Effect of High Myopia on Delayed Absorption of Subretinal Fluid after Scleral Buckling Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. OCT&OCTA Assessment
2.3. Primary Outcome Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mimouni, M.; Jaouni, T.; Ben-Yair, M.; Almus, S.; Derman, L.; Ehrenberg, S.; Almeida, D.; Barak, Y.; Zayit-Soudry, S.; Averbukh, E. Persistent loculated subretinal fluid after rhegmatogenous retinal detachment surgery. Retina 2020, 40, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Woo, S.; Park, K.; Yu, Y.; Chung, H. Comparison of persistent submacular fluid in vitrectomy and scleral buckle surgery for macula-involving retinal detachment. Am. J. Ophthalmol. 2010, 149, 623–629.e621. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Fu, T.; Zhang, T.; Wu, X.; Ji, Q.; Tan, R. Scleral buckling versus vitrectomy for macula-off rhegmatogenous retinal detachment as accessed with spectral-domain optical coherence tomography: A retrospective observational case series. BMC Ophthalmol. 2013, 13, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitry, D.; Charteris, D.; Fleck, B.; Campbell, H.; Singh, J. The epidemiology of rhegmatogenous retinal detachment: Geographical variation and clinical associations. Br. J. Ophthalmol. 2010, 94, 678–684. [Google Scholar] [CrossRef]
- Kim, M.; Park, S.; Park, K.; Woo, S. Different Mechanistic Association of Myopia with Rhegmatogenous Retinal Detachment between Young and Elderly Patients. BioMed Res. Int. 2019, 2019, 5357241. [Google Scholar] [CrossRef] [Green Version]
- Chantarasorn, Y.; Oellers, P.; Eliott, D. Choroidal Thickness Is Associated with Delayed Subretinal Fluid Absorption after Rhegmatogenous Retinal Detachment Surgery. Ophthalmol. Retin. 2019, 3, 947–955. [Google Scholar] [CrossRef]
- Benson, S.; Schlottmann, P.; Bunce, C.; Xing, W.; Charteris, D. Optical coherence tomography analysis of the macula after scleral buckle surgery for retinal detachment. Ophthalmology 2007, 114, 108–112. [Google Scholar] [CrossRef]
- Long, K.; Meng, Y.; Chen, J.; Luo, J. Multifactor analysis of delayed absorption of subretinal fluid after scleral buckling surgery. BMC Ophthalmol. 2021, 21, 86. [Google Scholar] [CrossRef]
- Kim, Y.; Ahn, J.; Woo, S.; Hwang, D.; Park, K. Multiple subretinal fluid blebs after successful retinal detachment surgery: Incidence, risk factors, and presumed pathophysiology. Am. J. Ophthalmol. 2014, 157, 834–841. [Google Scholar] [CrossRef]
- Abouzeid, H.; Becker, K.; Holz, F.; Wolfensberger, T. Submacular fluid after encircling buckle surgery for inferior macula-off retinal detachment in young patients. Acta Ophthalmol. 2009, 87, 96–99. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Lee, J. Scleral buckling in the management of rhegmatogenous retinal detachment: Patient selection and perspectives. Clin. Ophthalmol. 2018, 12, 1605–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherm, P.; Pettenkofer, M.; Maier, M.; Lohmann, C.; Feucht, N. Choriocapillary Blood Flow in Myopic Subjects Measured With OCT Angiography. Ophthalmic Surg. Lasers Imaging Retin. 2019, 50, e133–e139. [Google Scholar] [CrossRef] [PubMed]
- Gregory, C.; Converse, C.; Foulds, W. Effect of glycoconjugates on rod outer segment phagocytosis by retinal pigment epithelial explants in vitro assessed by a specific double radioimmunoassay procedure. Curr. Eye Res. 1990, 9, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Luu, C.; Lau, A.; Lee, S. Multifocal electroretinogram in adults and children with myopia. Arch. Ophthalmol. 2006, 124, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Wang, Q.; Wei, W.; Jonas, J. Optical coherence tomographic angiography in central serous chorioretinopathy. Retina 2016, 36, 2051–2058. [Google Scholar] [CrossRef]
- Pang, C.; Sarraf, D.; Freund, K. Extreme choroidal thinning in high myopia. Retina 2015, 35, 407–415. [Google Scholar] [CrossRef]
- Wong, C.; Teo, Y.; Tsai, S.; Ting, S.; Yeo, Y.; Wong, W.; Lee, S.; Wong, T.; Cheung, C. Characterization of the choroidal vasculature in myopic maculopathy with optical coherence tomographic angiography. Retina 2019, 39, 1742–1750. [Google Scholar] [CrossRef]
- Teberik, K.; Kaya, M. Retinal and Choroidal Thickness in Patients with High Myopia without Maculopathy. Pak. J. Med. Sci. 2017, 33, 1438–1443. [Google Scholar] [CrossRef]
- El-Shazly, A.; Farweez, Y.; ElSebaay, M.; El-Zawahry, W. Correlation between choroidal thickness and degree of myopia assessed with enhanced depth imaging optical coherence tomography. Eur. J. Ophthalmol. 2017, 27, 577–584. [Google Scholar] [CrossRef]
- Ho, M.; Liu, D.T.; Chan, V.C.; Lam, D.S. Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology 2013, 120, 1909–1914. [Google Scholar] [CrossRef]
- Ikuno, Y.; Tano, Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3876–3880. [Google Scholar] [CrossRef]
- Jonas, J.; Wang, Y.; Dong, L.; Guo, Y.; Panda-Jonas, S. Advances in myopia research anatomical findings in highly myopic eyes. Eye Vis. 2020, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Alshareef, R.; Khuthaila, M.; Januwada, M.; Goud, A.; Ferrara, D.; Chhablani, J. Choroidal vascular analysis in myopic eyes: Evidence of foveal medium vessel layer thinning. Int. J. Retin. Vitr. 2017, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, E.; Cho, G.; Bae, K.; Lee, J.; Han, G.; Kang, S. Delayed Absorption of Subretinal Fluid after Retinal Reattachment Surgery and Associated Choroidal Features. Korean J. Ophthalmol. 2017, 31, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, S.; Kim, H.; Lee, C. Comparison of short-term efficacy between oral spironolactone treatment and photodynamic therapy for the treatment of nonresolving central serous chorioretinopathy. Retina 2019, 39, 127–133. [Google Scholar] [CrossRef]
- Nguyen, J.; Nguyen-Cuu, J.; Mamou, J.; Routledge, B.; Yee, K.; Sebag, J. Vitreous Structure and Visual Function in Myopic Vitreopathy Causing Vision-Degrading Myodesopsia. Am. J. Ophthalmol. 2021, 224, 246–253. [Google Scholar] [CrossRef]
- Holekamp, N.; Harocopos, G.; Shui, Y.; Beebe, D. Myopia and axial length contribute to vitreous liquefaction and nuclear cataract. Arch. Ophthalmol. 2008, 126, 744. [Google Scholar] [CrossRef] [Green Version]
- Berman, E.; Michaelson, I. The chemical composition of the human vitreous body as related to age and myopia. Exp. Eye Res. 1964, 3, 9–15. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, S.; Gu, Z.; Zhang, Y.; Li, L.; Yang, N. Natural history of persistent subretinal fluid following the successful repair of rhegmatogenous retinal detachment. Int. J. Ophthalmol. 2020, 13, 1621–1628. [Google Scholar] [CrossRef]
Characteristic | n (%) |
---|---|
Sex | |
Male | 42 (46.67) |
Female | 48 (53.33) |
Age | |
<35 years | 37 (41.11) |
≥35 years | 53 (58.89) |
High myopia | |
Yes | 46 (51.11) |
No | 44 (48.89) |
Absorption time of SRF | |
≤3 months | 47 (52.22) |
>3 months | 43 (47.78) |
Absorbed | Delayed Absorption | X2 | p | |
---|---|---|---|---|
High myopia | 0.729 | 0.408 | ||
Yes | 22 (47.83) | 24 (52.17) | ||
No | 25 (56.82) | 19 (43.18) | ||
Age | 5.210 | 0.032 | ||
<35 years | 14 (37.84) | 23 (62.16) | ||
≥35 years | 33 (62.26) | 20 (37.74) |
β | Wald X2 | Sig | OR (95% CI) | |
---|---|---|---|---|
High myopia | 0.010 | 0.000 | 0.983 | 1.010 (0.404–2.523) |
Age | 0.993 | 4.384 | 0.036 | 2.701 (1.066–6.844) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Long, K.; Chen, J.; Luo, J. Effect of High Myopia on Delayed Absorption of Subretinal Fluid after Scleral Buckling Surgery. J. Clin. Med. 2022, 11, 3906. https://doi.org/10.3390/jcm11133906
Meng Y, Long K, Chen J, Luo J. Effect of High Myopia on Delayed Absorption of Subretinal Fluid after Scleral Buckling Surgery. Journal of Clinical Medicine. 2022; 11(13):3906. https://doi.org/10.3390/jcm11133906
Chicago/Turabian StyleMeng, Yongan, Kejun Long, Jing Chen, and Jing Luo. 2022. "Effect of High Myopia on Delayed Absorption of Subretinal Fluid after Scleral Buckling Surgery" Journal of Clinical Medicine 11, no. 13: 3906. https://doi.org/10.3390/jcm11133906
APA StyleMeng, Y., Long, K., Chen, J., & Luo, J. (2022). Effect of High Myopia on Delayed Absorption of Subretinal Fluid after Scleral Buckling Surgery. Journal of Clinical Medicine, 11(13), 3906. https://doi.org/10.3390/jcm11133906