination
2.4. Lesion Segmentation
2.5. Reproducible Literature Models Search and Assessment
2.5.1. T2-Based Hectors et al. Model
2.5.2. T2 and DWI-Based Jin et al. Model
2.6. Proposal of a New Model to Be Validated by Other Centers
3. Results
3.1. Assessment of Literature Features/Models
3.2. Proposed Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delongchamps, N.B.; Rouanne, M.; Flam, T.; Beuvon, F.; Liberatore, M.; Zerbib, M.; Cornud, F. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: Combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging: Increased prostate cancer detection with multiparametric MRI. BJU Int. 2011, 107, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef]
- Tamada, T.; Sone, T.; Jo, Y.; Toshimitsu, S.; Yamashita, T.; Yamamoto, A.; Tanimoto, D.; Ito, K. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: Comparison between normal and malignant prostatic tissues and correlation with histologic grade. J. Magn. Reson. Imaging 2008, 28, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, R.; Margolis, D.; Raman, S.; Sheng, K.; King, C.; Reiter, R.; Thomas, M.A. Correlation of Gleason Scores with Diffusion-Weighted Imaging Findings of Prostate Cancer. Adv. Urol. 2012, 2012, 374805. [Google Scholar] [CrossRef] [Green Version]
- Hambrock, T.; Somford, D.M.; Huisman, H.J.; van Oort, I.M.; Witjes, J.A.; Hulsbergen-van de Kaa, C.A.; Scheenen, T.; Barentsz, J.O. Relationship between Apparent Diffusion Coefficients at 3.0-T MR Imaging and Gleason Grade in Peripheral Zone Prostate Cancer. Radiology 2011, 259, 453–461. [Google Scholar] [CrossRef]
- Kitajima, K.; Takahashi, S.; Ueno, Y.; Miyake, H.; Fujisawa, M.; Kawakami, F.; Sugimura, K. Do apparent diffusion coefficient (ADC) values obtained using high b-values with a 3-T MRI correlate better than a transrectal ultrasound (TRUS)-guided biopsy with true Gleason scores obtained from radical prostatectomy specimens for patients with prostate cancer? Eur. J. Radiol. 2013, 82, 1219–1226. [Google Scholar] [CrossRef]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef]
- Schoots, I.G. MRI in early prostate cancer detection: How to manage indeterminate or equivocal PI-RADS 3 lesions? Transl. Androl. Urol. 2018, 7, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Padhani, A.R.; Barentsz, J.; Villeirs, G.; Rosenkrantz, A.B.; Margolis, D.J.; Turkbey, B.; Thoeny, H.C.; Cornud, F.; Haider, M.A.; Macura, K.J.; et al. PI-RADS Steering Committee: The PI-RADS Multiparametric MRI and MRI-directed Biopsy Pathway. Radiology 2019, 292, 464–474. [Google Scholar] [CrossRef]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading Committee. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Greer, M.D.; Brown, A.M.; Shih, J.H.; Summers, R.M.; Marko, J.; Law, Y.M.; Sankineni, S.; George, A.K.; Merino, M.J.; Pinto, P.A.; et al. Accuracy and agreement of PIRADSv2 for prostate cancer mpMRI: A multireader study: PIRADSv2 for Prostate Tumor Detection. J. Magn. Reson. Imaging 2017, 45, 579–585. [Google Scholar] [CrossRef]
- Hansen, N.L.; Kesch, C.; Barrett, T.; Koo, B.; Radtke, J.P.; Bonekamp, D.; Schlemmer, H.-P.; Warren, A.Y.; Wieczorek, K.; Hohenfellner, M.; et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int. 2017, 120, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Giambelluca, D.; Cannella, R.; Vernuccio, F.; Comelli, A.; Pavone, A.; Salvaggio, L.; Galia, M.; Midiri, M.; Lagalla, R.; Salvaggio, G. PI-RADS 3 Lesions: Role of Prostate MRI Texture Analysis in the Identification of Prostate Cancer. Curr. Probl. Diagn. Radiol. 2021, 50, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Bao, M.-L.; Wu, C.-J.; Zhang, J.; Zhang, Y.-D.; Shi, H.-B. A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions. Abdom. Radiol. 2020, 45, 4223–4234. [Google Scholar] [CrossRef] [PubMed]
- Hectors, S.J.; Chen, C.; Chen, J.; Wang, J.; Gordon, S.; Yu, M.; Al Hussein Al Awamlh, B.; Sabuncu, M.R.; Margolis, D.J.A.; Hu, J.C. Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions. J. Magn. Reson. Imaging 2021, 54, 1466–1473. [Google Scholar] [CrossRef]
- Brancato, V.; Aiello, M.; Basso, L.; Monti, S.; Palumbo, L.; Di Costanzo, G.; Salvatore, M.; Ragozzino, A.; Cavaliere, C. Evaluation of a multiparametric MRI radiomic-based approach for stratification of equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions. Sci. Rep. 2021, 11, 643. [Google Scholar] [CrossRef]
- Lim, C.S.; Abreu-Gomez, J.; Thornhill, R.; James, N.; Al Kindi, A.; Lim, A.S.; Schieda, N. Utility of machine learning of apparent diffusion coefficient (ADC) and T2-weighted (T2W) radiomic features in PI-RADS version 2.1 category 3 lesions to predict prostate cancer diagnosis. Abdom. Radiol. 2021, 46, 5647–5658. [Google Scholar] [CrossRef]
- Jin, P.; Yang, L.; Qiao, X.; Hu, C.; Hu, C.; Wang, X.; Bao, J. Utility of Clinical-Radiomic Model to Identify Clinically Significant Prostate Cancer in Biparametric MRI PI-RADS V2.1 Category 3 Lesions. Front. Oncol. 2022, 12, 840786. [Google Scholar] [CrossRef]
- Ferro, M.; de Cobelli, O.; Musi, G.; Del Giudice, F.; Carrieri, G.; Busetto, G.M.; Falagario, U.G.; Sciarra, A.; Maggi, M.; Crocetto, F.; et al. Radiomics in prostate cancer: An up-to-date review. Adv. Urol. 2022, 14, 17562872221109020. [Google Scholar] [CrossRef]
- Liu, X.; Elbanan, M.G.; Luna, A.; Haider, M.A.; Smith, A.D.; Sabottke, C.F.; Spieler, B.M.; Turkbey, B.; Fuentes, D.; Moawad, A.; et al. Radiomics in Abdominopelvic Solid-Organ Oncologic Imaging: Current Status. AJR Am. J. Roentgenol. 2022. preprint. [Google Scholar] [CrossRef] [PubMed]
- Castillo, T.J.M.; Starmans, M.P.A.; Arif, M.; Niessen, W.J.; Klein, S.; Bangma, C.H.; Schoots, I.G.; Veenland, J.F. A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade. Diagnostics 2021, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Bleker, J.; Yakar, D.; van Noort, B.; Rouw, D.; de Jong, I.J.; Dierckx, R.A.J.O.; Kwee, T.C.; Huisman, H. Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer. Insights Imaging 2021, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Hansen, N.; Patruno, G.; Wadhwa, K.; Gaziev, G.; Miano, R.; Barrett, T.; Gnanapragasam, V.; Doble, A.; Warren, A.; Bratt, O.; et al. Magnetic Resonance and Ultrasound Image Fusion Supported Transperineal Prostate Biopsy Using the Ginsburg Protocol: Technique, Learning Points, and Biopsy Results. Eur. Urol. 2016, 70, 332–340. [Google Scholar] [CrossRef]
- Epstein, J.I.; Allsbrook, W.C.; Amin, M.B.; Egevad, L.L.; ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2005, 29, 1228–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [Green Version]
- Bonekamp, D.; Kohl, S.; Wiesenfarth, M.; Schelb, P.; Radtke, J.P.; Götz, M.; Kickingereder, P.; Yaqubi, K.; Hitthaler, B.; Gählert, N.; et al. Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values. Radiology 2018, 289, 128–137. [Google Scholar] [CrossRef]
- Roscigno, M.; Stabile, A.; Lughezzani, G.; Pepe, P.; Galosi, A.B.; Naselli, A.; Naspro, R.; Nicolai, M.; La Croce, G.; Aljoulani, M.; et al. The Use of Multiparametric Magnetic Resonance Imaging for Follow-up of Patients Included in Active Surveillance Protocol. Can PSA Density Discriminate Patients at Different Risk of Reclassification? Clin. Genitourin. Cancer 2020, 18, e698–e704. [Google Scholar] [CrossRef]
- Bertelli, E.; Mercatelli, L.; Marzi, C.; Pachetti, E.; Baccini, M.; Barucci, A.; Colantonio, S.; Gherardini, L.; Lattavo, L.; Pascali, M.A.; et al. Machine and Deep Learning Prediction of Prostate Cancer Aggressiveness Using Multiparametric MRI. Front. Oncol. 2021, 11, 802964. [Google Scholar] [CrossRef]
- Venderink, W.; de Rooij, M.; Sedelaar, J.P.M.; Huisman, H.J.; Fütterer, J.J. Elastic Versus Rigid Image Registration in Magnetic Resonance Imaging-Transrectal Ultrasound Fusion Prostate Biopsy: A Systematic Review and Meta-Analysis. Eur. Urol. Focus 2018, 4, 219–227. [Google Scholar] [CrossRef] [PubMed]
Population Data | |
---|---|
Total, n | 80 |
Age (years), average ± SD (range) | 65.2 ± 7.6 (45–81) |
PSA (ng/mL), average ± SD (range) | 6.8 ± 4.8 (0.5–29.6) |
PSA Density, average ± SD (range) | 0.15 ± 0.15 (0.01–1.09) |
Mean ADC value within 2D ROI (mm2/s) | 0.000825 ± 0.000253 (0.00026–0.00141) |
PI-RADS 3 lesions histology, n/total (%) | |
GS ≥ 3 + 4 | 26/80 (32.5%) |
GS ≤ 3 + 3 | 16/80 (20.0%) |
Negative, BPH, atrophy | 38/80 (47.5%) |
Site of PI-RADS 3 lesions, n/total (%) | |
Transitional zone | 14/80 (17.5%) |
Peripheral zone | 66/80 (82.5%) |
T1-w | T2-w | DWI | |||
---|---|---|---|---|---|
Acquisition plane | Axial | Axial | Axial, coronal, sagittal | Axial | Axial |
Sequence | Fast spin-echo (SSFSE) | Gradient-recalled echo (GRE); before and after intravenous contrast (DCE) | Fast relaxation fast spin echo (FR-FSE) | Single-shot fast spin echo (SS-FSE) | b values: 50, 1000, 2000 s/mm2 |
Slice thickness | 4 mm | 3 mm | 3 mm | 4 mm | 3 mm |
Covered area | Pelvis | Prostate lodge and seminal vesicles | Prostate lodge and seminal vesicles | Pelvis | Prostate lodge |
Reference | Hectors 2021 [16] | Jin 2022 [19] |
---|---|---|
Number of subjects | 240 | 103 |
Scanner | 3T (GE Signa, Siemens Skyra) | 3T (Siemens Skyra) |
Endorectal coil | No | No |
Radiomics MR sequences | T2 | T2, ADC, DWI (1500 mm/s2) |
ROIs | 3D (1 operator) | 3D (2 operators) on T2 (ADC/DWI registered to T2) |
Radiomics platform | Pyradiomics | FeAture Explorer (Pyradiomics) |
Intensity normalization | [μ − 3σ:μ + 3σ] inside the VOI | (x − μ)/σ |
Resampling | 0.5 × 0.5 × 0.5 mm3 | 1 × 1 × 1 mm3 |
Quantization | 64 bins | Not specified |
Model assessment | Cross-validation + independent test set | Independent test set |
Selected radiomic feature details | Yes (20 features) | Yes (4 features) |
Clinical parameters in the model | No | Yes (PSA, age) |
Model | Random forest with SMOTE | Logistic regression |
Radiomics model performances (test set) | AUC 0.76 Sensitivity 75.0% Specificity 79.6% | AUC 0.88 Sensitivity 83% Specificity 65% |
Hector’s Features | p-Value |
---|---|
T2-original_shape_Elongation | 0.13 |
T2-original_shape_Flatness | 0.14 |
T2-original_firstorder_10Percentile | 0.94 |
T2-original_firstorder_InterquartileRange | 0.40 |
T2-original_firstorder_Mean | 0.43 |
T2-original_firstorder_Median | 0.51 |
T2-original_firstorder_RootMeanSquared | 0.38 |
T2-original_glcm_Autocorrelation | 0.01 |
T2-original_glcm_DifferenceEntropy | 0.06 |
T2-original_glcm_InverseVariance | 0.02 |
T2-original_glcm_JointAverage | 0.01 |
T2-original_glcm_JointEnergy | 0.04 |
T2-original_gldm_LargeDependenceLowGrayLevelEmphasis | 0.10 |
T2-original_glrlm_LongRunEmphasis | 0.05 |
T2-original_glrlm_LongRunHighGrayLevelEmphasis | 0.01 |
T2-original_glszm_GrayLevelVariance | 0.12 |
T2-original_glszm_SizeZoneNonUniformity | 0.03 |
T2-original_glszm_SmallAreaEmphasis | 0.01 |
T2-original_ngtdm_Complexity | 0.27 |
T2-original-ngtdm_Strength | 0.05 |
Jin’s Features | p-Value |
T2-wavelet-HHL_glcm_ClusterTendency | 0.005 |
DWI-original_glcm_ldmn | 0.74 |
DWI-wavelet-LLL_glrlm_LongRunLowGrayLevelEmphasis | 0.11 |
DWI-wavelet-LLL glszm_SizeZoneNonUniformityNormalized | 0.75 |
Selection Rate | Sensitivity | Specificity | |
---|---|---|---|
PSA Density | 100% | 66% ± 21% | 71% ± 13% |
T2-wavelet-LLL_glcm_InverseVariance | 87% | 74% ± 21% | 55% ± 15% |
ADC-wavelet-LLL_glszm_SizeZoneNonUniformity | 83% | 44% ± 19% | 83% ± 13% |
Trivariate linear discriminant model | - | 80% ± 18% | 76% ± 13% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsi, A.; De Bernardi, E.; Bonaffini, P.A.; Franco, P.N.; Nicoletta, D.; Simonini, R.; Ippolito, D.; Perugini, G.; Occhipinti, M.; Da Pozzo, L.F.; et al. Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model. J. Clin. Med. 2022, 11, 6304. https://doi.org/10.3390/jcm11216304
Corsi A, De Bernardi E, Bonaffini PA, Franco PN, Nicoletta D, Simonini R, Ippolito D, Perugini G, Occhipinti M, Da Pozzo LF, et al. Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model. Journal of Clinical Medicine. 2022; 11(21):6304. https://doi.org/10.3390/jcm11216304
Chicago/Turabian StyleCorsi, Andrea, Elisabetta De Bernardi, Pietro Andrea Bonaffini, Paolo Niccolò Franco, Dario Nicoletta, Roberto Simonini, Davide Ippolito, Giovanna Perugini, Mariaelena Occhipinti, Luigi Filippo Da Pozzo, and et al. 2022. "Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model" Journal of Clinical Medicine 11, no. 21: 6304. https://doi.org/10.3390/jcm11216304
APA StyleCorsi, A., De Bernardi, E., Bonaffini, P. A., Franco, P. N., Nicoletta, D., Simonini, R., Ippolito, D., Perugini, G., Occhipinti, M., Da Pozzo, L. F., Roscigno, M., & Sironi, S. (2022). Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model. Journal of Clinical Medicine, 11(21), 6304. https://doi.org/10.3390/jcm11216304