Prognostic Factors and Optimal Surgical Management for Lumbar Spinal Canal Stenosis in Patients with Diffuse Idiopathic Skeletal Hyperostosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Outcomes and Radiological Measurements
2.3. Surgical Procedure
2.4. Statistical Analysis
3. Results
3.1. Clinical and Radiological Features of Patients with L-DISH
3.2. Prognostic Factors in L-DISH Patients Based on the JOA Improvement Rate
3.3. Effect of the Surgical Procedure on the Postoperative Improvement of L-DISH Patients with Vacuum Phenomenon at a Lower Segment and One Distance from the Segment Adjacent to L-DISH
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Resnick, D.; Niwayama, G. Radiographic and pathologic features of spinal involvement in diffuse idiopathic skeletal hyperostosis (DISH). Radiology 1976, 119, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Kagotani, R.; Yoshida, M.; Muraki, S.; Oka, H.; Hashizume, H.; Yamada, H.; Enyo, Y.; Nagata, K.; Ishimoto, Y.; Teraguchi, M.; et al. Prevalence of diffuse idiopathic skeletal hyperostosis (DISH) of the whole spine and its association with lumbar spondylosis and knee osteoarthritis: The ROAD study. J. Bone Miner. Metab. 2015, 33, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, T.; Watabe, T.; Iwamoto, Y.; Hamada, S.; Iwasaki, M.; Oda, T. Prevalence, concomitance, and distribution of ossification of the spinal ligaments: Results of whole spine CT scans in 1500 Japanese patients. Spine 2016, 41, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Holton, K.F.; Denard, P.J.; Yoo, J.U.; Kado, D.M.; Barrett-Connor, E.; Marshall, L.M.; Osteoporotic Fractures in Men (MrOS) Study Group. Diffuse idiopathic skeletal hyperostosis and its relation to back pain among older men: The MrOS Study. Semin. Arthritis Rheum. 2011, 41, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Ishimoto, Y.; Yoshimura, N.; Muraki, S.; Yamada, H.; Nagata, K.; Hashizume, H.; Takiguchi, N.; Minamide, A.; Oka, H.; Kawaguchi, H.; et al. Prevalence of symptomatic lumbar spinal stenosis and its association with physical performance in a population-based cohort in Japan: The Wakayama Spine Study. Osteoarthr. Cartil. 2012, 20, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Yabuki, S.; Fukumori, N.; Takegami, M.; Onishi, Y.; Otani, K.; Sekiguchi, M.; Wakita, T.; Kikuchi, S.; Fukuhara, S.; Konno, S. Prevalence of lumbar spinal stenosis, using the diagnostic support tool, and correlated factors in Japan: A population-based study. J. Orthop. Sci. 2013, 18, 893–900. [Google Scholar] [CrossRef] [Green Version]
- Okada, E.; Yagi, M.; Fujita, N.; Suzuki, S.; Tsuji, O.; Nagoshi, N.; Nakamura, M.; Matsumoto, M.; Watanabe, K. Lumbar spinal canal stenosis in patients with diffuse idiopathic skeletal hyperostosis: Surgical outcomes after posterior decompression surgery without spinal instrumentation. J. Orthop. Sci. 2019, 24, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, B.; Fujibayashi, S.; Takemoto, M.; Kimura, H.; Shimizu, T.; Matsuda, S. Diffuse idiopathic skeletal hyperostosis (DISH) is a risk factor for further surgery in short segment lumbar interbody fusion. Eur. Spine J. 2015, 24, 2514–2519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuki, B.; Fujibayashi, S.; Tanida, S.; Shimizu, T.; Lyman, S.; Matsuda, S. Outcomes of lumbar decompression surgery in patients with diffuse idiopathic skeletal hyperostosis (DISH). J. Orthop. Sci. 2019, 24, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Satoh, S.; Hashizume, H.; Yoshimura, N.; Kagotani, R.; Ishimoto, Y.; Abe, Y.; Toyoda, H.; Terai, H.; Masuda, T.; et al. Diffuse idiopathic skeletal hyperostosis is associated with lumbar spinal stenosis requiring surgery. J. Bone Miner. Metab. 2019, 37, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, K.; Satoh, S.; Abe, Y.; Yanagibashi, Y.; Hyakumachi, T.; Masuda, T. Diffuse idiopathic skeletal hyperostosis extended to the lumbar segment is a risk factor of reoperation in patients treated surgically for lumbar stenosis. Spine 2018, 43, 1446–1453. [Google Scholar] [CrossRef]
- Nakajima, H.; Watanabe, S.; Honjoh, K.; Kubota, A.; Matsumine, A. Pathomechanism and prevention of further surgery after posterior decompression for lumbar spinal canal stenosis in patients with diffuse idiopathic skeletal hyperostosis. Spine J. 2021, 21, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Honjoh, K.; Watanabe, S.; Kubota, A.; Matsumine, A. Negative impact of short-level posterior lumbar interbody fusion in patients with diffuse idiopathic skeletal hyperostosis extending to the lumbar segment. J. Neurosurg. Spine 2021, in press. [CrossRef] [PubMed]
- Mata, S.; Chhem, R.K.; Fortin, P.R.; Joseph, L.; Esdaile, J.M. Comprehensive radiographic evaluation of diffuse idiopathic skeletal hyperostosis: Development and interrater reliability of a scoring system. Semin. Arthritis Rheum. 1998, 28, 88–96. [Google Scholar] [CrossRef]
- Modic, M.T.; Steinberg, P.M.; Ross, J.S.; Masaryk, T.J.; Carter, J.R. Degenerative disk disease: Assessment of changes in vertebral body marrow with MR imaging. Radiology 1988, 166, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Matsumoto, M.; Ikegami, T.; Nishiwaki, Y.; Tsuji, T.; Ishii, K.; Ogawa, Y.; Takaishi, H.; Nakamura, M.; Toyama, Y.; et al. Reduced postoperative wound pain after lumbar spinous process-splitting laminectomy for lumbar canal stenosis: A randomized controlled study. J. Neurosurg. Spine 2011, 14, 51–58. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ’EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, K.; Akeda, K.; Takegami, N.; Cheng, K.; Masuda, K.; Sudo, A. Morphology of intervertebral disc ruptures evaluated by vacuum phenomenon using multi-detector computed tomography: Association with lumbar disc degeneration and canal stenosis. BMC Musculoskelet. Disord. 2018, 19, 164. [Google Scholar] [CrossRef]
- Määttä, J.H.; Wadge, S.; MacGregor, A.; Karppinen, J.; Williams, F.M. Vertebral endplate (Modic) change is an independent risk factor for episodes of severe and disabling low back pain. Spine 2015, 40, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Luoma, K.; Vehmas, T.; Kerttula, L.; Grönblad, M.; Rinne, E. Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. Eur. Spine J. 2016, 25, 2873–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerttula, L.; Luoma, K.; Vehmas, T.; Grönblad, M.; Kääpä, E. Modic type I change may predict rapid progressive, deforming disc degeneration: A prospective 1-year follow-up study. Eur. Spine J. 2012, 21, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, H.; Honjoh, K.; Watanabe, S.; Kubota, A.; Matsumine, A. Relationship between vertebral bone marrow edema and early progression of intervertebral disc wedge or narrowing after lumbar decompression surgery. Spine 2022, 47, 114–121. [Google Scholar] [CrossRef]
- Yamada, K.; Abe, Y.; Yanagibashi, Y.; Hyakumachi, T.; Nakamura, H. Risk factors for reoperation at same level after decompression surgery for lumbar spinal stenosis in patients with diffuse idiopathic skeletal hyperostosis extended to the lumbar segments. Spine Surg. Relat. Res. 2021, 5, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Okuda, S.; Nagamoto, Y.; Matsumoto, T.; Sugiura, T.; Takahashi, Y.; Iwasaki, M. Adjacent segment disease after single segment posterior lumbar interbody fusion for degenerative spondylolisthesis: Minimum 10 years follow-up. Spine 2018, 43, E1384–E1388. [Google Scholar] [CrossRef] [PubMed]
- Ito, Z.; Imagama, S.; Kanemura, T.; Hachiya, Y.; Miura, Y.; Kamiya, M.; Yukawa, Y.; Sakai, Y.; Katayama, Y.; Wakao, N.; et al. Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): A multicenter study. Eur. Spine J. 2013, 22, 1158–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimori, T.; Sakaura, H.; Ikegami, D.; Sugiura, T.; Mukai, Y.; Hosono, N.; Tateishi, K.; Fuji, T. Two-level posterior lumbar interbody fusion at the lumbosacral segment has a high risk of pseudarthrosis and poor clinical outcomes: Comparison between the lumbar and lumbosacral segments. Clin. Spine Surg. 2020, 33, E512–E518. [Google Scholar] [CrossRef]
- Ikegami, D.; Matsuoka, T.; Miyoshi, Y.; Murata, Y.; Aoki, Y. Proximal junctional failure after long-segment instrumentation for degenerative lumbar kyphosis with ankylosing spinal disorder. Spine 2015, 40, E740–E743. [Google Scholar] [CrossRef] [PubMed]
- Soroceanu, A.; Diebo, B.G.; Burton, D.; Smith, J.S.; Deviren, V.; Shaffrey, C.; Kim, H.J.; Mundis, G.; Ames, C.; Errico, T.; et al. Radiographical and implant-related complications in adult spinal deformity surgery: Incidence, patientrisk factors, and impact on health-related quality of life. Spine 2015, 40, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, G.; Boissiere, L.; Larrieu, D.; Bourghli, A.; Vital, J.M.; Gille, O.; Pointillart, V.; Challier, V.; Mariey, R.; Pellisé, F.; et al. Advantages and disadvantages of adult spinal deformity surgery and its impact on health-related quality of life. Spine 2017, 42, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, T.; Ozawa, H.; Kusakabe, T.; Tanaka, Y.; Sekiguchi, A.; Hashimoto, K.; Kanno, H.; Morozumi, N.; Ishii, Y.; Sato, T.; et al. Reoperation rates after fenestration for lumbar spinal canal stenosis: A 20-year period survival function method analysis. Eur. Spine J. 2015, 24, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.Y.; Lin, H.L.; Lee, W.Y.; Lee, H.C. Split-Spinous Process Laminotomy and Discectomy for Degenerative Lumbar Spinal Stenosis: A Preliminary Report. J. Neurosurg. Spine 2007, 6, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, G.; Vleggeert-Lankamp, C.; Jacobs, W.; Thomé, C.; Gunzburg, R.; Peul, W. Effectiveness of Posterior Decompression Techniques Compared with Conventional Laminectomy for Lumbar Stenosis. Eur. Spine J. 2015, 24, 2244–2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uehara, M.; Takahashi, J.; Hashidate, H.; Mukaiyama, K.; Kuraishi, S.; Shimizu, M.; Ikegami, S.; Futatsugi, T.; Ogihara, N.; Hirabayashi, H.; et al. Comparison of Spinous Process-Splitting Laminectomy versus Conventional Laminectomy for Lumbar Spinal Stenosis. Asian Spine J. 2014, 8, 768–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minamide, A.; Yoshida, M.; Simpson, A.K.; Nakagawa, Y.; Iwasaki, H.; Tsutsui, S.; Takami, M.; Hashizume, H.; Yukawa, Y.; Yamada, H. Minimally invasive spinal decompression for degenerative lumbar spondylolisthesis and stenosis maintains stability and may avoid the need for fusion. Bone Jt. J. 2018, 100-B, 499–506. [Google Scholar] [CrossRef] [PubMed]
L-DISH | Non-L-DISH | p Value | |
---|---|---|---|
Patients, n (%) | 145 (15.5%) | 789 (84.5%) | |
Male | 126 (86.9%) | 340 (43.1%) | <0.001 * |
Female | 19 (13.1%) | 449 (56.9%) | |
Age at operation, median {IQR}, years | 73.0 {68.0, 78.0} | 71.0 {65.0, 76.0} | 0.032 * |
BMI, median {IQR} | 24.50 {22.5, 27.0} | 24.0 {22.0, 25.5} | 0.36 |
Preoperative JOA score, median {IQR} | 15.0 {13.0, 17.0} | 15.0 {13.0, 18.0} | 0.49 |
Postoperative JOA score, median {IQR} | 22.0 {19.0, 24.0} | 23.00 {20.8, 24.0} | 0.0070 * |
JOA improvement rate, median {IQR} | 46.7 {30.8, 60.0} | 50.00 {40.0, 63.6} | 0.026 * |
Surgical Procedure, n | |||
Conventional laminotomy | 85 | 360 | |
Split laminotomy | 32 | 191 | |
Short-segment fusion | 28 | 238 | |
Revision Surgery, n (%) | 13 (9.0%) | 27 (4.4%) | 0.0050 * |
Caudal End of L-DISH, n (%) | |
---|---|
L1 | 69 (47.6%) |
L2 | 39 (26.9%) |
L3 | 21 (14.5%) |
L4 | 12 (8.3%) |
L5 | 4 (2.8%) |
Lumbar lordosis (LL), median {IQR}, degree | 31.8 {24.3, 38.7} |
Pelvic incidence (PI) minus LL, median {IQR}, degree | 19.3 {10.8, 27.0} |
Vacuum phenomenon at affected segments, n (%) | 65 (44.8%) |
Vertebral bone marrow edema at affected segments, n (%) | 70 (48.3%) |
decompressed/fused segments: distance from L-DISH, n (%) | |
At lower segment adjacent to L-DISH | 45 (31.0%) |
At 1 segment lower | 32 (22.1%) |
At 2 or above segment lower | 68 (46.9%) |
JOA Improvement Rate > 25% | JOA Improvement Rate ≤ 25% | p Value | |
---|---|---|---|
Patients, n (%) | 116 | 29 | |
Male | 100 (86.2%) | 26 (89.7%) | 0.85 |
Female | 16 (13.8%) | 3 (10.3%) | |
Age at operation, median {IQR}, years | 72.00 {68.00, 77.75} | 75.00 {71.50, 78.00} | 0.45 |
BMI, median {IQR} | 24.50 {22.50, 26.78} | 24.60 {22.70, 27.95} | 0.60 |
Preoperative JOA score, median {IQR} | 15.00 {13.25, 17.75} | 14.00 {13.00, 17.00} | 0.55 |
Caudal end of L-DISH, n (%) | |||
L1 | 63 (54.3%) | 6 (20.7%) | 0.0017 * |
L2 | 31 (26.7%) | 10 (34.5%) | |
L3 | 14 (12.1%) | 7 (24.1%) | |
L4 | 5 (4.3%) | 6 (20.7%) | |
L5 | 3 (2.6%) | 0 (0%) | |
PI minus LL (degree), median {IQR} | 18.05 {10.35, 26.35} | 20.10 {14.15, 28.95} | 0.44 |
Vacuum phenomenon, n (%) | 39 (33.6%) | 25 (86.2%) | <0.001 * |
Modic change, n (%) | 47 (40.5%) | 22 (75.9%) | 0.0014 * |
Distance from L-DISH, n (%) | |||
At lower segment adjacent to L-DISH | 28 (24.1%) | 16 (55.2%) | 0.0017 * |
At 1 segment lower | 26 (22.4%) | 7 (24.1%) | |
At 2 or above segment lower | 62 (53.4%) | 6 (20.7%) | |
Surgical Procedure, n (%) | |||
Conventional laminotomy | 73 (62.9%) | 12 (41.4%) | 0.086 |
Split laminotomy | 24 (20.7%) | 8 (27.6%) | |
Short-segment fusion | 19 (16.4%) | 9 (31.0%) |
Variables | Estimate | 95% CI | p Value |
---|---|---|---|
Patient background | |||
Age (per 1 year) | −0.11 | −0.61–0.39 | 0.66 |
Sex (female as reference) | −1.81 | −14.16–10.54 | 0.77 |
BMI (per 1 kg/m2) | −0.56 | −1.71–0.59 | 0.34 |
Imaging findings | |||
Caudal end of L-DISH (upper/lower) (upper (L1 and L2) as reference) | −5.10 | −17.64–7.45 | 0.42 |
PI minus LL (per 1 degree) | −0.12 | −0.46–0.22 | 0.49 |
Presence of vacuum phenomenon at affected segments | −15.14 | −24.51–−5.78 | 0.0018 * |
Presence of Modic change at affected segments | −3.72 | −12.71–5.27 | 0.41 |
Distance from L-DISH (adjacent to L-DISH as reference) | 7.05 | 0.65–13.45 | 0.031 * |
Surgical procedures (conventional laminotomy as reference) | |||
Split laminotomy | −3.58 | −13.75–6.58 | 0.28 |
Short-segment fusion | −5.74 | −16.22–4.75 | 0.49 |
Surgical Procedure | Odds Ratio | 95% CI | p Value |
---|---|---|---|
Conventional laminotomy | 1 | ||
Split laminotomy | 0.64 | 0.13–3.03 | 0.57 |
Short-segment fusion | 0.21 | 0.033–1.36 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, H.; Honjoh, K.; Watanabe, S.; Matsumine, A. Prognostic Factors and Optimal Surgical Management for Lumbar Spinal Canal Stenosis in Patients with Diffuse Idiopathic Skeletal Hyperostosis. J. Clin. Med. 2022, 11, 4133. https://doi.org/10.3390/jcm11144133
Nakajima H, Honjoh K, Watanabe S, Matsumine A. Prognostic Factors and Optimal Surgical Management for Lumbar Spinal Canal Stenosis in Patients with Diffuse Idiopathic Skeletal Hyperostosis. Journal of Clinical Medicine. 2022; 11(14):4133. https://doi.org/10.3390/jcm11144133
Chicago/Turabian StyleNakajima, Hideaki, Kazuya Honjoh, Shuji Watanabe, and Akihiko Matsumine. 2022. "Prognostic Factors and Optimal Surgical Management for Lumbar Spinal Canal Stenosis in Patients with Diffuse Idiopathic Skeletal Hyperostosis" Journal of Clinical Medicine 11, no. 14: 4133. https://doi.org/10.3390/jcm11144133
APA StyleNakajima, H., Honjoh, K., Watanabe, S., & Matsumine, A. (2022). Prognostic Factors and Optimal Surgical Management for Lumbar Spinal Canal Stenosis in Patients with Diffuse Idiopathic Skeletal Hyperostosis. Journal of Clinical Medicine, 11(14), 4133. https://doi.org/10.3390/jcm11144133