Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Patient Cohorts
2.3. Mitochondrial Respiration
2.4. Microarray
2.5. Western Blot
2.6. Statistical Analysis
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Paulin, R.; Michelakis, E.D. The metabolic theory of pulmonary arterial hypertension. Circ. Res. 2014, 115, 148–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pak, O.; Sommer, N.; Hoeres, T.; Bakr, A.; Waisbrod, S.; Sydykov, A.; Haag, D.; Esfandiary, A.; Kojonazarov, B.; Veit, F.; et al. Mitochondrial hyperpolarization in pulmonary vascular remodeling. Mitochondrial uncoupling protein deficiency as disease model. Am. J. Respir. Cell Mol. Biol. 2013, 49, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Koeck, T.; Lara, A.R.; Neumann, D.; DiFilippo, F.P.; Koo, M.; Janocha, A.J.; Masri, F.A.; Arroliga, A.C.; Jennings, C.; et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc. Natl. Acad. Sci. USA 2007, 104, 1342–1347. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, S.; Michelakis, E.D.; Porter, C.J.; Andrade-Navarro, M.A.; Thebaud, B.; Bonnet, S.; Haromy, A.; Harry, G.; Moudgil, R.; McMurtry, M.S.; et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension. Circulation 2006, 113, 2630–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, N.; Droege, F.; Gamen, K.E.; Geisthoff, U.; Gall, H.; Tello, K.; Richter, M.J.; Deubner, L.M.; Schmiedel, R.; Hecker, M.; et al. Treatment with low-dose tacrolimus inhibits bleeding complications in a patient with hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. Pulm. Circ. 2019, 9, 2045894018805406. [Google Scholar] [CrossRef] [Green Version]
- Spiekerkoetter, E.; Sung, Y.K.; Sudheendra, D.; Bill, M.; Aldred, M.A.; van de Veerdonk, M.C.; Vonk Noordegraaf, A.; Long-Boyle, J.; Dash, R.; Yang, P.C.; et al. Low-Dose FK506 (Tacrolimus) in End-Stage Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2015, 192, 254–257. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewski, M.; Bebnowska, D.; Hrynkiewicz, R.; Dworzynski, J.; Niedzwiedzka-Rystwej, P.; Kopec, G.; Grywalska, E. Role of the Immune System Elements in Pulmonary Arterial Hypertension. J. Clin. Med. 2021, 10, 3757. [Google Scholar] [CrossRef]
- Hoffmann, J.; Wilhelm, J.; Olschewski, A.; Kwapiszewska, G. Microarray analysis in pulmonary hypertension. Eur. Respir. J. 2016, 48, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Cheadle, C.; Berger, A.E.; Mathai, S.C.; Grigoryev, D.N.; Watkins, T.N.; Sugawara, Y.; Barkataki, S.; Fan, J.; Boorgula, M.; Hummers, L.; et al. Erythroid-specific transcriptional changes in PBMCs from pulmonary hypertension patients. PLoS ONE 2012, 7, e34951. [Google Scholar] [CrossRef] [Green Version]
- Bull, T.M.; Coldren, C.D.; Moore, M.; Sotto-Santiago, S.M.; Pham, D.V.; Nana-Sinkam, S.P.; Voelkel, N.F.; Geraci, M.W. Gene microarray analysis of peripheral blood cells in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2004, 170, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Hecker, M.; Sommer, N.; Mayer, K. Assessment of Short- and Medium-Chain Fatty Acids on Mitochondrial Function in Severe Inflammation. Methods Mol. Biol. 2021, 2277, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Culley, M.K.; Chan, S.Y. Mitochondrial metabolism in pulmonary hypertension: Beyond mountains there are mountains. J. Clin. Investig. 2018, 128, 3704–3715. [Google Scholar] [CrossRef] [PubMed]
- White, K.; Lu, Y.; Annis, S.; Hale, A.E.; Chau, B.N.; Dahlman, J.E.; Hemann, C.; Opotowsky, A.R.; Vargas, S.O.; Rosas, I.; et al. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol. Med. 2015, 7, 695–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asosingh, K.; Farha, S.; Lichtin, A.; Graham, B.; George, D.; Aldred, M.; Hazen, S.L.; Loyd, J.; Tuder, R.; Erzurum, S.C. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood 2012, 120, 1218–1227. [Google Scholar] [CrossRef] [Green Version]
- White, K.; Loughlin, L.; Maqbool, Z.; Nilsen, M.; McClure, J.; Dempsie, Y.; Baker, A.H.; MacLean, M.R. Serotonin transporter, sex, and hypoxia: Microarray analysis in the pulmonary arteries of mice identifies genes with relevance to human PAH. Physiol. Genom. 2011, 43, 417–437. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.D.; Chu, L.; Lin, K.; Granton, E.; Yin, L.; Peng, J.; Hsin, M.; Wu, L.; Yu, A.; Waddell, T.; et al. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung. PLoS ONE 2015, 10, e0134958. [Google Scholar] [CrossRef] [Green Version]
- Fiorito, V.; Allocco, A.L.; Petrillo, S.; Gazzano, E.; Torretta, S.; Marchi, S.; Destefanis, F.; Pacelli, C.; Audrito, V.; Provero, P.; et al. The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation. Cell Rep. 2021, 35, 109252. [Google Scholar] [CrossRef]
- Nguyen, Q.L.; Corey, C.; White, P.; Watson, A.; Gladwin, M.T.; Simon, M.A.; Shiva, S. Platelets from pulmonary hypertension patients show increased mitochondrial reserve capacity. JCI Insight 2017, 2, e91415. [Google Scholar] [CrossRef] [Green Version]
- Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 2015, 46, 903–975. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2007; ISBN 3-900051-07-0. [Google Scholar]
- Gentleman, R.; Carey, V.J.; Huber, W.; Irizarry, R.A.; Dudoit, S. (Eds.) Limma: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor; Springer: New York, NY, USA, 2005; pp. 397–420. [Google Scholar]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef] [Green Version]
- Silver, J.D.; Ritchie, M.E.; Smyth, G.K. Microarray background correction: Maximum likelihood estimation for the normal-exponential convolution. Biostatistics 2009, 10, 352–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control n = 10 | PAH Outpatient n = 15 | PAH Inpatient n = 14 | |||||||
---|---|---|---|---|---|---|---|---|---|
Male % | 40 | 27 | 50 | ||||||
Median | Q1 | Q3 | Median | Q1 | Q3 | Median | Q1 | Q3 | |
Age | 56 | 28 | 68 | 59 | 49 | 64 | 59 | 50 | 70 |
Endogen | 3.70 | 2.47 | 4.28 | 3.28 | 1.50 | 4.62 | 2.44 | 1.41 | 3.61 |
Leak | 0.79 | 0.36 | 1.09 | 0.53 | 0.29 | 1.27 | 0.53 | 0.32 | 0.87 |
FCCP | 7.92 | 5.89 | 10.35 | 7.86 | 4.76 | 11.58 | 6.09 | 4.86 | 9.30 |
Endogen/FCCP | 0.43 | 0.38 | 0.46 | 0.38 | 0.31 | 0.43 | 0.36 | 0.30 | 0.40 |
Endogen-olig/FCCP | 0.33 | 0.29 | 0.39 | 0.30 | 0.25 | 0.34 | 0.27 | 0.23 | 0.32 |
IL6 (pg/mL) | 1.4 | 0.00 | 18.03 | 0.0 | 0.00 | 0.00 | 1.3 | 0.00 | 54.53 |
IL8 (pg/mL) | 6.7 | 2.55 | 19.78 | 4.0 | 2.50 | 5.40 | 6.5 | 4.43 | 54.60 |
CVP (mmHg) | 3.5 | 2.00 | 5.25 | 7.0 | 5.50 | 10.00 | |||
mPAP (mmHg) | 41 | 27.25 | 50.00 | 46 | 36.00 | 52.25 | |||
PAWP (mmHg) | 7 | 4.00 | 10.00 | 11 | 8.00 | 13.50 | |||
CI (l/min/m2) | 2.8 | 2.52 | 3.42 | 2.6 | 2.03 | 2.88 | |||
PVR (dyn s cm−5) | 532 | 313 | 739 | 562 | 427 | 834 | |||
SVR (dyn s cm−5) | 1065 | 842 | 1231 | 1245 | 980 | 1764 | |||
pO2 (mmHg) | 68 | 62 | 76 | 64 | 55 | 71 | |||
pCO2 (mmHg) | 36 | 31 | 38 | 31 | 28 | 34 | |||
Hb (g/L) | 143 | 132 | 155 | 141 | 132 | 160 | |||
Leucocyte (109/L) | 7.2 | 5.5 | 8.3 | 7.5 | 5.7 | 9.5 | |||
Thrombocyte (109/L) | 246 | 189 | 276 | 203 | 152 | 241 | |||
ALT (U/L) | 16 | 12 | 22 | 17 | 13 | 25 | |||
AST (U/L) | 17 | 13 | 29 | 21 | 16 | 24 | |||
GGT (U/L) | 23 | 13 | 37 | 26 | 17 | 34 | |||
Total bilirubin (mg/dL) | 0.6 | 0.0 | 1.0 | 0.8 | 0.6 | 1.1 | |||
Creatinine (mg/dL) | 0.9 | 0.70 | 1.2 | 1.0 | 0.8 | 1.1 | |||
Urea (mg/dL) | 33 | 24 | 43 | 29 | 21 | 43 | |||
Uric acid (mg/dL) | 5.7 | 4.3 | 6.40 | 6.8 | 6.00 | 7.90 | |||
BNP (pg/mL) | 37 | 14 | 128 | 107 | 45 | 193 | |||
CRP (mg/dL) | 2.6 | 0.8 | 13.2 | 2.7 | 0.6 | 10.8 | |||
sPAP (mmHg) | 45 | 32 | 78 | 82 | 66 | 86 | |||
TAPSE (mm) | 22 | 20 | 23 | 21 | 19 | 24 | |||
RA (cm2) | 13 | 10 | 15 | 15 | 12 | 17 | |||
Therapy | |||||||||
single | — | 2 * | 5 | ||||||
double | — | 6 | 4 | ||||||
triple | — | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommer, N.; Theine, F.F.; Pak, O.; Tello, K.; Richter, M.; Gall, H.; Wilhelm, J.; Savai, R.; Weissmann, N.; Seeger, W.; et al. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. J. Clin. Med. 2022, 11, 4132. https://doi.org/10.3390/jcm11144132
Sommer N, Theine FF, Pak O, Tello K, Richter M, Gall H, Wilhelm J, Savai R, Weissmann N, Seeger W, et al. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. Journal of Clinical Medicine. 2022; 11(14):4132. https://doi.org/10.3390/jcm11144132
Chicago/Turabian StyleSommer, Natascha, Finn Fabian Theine, Oleg Pak, Khodr Tello, Manuel Richter, Henning Gall, Jochen Wilhelm, Rajkumar Savai, Norbert Weissmann, Werner Seeger, and et al. 2022. "Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension" Journal of Clinical Medicine 11, no. 14: 4132. https://doi.org/10.3390/jcm11144132
APA StyleSommer, N., Theine, F. F., Pak, O., Tello, K., Richter, M., Gall, H., Wilhelm, J., Savai, R., Weissmann, N., Seeger, W., Ghofrani, H. A., & Hecker, M. (2022). Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 11(14), 4132. https://doi.org/10.3390/jcm11144132