Quantitative Measurements of Vessel Density and Blood Flow Areas Primary Angle Closure Diseases: A Study of Optical Coherence Tomography Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Healthy Control Subjects
2.2. PACD Patients
2.3. OCTA Examination
2.4. Vessel Densities
2.5. Blood Flow Area
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quigley, H.A. Number of people with glaucoma worldwide. Br. J. Ophthalmol. 1996, 80, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Weinreb, R.N. New definitions of glaucoma. Curr. Opin. Ophthalmol. 1997, 8, 38–41. [Google Scholar] [CrossRef]
- Flammer, J. The vascular concept of glaucoma. Surv. Ophthalmol. 1994, 38, S3–S6. [Google Scholar] [CrossRef]
- Foster, P.J.; Buhrmann, R.; Quigley, H.A.; Johnson, G.J. The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 2002, 86, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Morrison, J.C.; Tokayer, J.; Tan, O.; Lombardi, L.; Baumann, B.; Lu, C.D.; Choi, W.; Fujimoto, J.G.; Huang, D. Quantitative OCT angiography of optic nerve head blood flow. Biomed. Opt. Express 2012, 3, 3127–3137. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Wei, E.; Wang, X.; Zhang, X.; Morrison, J.C.; Parikh, M.; Lombardi, L.H.; Gattey, D.M.; Armour, R.L.; Edmunds, B.; et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014, 121, 1322–1332. [Google Scholar] [CrossRef] [Green Version]
- Leveque, P.M.; Zeboulon, P.; Brasnu, E.; Baudouin, C.; Labbe, A. Optic disc vascularization in glaucoma: Value of spectral-domain optical coherence tomography angiography. J. Ophthalmol. 2016, 2016, 6956717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Jia, Y.; Takusagawa, H.L.; Pechauer, A.D.; Edmunds, B.; Lombardi, L.; Davis, E.; Morrison, J.C.; Huang, D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015, 133, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Yarmohammadi, A.; Zangwill, L.M.; Diniz-Filho, A.; Suh, M.H.; Manalastas, P.I.; Fatehee, N.; Yousefi, S.; Belghith, A.; Saunders, L.J.; Medeiros, F.A.; et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT451–OCT459. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.L.; Pradhan, Z.S.; Weinreb, R.N.; Reddy, H.B.; Riyazuddin, M.; Dasari, S.; Palakurthy, M.; Puttaiah, N.K.; Rao, D.A.; Webers, C.A. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am. J. Ophthalmol. 2016, 171, 75–83. [Google Scholar] [CrossRef]
- Lee, E.J.; Lee, K.M.; Lee, S.H.; Kim, T.W. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6265–6270. [Google Scholar] [CrossRef] [Green Version]
- Rao, H.L.; Kadambi, S.V.; Weinreb, R.N.; Puttaiah, N.K.; Pradhan, Z.S.; Rao, D.A.S.; Kumar, R.S.; Webers, C.A.B.; Shetty, R. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br. J. Ophthalmol. 2017, 101, 1066–1070. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, C.; Liu, L.; Jia, Y.; Zhang, Y.; Zhang, Y.; Zhang, H.; Zhong, Y.; Huang, D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Primary Angle-Closure Glaucoma. Am. J. Ophthalmol. 2017, 182, 194–200. [Google Scholar] [CrossRef]
- Rao, H.L.; Pradhan, Z.S.; Weinreb, R.N.; Riyazuddin, M.; Dasari, S.; Venugopal, J.P.; Puttaiah, N.K.; Rao, D.A.S.; Devi, S.; Mansouri, K.; et al. Vessel Density and Structural Measurements of Optical Coherence Tomography in Primary Angle Closure and Primary Angle Closure Glaucoma. Am. J. Ophthalmol. 2017, 177, 106–115. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, F.Y.; Cheung, C.Y.; Chen, H. Different Effect of Media Opacity on Vessel Density Measured by Different Optical Coherence Tomography Angiography Algorithms. Transl. Vis. Sci. Technol. 2020, 9, 19. [Google Scholar] [CrossRef]
- Huang, W.; Wang, W.; Gao, X.; Li, X.; Li, Z.; Zhou, M.; Chen, S.; Zhang, X. Choroidal thickness in the subtypes of angle closure: An EDI-OCT study. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7849–7853. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Tan, O.; Tokayer, J.; Potsaid, B.; Wang, Y.; Liu, J.J.; Kraus, M.F.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 2012, 20, 4710–4725. [Google Scholar] [CrossRef] [Green Version]
- Rao, H.L.; Pradhan, Z.S.; Weinreb, R.N.; Riyazuddin, M.; Dasari, S.; Venugopal, J.P.; Puttaiah, N.K.; Rao, D.A.; Devi, S.; Mansouri, K.; et al. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS ONE 2017, 12, e0173930. [Google Scholar] [CrossRef] [Green Version]
- Bazvand, F.; Mirshahi, R.; Fadakar, K.; Faghihi, H.; Sabour, S.; Ghassemi, F. The quantitative measurements of vascular density and flow area of optic nerve head using optical coherence tomography angiography. J. Glaucoma 2017, 26, 735–741. [Google Scholar] [CrossRef]
- Akagi, T.; Iida, Y.; Nakanishi, H.; Terada, N.; Morooka, S.; Yamada, H.; Hasegawa, T.; Yokota, S.; Yoshikawa, M.; Yoshimura, N. Microvascular density in glaucomatous eyes with hemifield visual field defects: An optical coherence tomography angiography study. Am. J. Ophthalmol. 2016, 168, 237–249. [Google Scholar] [CrossRef]
- Xu, H.; Yu, J.; Kong, X.; Sun, X.; Jiang, C. Macular microvasculature alterations in patients with primary open-angle glaucoma: A cross-sectional study. Medicine 2016, 95, e4341. [Google Scholar] [CrossRef]
- Yarmohammadi, A.; Zangwill, L.M.; Diniz-Filho, A.; Suh, M.H.; Yousefi, S.; Saunders, L.J.; Belghith, A.; Manalastas, P.I.; Medeiros, F.A.; Weinreb, R.N. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 2016, 123, 2498–2508. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zong, Y.; Yu, J.; Jiang, C.; He, Y.; Jia, Y.; Huang, D.; Sun, X. Reduced Retinal Vessel Density in Primary Angle Closure Glaucoma: A Quantitative Study Using Optical Coherence Tomography Angiography. J. Glaucoma 2018, 27, 322–327. [Google Scholar] [CrossRef]
- Liu, K.; Xu, H.; Jiang, H.; Wang, H.; Wang, P.; Xu, Y.; Li, F.; Xu, B.; Yao, X.; Zou, J. Macular vessel density and foveal avascular zone parameters in patients after acute primary angle closure determined by OCT angiography. Sci. Rep. 2020, 10, 18717. [Google Scholar] [CrossRef]
- Zha, Y.; Chen, J.; Liu, S.; Zhuang, J.; Cai, J. Vessel Density and Structural Measurements in Primary Angle-Closure Suspect Glaucoma Using Optical Coherence Tomography Angiography. BioMed Res. Int. 2020, 2020, 7526185. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, S.; Zhang, M. Peripapillary vessel density measurement of quadrant and clock-hour sectors in primary angle closure glaucoma using optical coherence tomography angiography. BMC Ophthalmol. 2021, 21, 328. [Google Scholar] [CrossRef]
- Suwan, Y.; Fard, M.A.; Petpiroon, P.; Supakontanasan, W.; Pruksacholavit, R.; Tantraworasin, A.; Teekhasaenee, C.; Ritch, R. Peripapillary Perfused Capillary Density in Acute Angle-Closure Glaucoma: An Optical Coherence Tomography Angiography Study. Asia-Pac. J. Ophthalmol. 2021, 10, 167–172. [Google Scholar] [CrossRef]
- Hou, T.Y.; Kuang, T.M.; Ko, Y.C.; Chang, Y.F.; Liu, C.J.; Chen, M.J. Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma. Sci. Rep. 2020, 10, 5608. [Google Scholar] [CrossRef]
- Nie, L.; Xu, J.; Fu, L.; Ye, Y.; Chan, Y.K.; Li, T.; Pan, W.; Lu, P. Changes in circumpapillary retinal vessel density after acute primary angle closure episode via OCT angiography. Int. Ophthalmol. 2021, 41, 2389–2397. [Google Scholar] [CrossRef]
- Morales-Fernandez, L.; Jimenez-Santos, M.; Martinez-de-la-Casa, J.M.; Sanchez-Jean, R.; Nieves, M.; Saenz-Frances, F.; Garcia-Saenz, S.; Perucho, L.; Gomez-de-Liano, R.; Garcia-Feijoo, J. Diagnostic capacity of SD-OCT segmented ganglion cell complex versus retinal nerve fiber layer analysis for congenital glaucoma. Eye 2018, 32, 1338–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojima, T.; Tanabe, T.; Hangai, M.; Yu, S.; Morishita, S.; Yoshimura, N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn. J. Ophthalmol. 2007, 51, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Tan, O.; Li, G.; Lu, A.T.; Varma, R.; Huang, D.; Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 2008, 115, 949–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, D.C.; Raza, A.S.; de Moraes, C.G.; Liebmann, J.M.; Ritch, R. Glaucomatous damage of the macula. Prog. Retin. Eye Res. 2013, 32, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Moghimi, S.; Proudfoot, J.A.; Ghahari, E.; Penteado, R.C.; Bowd, C.; Yang, D.; Weinreb, R.N. Ganglion Cell Complex Thickness and Macular Vessel Density Loss in Primary Open-Angle Glaucoma. Ophthalmology 2020, 127, 1043–1052. [Google Scholar] [CrossRef]
- Cheng, K.K.W.; Tan, B.L.; Brown, L.; Gray, C.; Bianchi, E.; Dhillon, B.; MacGillivray, T.; Tatham, A.J. Macular vessel density, branching complexity and foveal avascular zone size in normal tension glaucoma. Sci. Rep. 2021, 11, 1056. [Google Scholar] [CrossRef]
- Huo, Y.; Thomas, R.; Guo, Y.; Zhang, W.; Li, L.; Cao, K.; Wang, H.; Wang, N. Superficial macular vessel density in eyes with mild, moderate, and severe primary open-angle glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 1955–1963. [Google Scholar] [CrossRef]
- Bojikian, K.D.; Chen, C.L.; Wen, J.C.; Zhang, Q.; Xin, C.; Gupta, D.; Mudumbai, R.C.; Johnstone, M.A.; Wang, R.K.; Chen, P.P. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography. PLoS ONE 2016, 11, e0154691. [Google Scholar] [CrossRef]
APAC (n = 31) | PACG (n = 33) | PAC (n = 25) | PACS (n = 23) | NC (n = 35) | P1 | P2 | P3 | P4 | |
---|---|---|---|---|---|---|---|---|---|
Age | 59.67 ± 8.38 | 60.86 ± 7.90 | 58.87 ± 6.25 | 59.81 ± 10.65 | 58.66 ± 10.57 | p = 0.108 | |||
Sex (M:F) | 6:29 | 5:28 | 3:22 | 4:19 | 7:28 | ||||
IOP (mmHg) | 12 (10.9, 14.2) | 13.0 (11.0, 16.2) | 13.3 (12.1, 14.5) | 13.5 (12.1, 17.0) | 13.8 (11.8, 15.1) | p = 0.456 | |||
MD (dB) | −11.48 (−7.72, 2.22) | −11.69 (−28.3, −6.76) | −2.05 (−3.07, 1.07) | −2.42 (−3.37, 1.52) | −2.62 (−3.53, −0.06) | <0.001 | 0.054 | 0.737 | 0.754 |
PSD (dB) | 3.32 (2.04, 8.32) | 6.14 (2.04, 8.04) | 1.69 (1.46, 2.07) | 1.79 (1.38, 2.69) | 1.79 (1.35, 2.40) | 0.009 | <0.001 | 0.937 | 0.872 |
RNFL (μm) | 76.50 (64.25, 93.00) | 69.50 (56.00, 95.50) | 101.50 (95.75, 109.25) | 102.00 (91.75, 108.25) | 98.31 ± 10.19 | <0.001 | <0.001 | 0.492 | 0.793 |
GCCth (μm) | 81.18 (72.00, 92.86) | 75.43 (63.93, 89.15) | 96.18 (91.81, 101.35) | 97.94 (92.76, 104.35) | 95.15 ± 8.58 | 0.009 | <0.001 | 0.731 | 0.262 |
Trabeculectomy (eyes) | 23 | 33 | 0 | 0 | 0 | ||||
Phacoemulsification (eyes) | 12 | 0 | 0 | 0 | 0 | ||||
Peripheral iridectomy (eyes) | 6 | 0 | 19 | 23 | 0 |
APAC (n = 35) | PACG (n = 33) | PAC (n = 25) | PACS (n = 23) | NC (n = 35) | P1 | P2 | P3 | P4 | |
---|---|---|---|---|---|---|---|---|---|
Nerve head-whole image (%) | 48.18 (40.91, 50.35) | 42.21 (35.90, 48.75) | 53.49 (51.47, 56.94) | 52.06 (49.76, 56.06) | 51.85 (50.34, 54.99) | <0.001 | <0.001 | 0.54 | 0.86 |
Perpapillary (%) | 52.61 ± 3.18 | 45.58 ± 9.23 | 58.13 ± 4.89 | 56.60 ± 5.02 | 57.35 ± 3.43 | <0.001 | 0.002 | 0.70 | 0.59 |
inside disc (%) | 43.19 (36.64, 46.70) | 40.12 (34.03, 45.04) | 49.27 (45.04, 52.32) | 47.98 (41.68, 51.53) | 46.72 (43.76, 51.14) | 0.003 | <0.001 | 0.40 | 0.96 |
Nasal (%) | 48.05 (38.50, 53.05) | 43.40 (36.39, 51.03) | 55.08 (51.83, 60.60 | 53.96 (50.38, 57.98) | 55.87 (52.07, 57.94) | 0.001 | <0.001 | 0.79 | 0.85 |
Inferonasal (%) | 49.66 (45.49, 56.46) | 46.76 (42.13, 52.66) | 60.05 (54.49, 62.37) | 59.03 (54.22, 63.66) | 59.81 (55.72, 62.04) | <0.001 | <0.001 | 0.95 | 0.80 |
Inferotemporal (%) | 56.73 (42.92, 61.21) | 48.94 (38.04, 60.99) | 61.60 (58.64, 66.48) | 62.39 (59.73, 64.69) | 63.62 (59.97, 66.28) | <0.001 | <0.001 | 0.69 | 0.74 |
Superotemporal (%) | 54.03 (42.70, 58.76) | 47.33 (34.67, 55.57) | 61.44 (57.81, 66.03) | 61.44 (57.81, 66.03) | 61.53 (57.91, 64.42) | <0.001 | <0.001 | 0.99 | 0.46 |
Superonasal (%) | 49.06 (40.95, 54.83) | 43.99 (38.26, 50.48) | 56.30 (54.32, 61.42) | 56.29 (51.56, 61.64) | 57.03 (54.13, 60.08) | 0.004 | <0.001 | 0.97 | 0.97 |
Temporal (%) | 52.51 (43.84, 56.21) | 49.09 (38.26, 56.54) | 59.42 (56.63, 63.79) | 53.44 (49.39, 60.03) | 58.61 (54.22, 60.31) | 0.004 | 0.003 | 0.31 | 0.27 |
RPC-whole image (%) | 44.11 (37.62, 47.76) | 39.17 (30.70, 48.37) | 51.17 (49.46, 56.68) | 52.85 (48.48, 52.02) | 51.50 (50.48, 53.24) | <0.001 | <0.001 | 0.96 | 0.72 |
Perpapillary (%) | 52.39 (44.96, 56.23) | 48.39 (40.85, 54.30) | 59.66 (56.70, 61.90) | 58.44 (54.83, 62.46) | 60.87 (58.07, 62.67) | <0.001 | <0.001 | 0.58 | 0.28 |
inside disc (%) | 23.95 (16.85, 35.21) | 19.52 (11.04, 27.62) | 37.90 (24.55, 46.85) | 40.20 (32.19, 44.96) | 38.48 (34.42, 43.14) | <0.001 | <0.001 | 0.62 | 0.92 |
Nasal (%) | 47.33 (41.79, 52.82) | 43.87 (34.28, 50.86) | 57.66 (50.59, 60.03) | 55.91 (51.70, 59.94) | 57.2 (55.10, 60.82) | <0.001 | <0.001 | 0.75 | 0.54 |
Inferonasal (%) | 50.16 (43.56, 56.08) | 47.00 (39.66, 54.48) | 58.98 (52.67, 61.70) | 60.98 (58.93, 63.00) | 60.60 (58.03, 63.56) | <0.001 | <0.001 | 0.34 | 0.80 |
Inferotemporal (%) | 57.18 (45.74, 61.73) | 51.44 (35.8, 61.01) | 63.74 (60.30, 67.57) | 64.04 (60.70, 62.29) | 66.55 (62.37, 69.37) | <0.001 | <0.001 | 0.37 | 0.57 |
Superotemporal (%) | 54.78 (45.89, 60.58) | 44.34 (34.38, 57.49) | 65.30 (57.68, 67.26) | 63.13 (57.92, 65.90) | 64.30 (61.64, 66.14) | <0.001 | <0.001 | 0.82 | 0.38 |
Superonasal (%) | 48.42 (41.50, 52.72) | 41.92 (37.07, 53.36) | 57.18 (53.46, 59.45) | 58.69 (52.75, 60.20) | 58.81 (55.67, 62.76) | <0.001 | <0.001 | 0.32 | 0.41 |
temporal (%) | 54.71 (50.79, 50.08) | 52.38 (39.36, 59.39) | 62.87 (60.05, 65.36) | 57.10 (53.37, 61.26) | 62.14 (58.00, 64.38) | 0.002 | 0.001 | 0.54 | 0.71 |
APAC (n = 31) | PACG (n = 33) | PAC (n = 25) | PACS (n = 23) | NC (n = 35) | P1 | P2 | P3 | P4 | |
---|---|---|---|---|---|---|---|---|---|
Optic Disc | |||||||||
Nerve head-FA (mm2) | 1.27 (1.16, 1.42) | 1.26 (1.14, 1.40) | 1.57 (1.47, 1.67) | 1.49 (1.39, 1.56) | 1.49 (1.37, 1.57) | 0.008 | 0.004 | 0.44 | 0.95 |
Vitreous-FA (mm2) | 0.74 (0.62, 0.88) | 0.69 (0.62, 0.85) | 0.96 (0.93, 1.03) | 0.89 (0.38, 1.04) | 0.93 (0.84, 1.04) | 0.002 | <0.001 | 0.39 | 0.71 |
RPC-FA (mm2) | 0.89 (0.70, 1.150) | 0.72 (0.48, 0.94) | 1.35 (0.96, 1.52) | 1.34 (1.07, 1.43) | 1.03 (0.87, 1.38) | 0.05 | 0.01 | 0.11 | 0.10 |
Choroid-FA (mm2) | 1.49 (1.34, 1.59) | 1.53 (1.42, 1.59) | 1.44 (1.24, 1.63) | 1.37 (1.26, 1.49) | 1.56 (1.39, 1.61) | p = 0.14 | |||
Macular | |||||||||
Superficial | 1.25 (1.15, 1.40) | 1.33 (1.15, 1.46) | 1.60 (1.43, 1.69) | 1.51 (1.35, 1.56) | 1.51 (1.35, 1.58) | p = 0.53 | |||
Deep | 0.72 (0.62.0.93) | 0.77 (0.64, 0.91) | 0.95 (0.77, 1.04) | 0.88 (0.83, 1.04) | 0.93 (0.83, 1.04) | p = 0.27 | |||
Outer Retina | 0.86 (0.62, 1.18) | 0.82 (0.49, 1.10) | 1.35 (0.86, 1.55) | 1.21 (1.05, 1.42) | 1.10 (0.88, 1.41) | p = 0.22 | |||
Choroid Cap | 1.49 (1.33, 1.59) | 1.54 (1.46, 1.59) | 1.43 (1.21, 1.55) | 1.39 (1.33, 1.52) | 1.51 (1.30, 1.59) | p = 0.33 |
APAC (n = 31) | PACG (n = 33) | PAC (n = 25) | PACS (n = 23) | NC (n = 35) | P1 | P2 | P3 | P4 | |
---|---|---|---|---|---|---|---|---|---|
Superficial (%) | 40.00 (37.72, 44.40) | 39.99 (37.72, 44.40) | 43.40 (41.25, 46.63) | 45.02 (42.64, 47.08) | 43.19 (40.92, 49.79) | 0.59 | 0.51 | 0.82 | 0.77 |
Deep (%) | 49.65 (45.62, 51.71) | 49.65 (45.62, 51.71) | 51.00 (48.76, 57.35) | 51.61 (47.46, 53.34) | 52.58 (48.88, 56.78) | 0.87 | 0.12 | 0.68 | 0.43 |
Outer Retina (%) | 45.15 (43.25, 46.64) | 45.15 (43.43, 46.64) | 44.80 (42.39, 45.72) | 43.81 (41.82, 44.94) | 43.73 (42.79, 44.32) | p = 0.29 | |||
Choroid Cap (%) | 63.43 (62.16, 63.67) | 62.43 (62.16, 63.67) | 63.43 (61.67, 64.78) | 64.09 (62.75, 65.08) | 62.77 (62.42, 64.34) | p = 0.30 |
APAC (n = 31) | PACG (n = 33) | PAC (n = 25) | PACS (n = 23) | NC (n = 35) | P1 | P2 | P3 | P4 | |
---|---|---|---|---|---|---|---|---|---|
Fovea (%) | 45.06 (41.91, 47.45) | 45.06 (41.91, 47.45) | 47.34 (41.31, 49.97) | 47.67 (44.79, 50.61) | 50.50 (44.06, 51.25) | p = 0.79 | |||
ParaFovea (%) | 25.73 (22.88, 30.89) | 25.73 (22.88, 30.89) | 24.18 (19.85, 28.69) | 26.27 (23.20, 35.15) | 31.19 (25.24, 36.97) | p = 0.15 | |||
Superior-Hemi (%) | 44.28 (42.66, 46.64) | 45.02 (41.48, 47.86) | 47.66 (41.91, 51.12) | 46.56 (43.42, 48.71) | 47.44 (44.08, 50.05) | 0.14 | 0.07 | 0.64 | 0.69 |
Inferior-Hemi (%) | 44.22 (41.22, 46.47) | 43.22 (41.86, 45.84) | 47.35 (44.99, 49.95) | 47.94 (43.57, 49.47) | 50.09 (43.47, 51, 16) | 0.09 | 0.05 | 0.73 | 0.49 |
Tempo (%) | 45.19 (42.93, 48.17) | 45.61 (43.17, 47.62) | 47.76 (45.73, 50.71) | 48.77 (45.81, 49.72) | 49.98 (47.08, 53.10) | 0.002 | 0.001 | 0.32 | 0.28 |
Superior (%) | 44.07 (40.97, 45.69) | 45.05 (43.09, 46.51) | 45.83 (40.56, 51.49) | 46.06 (43.75, 49.29) | 44.45 (43.62, 49.41) | 0.23 | 0.15 | 0.76 | 0.97 |
Nasal (%) | 45.17 (42.04, 48.15) | 45.05 (43.09, 46.51) | 46.95 (42.26, 49.74) | 47.14 (44.38, 48.90) | 45.72 (43.22, 51.52) | 0.40 | 0.38 | 0.84 | 0.94 |
Inferior (%) | 43.13 (39.95, 44.92) | 43.33 (39.32, 46.21) | 46.45 (42.63, 50.53) | 47.40 (41.47, 50.66) | 49.52 (47.79, 50.12) | 0.16 | 0.13 | 0.42 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.; Zuo, C.; Gao, X.; Huang, D.; Lin, M. Quantitative Measurements of Vessel Density and Blood Flow Areas Primary Angle Closure Diseases: A Study of Optical Coherence Tomography Angiography. J. Clin. Med. 2022, 11, 4040. https://doi.org/10.3390/jcm11144040
Lin B, Zuo C, Gao X, Huang D, Lin M. Quantitative Measurements of Vessel Density and Blood Flow Areas Primary Angle Closure Diseases: A Study of Optical Coherence Tomography Angiography. Journal of Clinical Medicine. 2022; 11(14):4040. https://doi.org/10.3390/jcm11144040
Chicago/Turabian StyleLin, Bingying, Chengguo Zuo, Xinbo Gao, Danping Huang, and Mingkai Lin. 2022. "Quantitative Measurements of Vessel Density and Blood Flow Areas Primary Angle Closure Diseases: A Study of Optical Coherence Tomography Angiography" Journal of Clinical Medicine 11, no. 14: 4040. https://doi.org/10.3390/jcm11144040
APA StyleLin, B., Zuo, C., Gao, X., Huang, D., & Lin, M. (2022). Quantitative Measurements of Vessel Density and Blood Flow Areas Primary Angle Closure Diseases: A Study of Optical Coherence Tomography Angiography. Journal of Clinical Medicine, 11(14), 4040. https://doi.org/10.3390/jcm11144040