Plasma Transfusion in Septic Shock—A Secondary Analysis of a Retrospective Single-Center Cohort
Abstract
:1. Background
2. Methods
2.1. Study Design
2.2. Patient Cohort
2.3. Data Collection
2.4. Study Endpoints
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Most Common Indication for FFP Transfusion Was Active Bleeding
3.2.1. Unmatched Cohort
3.2.2. Matched Cohort
3.3. FFP Transfusions in the Early Phase of Septic Shock Had No Effect on Mortality
3.4. Neither Duration of Invasive Ventilation Nor ICU Stay Were Significantly Influenced by Plasma Administration
3.4.1. Unmatched Cohort
3.4.2. Matched Cohort
3.5. Plasma Did Not Lead to Faster Hemodynamic Stabilization and Recovery from Organ Dysfunction
3.5.1. Unmatched Cohort
3.5.2. Matched Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Egi, M.; Ogura, H.; Yatabe, T.; Atagi, K.; Inoue, S.; Iba, T.; Kakihana, Y.; Kawasaki, T.; Kushimoto, S.; Kuroda, Y.; et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). J. Intensive Care 2021, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Lat, I.; Coopersmith, C.M.; De Backer, D.; Research Committee of the Surviving Sepsis Campaign. The Surviving Sepsis Campaign: Fluid Resuscitation and Vasopressor Therapy Research Priorities in Adult Patients. Crit. Care Med. 2021, 49, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Milford, E.M.; Reade, M.C. Resuscitation Fluid Choices to Preserve the Endothelial Glycocalyx. Crit. Care 2019, 23, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaffee, W.; Hodgins, S.; McGee, W.T. Tissue Edema, Fluid Balance, and Patient Outcomes in Severe Sepsis: An Organ Systems Review. J. Intensive Care Med. 2018, 33, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Perner, A.; Haase, N.; Guttormsen, A.B.; Tenhunen, J.; Klemenzson, G.; Aneman, A.; Madsen, K.R.; Møller, M.H.; Elkjær, J.M.; Poulsen, L.M.; et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N. Engl. J. Med. 2012, 367, 124–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozar, R.A.; Peng, Z.; Zhang, R.; Holcomb, J.B.; Pati, S.; Park, P.; Ko, T.C.; Paredes, A. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth. Analg. 2011, 112, 1289–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, R.; Holcomb, J.B.; Johansson, P.I.; Pati, S.; Schreiber, M.A.; Wade, C.E. Plasma Resuscitation Improved Survival in a Cecal Ligation and Puncture Rat Model of Sepsis. Shock 2018, 49, 53–61. [Google Scholar] [CrossRef]
- Straat, M.; Muller, M.C.; Meijers, J.C.; Arbous, M.S.; Spoelstra-de Man, A.M.; Beurskens, C.J.; Vroom, M.B.; Juffermans, N.P. Effect of transfusion of fresh frozen plasma on parameters of endothelial condition and inflammatory status in non-bleeding critically ill patients: A prospective substudy of a randomized trial. Crit. Care 2015, 19, 163. [Google Scholar] [CrossRef] [Green Version]
- David, S.; Bode, C.; Putensen, C.; Welte, T.; Stahl, K.; The EXCHANGE study group. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021, 47, 352–354. [Google Scholar] [CrossRef]
- Keith, P.D.; Wells, A.H.; Hodges, J.; Fast, S.H.; Adams, A.; Scott, L.K. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: A single-center experience. Crit. Care 2020, 24, 518. [Google Scholar] [CrossRef]
- Adam, E.H.; Fischer, D. Plasma Transfusion Practice in Adult Surgical Patients: Systematic Review of the Literature. Transfus. Med. Hemother. 2020, 47, 347–359. [Google Scholar] [CrossRef]
- Zou, S.; Dorsey, K.A.; Notari, E.P.; Foster, G.A.; Krysztof, D.E.; Musavi, F.; Dodd, R.Y.; Stramer, S.L. Prevalence, incidence, and residual risk of human immunodeficiency virus and hepatitis C virus infections among United States blood donors since the introduction of nucleic acid testing. Transfusion 2010, 50, 1495–1504. [Google Scholar] [CrossRef]
- MacLennan, S.; Williamson, L.M. Risks of fresh frozen plasma and platelets. J. Trauma 2006, 60 (Suppl. 6), S46–S50. [Google Scholar]
- Huisman, E.L.; de Silva, S.U.; de Peuter, M.A. Economic evaluation of pooled solvent/detergent treated plasma versus single donor fresh-frozen plasma in patients receiving plasma transfusions in the United States. Transfus. Apher. Sci. 2014, 51, 17–24. [Google Scholar] [CrossRef]
- Rock, G. A comparison of methods of pathogen inactivation of FFP. Vox Sang. 2011, 100, 169–178. [Google Scholar] [CrossRef]
- Raval, J.S.; Mazepa, M.A.; Russell, S.L.; Immel, C.C.; Whinna, H.C.; Park, Y.A. Passive reporting greatly underestimates the rate of transfusion-associated circulatory overload after platelet transfusion. Vox Sang. 2015, 108, 387–392. [Google Scholar] [CrossRef]
- Li, G.; Rachmale, S.; Kojicic, M.; Shahjehan, K.; Malinchoc, M.; Kor, D.J.; Gajic, O. Incidence and transfusion risk factors for transfusion-associated circulatory overload among medical intensive care unit patients. Transfusion 2011, 51, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Rana, R.; Fernandez-Perez, E.R.; Khan, S.A.; Rana, S.; Winters, J.L.; Lesnick, T.G.; Moore, S.B.; Gajic, O. Transfusion-related acute lung injury and pulmonary edema in critically ill patients: A retrospective study. Transfusion 2006, 46, 1478–1483. [Google Scholar] [CrossRef]
- Narick, C.; Triulzi, D.J.; Yazer, M.H. Transfusion-associated circulatory overload after plasma transfusion. Transfusion 2012, 52, 160–165. [Google Scholar] [CrossRef]
- Thalji, L.; Thum, D.; Weister, T.J.; Weber, W.V.; Stubbs, J.R.; Kor, D.J.; Nemergut, M.E. Incidence and Epidemiology of Perioperative Transfusion-Related Pulmonary Complications in Pediatric Noncardiac Surgical Patients: A Single-Center, 5-Year Experience. Anesth. Analg. 2018, 127, 1180–1188. [Google Scholar] [CrossRef] [Green Version]
- Bosboom, J.J.; Klanderman, R.B.; Zijp, M.; Hollmann, M.W.; Veelo, D.P.; Binnekade, J.M.; Geerts, B.F.; Vlaar, A.P. Incidence, risk factors, and outcome of transfusion-associated circulatory overload in a mixed intensive care unit population: A nested case-control study. Transfusion 2018, 58, 498–506. [Google Scholar] [CrossRef]
- Dotsch, T.M.; Dirkmann, D.; Bezinover, D.; Hartmann, M.; Treckmann, J.W.; Paul, A.; Saner, F.H. Assessment of standard laboratory tests and rotational thromboelastometry for the prediction of postoperative bleeding in liver transplantation. Br. J. Anaesth. 2017, 119, 402–410. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, J.G.; Greenberg, C.S.; Patton, H.M.; Caldwell, S.H. AGA Clinical Practice Update: Coagulation in Cirrhosis. Gastroenterology 2019, 157, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Gilstad, C.W. Anaphylactic transfusion reactions. Curr. Opin. Hematol. 2003, 10, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.C.; van Stein, D.; Binnekade, J.M.; van Rhenen, D.J.; Vlaar, A.P. Low-risk transfusion-related acute lung injury donor strategies and the impact on the onset of transfusion-related acute lung injury: A meta-analysis. Transfusion 2015, 55, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Funk, M.B.; Guenay, S.; Lohmann, A.; Henseler, O.; Heiden, M.; Hanschmann, K.M.; Keller-Stanislawski, B. Benefit of transfusion-related acute lung injury risk-minimization measures—German haemovigilance data (2006–2010). Vox Sang. 2012, 102, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Saw, C.L.; Hannach, B.; Goldman, M. Transfusion-related acute lung injury prevention measures and their impact at Canadian Blood Services. Transfusion 2012, 52, 567–574. [Google Scholar] [CrossRef]
- McVey, M.J.; Kapur, R.; Cserti-Gazdewich, C.; Semple, J.W.; Karkouti, K.; Kuebler, W.M. Transfusion-related Acute Lung Injury in the Perioperative Patient. Anesthesiology 2019, 131, 693–715. [Google Scholar] [CrossRef] [Green Version]
- Ming, Y.; Liu, J.; Zhang, F.; Chen, C.; Zhou, L.; Du, L.; Yan, M. Transfusion of Red Blood Cells, Fresh Frozen Plasma, or Platelets Is Associated with Mortality and Infection After Cardiac Surgery in a Dose-Dependent Manner. Anesth. Analg. 2020, 130, 488–497. [Google Scholar] [CrossRef]
- Subramanian, A.; Berbari, E.F.; Brown, M.J.; Allen, M.S.; Alsara, A.; Kor, D.J. Plasma transfusion is associated with postoperative infectious complications following esophageal resection surgery: A retrospective cohort study. J. Cardiothorac. Vasc. Anesth. 2012, 26, 569–574. [Google Scholar] [CrossRef]
- Inaba, K.; Branco, B.C.; Rhee, P.; Holcomb, J.B.; Blackbourne, L.H.; Shulman, I.; Nelson, J.; Demetriades, D. Impact of ABO-identical vs ABO-compatible nonidentical plasma transfusion in trauma patients. Arch. Surg. 2010, 145, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Inaba, K.; Branco, B.C.; Rhee, P.; Blackbourne, L.H.; Holcomb, J.B.; Teixeira, P.G.; Shulman, I.; Nelson, J.; Demetriades, D. Impact of plasma transfusion in trauma patients who do not require massive transfusion. J. Am. Coll. Surg. 2010, 210, 957–965. [Google Scholar] [CrossRef]
- Sarani, B.; Dunkman, W.J.; Dean, L.; Sonnad, S.; Rohrbach, J.I.; Gracias, V.H. Transfusion of fresh frozen plasma in critically ill surgical patients is associated with an increased risk of infection. Crit. Care Med. 2008, 36, 1114–1118. [Google Scholar] [CrossRef]
- Shah, S.; Coppolino, K.; Menocha, S.; Beceiro, S.; Nateri, J.; Spinella, P.C.; Nicol, K.; Hall, M.W.; Muszynski, J.A. Immunomodulatory effects of plasma products on monocyte function in vitro. J. Trauma Acute Care Surg. 2018, 84 (Suppl. 1), S47–S53. [Google Scholar] [CrossRef]
- Patlan, M.; Sanchez-Munoz, F.; Amezcua-Guerra, L.M.; Granados, A.; Paez, A.; Masso, F.; Mejía, A.M.; Soster, A.; Bojalil, R.; Pavón, L.; et al. Effect of fresh frozen plasma on the in vitro activation of U937 monocytes: A potential role for the age of blood donors and their underlying cytokine profile. Biol. Res. 2017, 50, 42. [Google Scholar] [CrossRef] [Green Version]
- Richter, D.C.; Dietrich, M.; Lalev, L.D.; Schmitt, F.C.F.; Fiedler, M.O.; Bruckner, T.; Stoerzinger, D.; Chiriac, U.; Klein, S.; Hackert, T.; et al. Prolonged Infusion of beta-Lactams Decreases Mortality in Patients with Septic Shock: A Retrospective before-and-after Study. Antibiotics 2021, 10, 687. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef]
- Brunkhorst, F.M.; Weigand, M.A.; Pletz, M.; Gastmeier, P.; Lemmen, S.W.; Meier-Hellmann, A.; Ragaller, M.; Weyland, A.; Marx, G.; Bucher, M.; et al. [S3 Guideline Sepsis-prevention, diagnosis, therapy, and aftercare: Long version]. Med. Klin. Intensivmed. Notf. 2020, 115 (Suppl. 2), 37–109. [Google Scholar] [CrossRef]
- Iba, T.; Nisio, M.D.; Levy, J.H.; Kitamura, N.; Thachil, J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: A retrospective analysis of a nationwide survey. BMJ Open 2017, 7, e017046. [Google Scholar] [CrossRef] [Green Version]
- Belletti, A.; Lerose, C.C.; Zangrillo, A.; Landoni, G. Vasoactive-Inotropic Score: Evolution, Clinical Utility, and Pitfalls. J. Cardiothorac. Vasc. Anesth. 2021, 35, 3067–3077. [Google Scholar] [CrossRef]
- Auvinen, M.K.; Zhao, J.; Lassen, E.; Lubenow, N.; Seger Mollen, A.; Watz, E.; Wikman, A. Edgren Patterns of blood use in Sweden from 2008 to 2017: A nationwide cohort study. Transfusion 2020, 60, 2529–2536. [Google Scholar] [CrossRef]
- Reiter, N.; Wesche, N.; Perner, A. The majority of patients in septic shock are transfused with fresh-frozen plasma. Dan. Med. J. 2013, 60, A4606. [Google Scholar]
- Ren, C.; Li, Y.X.; Xia, D.M.; Zhao, P.Y.; Zhu, S.Y.; Zheng, L.Y.; Liang, L.-P.; Yao, R.-Q.; Du, X.-H. Sepsis-Associated Coagulopathy Predicts Hospital Mortality in Critically Ill Patients with Postoperative Sepsis. Front. Med. 2022, 9, 783234. [Google Scholar] [CrossRef]
- Khan, S.; Davenport, R.; Raza, I.; Glasgow, S.; De’Ath, H.D.; Johansson, P.I.; Curry, N.; Stanworth, S.; Gaarder, C.; Brohi, K. Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med. 2015, 41, 239–247. [Google Scholar] [CrossRef]
- Kujovich, J.L. Hemostatic defects in end stage liver disease. Crit. Care Clin. 2005, 21, 563–587. [Google Scholar] [CrossRef]
- Holland, L.L.; Foster, T.M.; Marlar, R.A.; Brooks, J.P. Fresh frozen plasma is ineffective for correcting minimally elevated international normalized ratios. Transfusion 2005, 45, 1234–1235. [Google Scholar] [CrossRef]
- Yang, L.; Stanworth, S.; Hopewell, S.; Doree, C.; Murphy, M. Is fresh-frozen plasma clinically effective? An update of a systematic review of randomized controlled trials. Transfusion 2012, 52, 1673–1686. [Google Scholar] [CrossRef]
- Executive Committee of the German Medical Association on the Recommendation of the Scientific Advisory Board. Cross-Sectional Guidelines for Therapy with Blood Components and Plasma Derivatives: Chapter 5 Human Albumin—Revised. Transfus. Med. Hemotherapy 2016, 43, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Zhang, W.; Zhu, X.; Hu, X.; Zhou, W. Early Fresh Frozen Plasma Transfusion: Is It Associated with Improved Outcomes of Patients with Sepsis? Front. Med. 2021, 8, 754859. [Google Scholar] [CrossRef]
- Peju, E.; Llitjos, J.F.; Charpentier, J.; Francois, A.; Marin, N.; Cariou, A.; Chiche, J.-D.; Mira, J.-P.; Lambert, J.; Jamme, M.; et al. Impact of Blood Product Transfusions on the Risk of ICU-Acquired Infections in Septic Shock. Crit. Care Med. 2021, 49, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Kopko, P.M.; Marshall, C.S.; MacKenzie, M.R.; Holland, P.V.; Popovsky, M.A. Transfusion-related acute lung injury: Report of a clinical look-back investigation. JAMA 2002, 287, 1968–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roubinian, N. TACO and TRALI: Biology, risk factors, and prevention strategies. Hematol. Am. Soc. Hematol. Educ. Program 2018, 2018, 585–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skeate, R.C.; Eastlund, T. Distinguishing between transfusion related acute lung injury and transfusion associated circulatory overload. Curr. Opin. Hematol. 2007, 14, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Thevis, M.; Krug, O.; Geyer, H.; Wenzel, F.; Bux, J.; Stahl, L.; Hollmann, W.; Thom, A.; Schänzer, W. Monitoring drug residues in donor blood/plasma samples using LC-(MS)/MS—A pilot study. Drug Test. Anal. 2013, 5, 380–383. [Google Scholar] [CrossRef]
- Uchimido, R.; Schmidt, E.P.; Shapiro, N.I. The glycocalyx: A novel diagnostic and therapeutic target in sepsis. Crit. Care 2019, 23, 16. [Google Scholar] [CrossRef] [Green Version]
Baseline Patient Characteristics | ||||||
---|---|---|---|---|---|---|
Unmatched Cohort | Matched Cohort | |||||
No Plasma | Plasma | p-Value | No Plasma | Plasma | p-Value | |
Age | 70 (59; 77) | 63 (53; 74) | 0.008 | 64 (56; 75) | 67 (54; 75) | 0.898 |
Sex (male) | 107 (66.5%) | 63 (63%) | 0.569 | 45 (63.4%) | 44 (62%) | 0.604 |
BMI [kg/m2] | 27.7 (24.4; 32.3) | 26.5 (23.4; 30.2) | 0.043 | 25.9 (22.4; 30.9) | 27.1 (23.9; 30.7) | 0.476 |
CAD | 40 (24.8%) | 25 (25%) | 15 (21.1%) | 22 (31%) | 0.291 | |
Cancer | 88 (54.7%) | 44 (44%) | 38 (53.5%) | 32 (45.1%) | 0.314 | |
Kidney disease | 0.74 | 0.874 | ||||
AKI | 50 (31.1%) | 29 (29%) | 16 (22.5%) | 20 (28.2%) | ||
CKD | 4 (8.7%) | 7 (7%) | 4 (5.6%) | 4 (5.6%) | ||
Acute on chronic | 24 (14.9%) | 12 (12%) | 11 (15.5%) | 9 (12.7%) | ||
Organ transplant | 0.55 | 0.543 | ||||
Kidney | 7 (4.3%) | 3 (3%) | 3 (4.2%) | 1 (1.4%) | ||
Heart | 1 (0.6%) | 1 (1%) | 1 (1.4%) | 0 (0%) | ||
Liver | 4 (2.5%) | 6 (6%) | 4 (5.6%) | 5 (7%) | ||
Bone marrow | 1 (0.6%) | 0 (0%) | ||||
Focus | 0.216 | 0.092 | ||||
Pulmonary | 27 (16.8%) | 7 (7%) | 15 (21.1%) | 4 (5.6%) | ||
Abdominal | 111 (68.9%) | 81 (81%) | 49 (69%) | 57 (80.3%) | ||
GUI | 12 (7.5%) | 6 (6%) | 3 (4.2%) | 5 (7%) | ||
Vascular | 4 (2.5%) | 4 (4%) | 1 (1.4%) | 3 (4.2%) | ||
Cardiac | 1 (0.6%) | 0 (0%) | ||||
Catheter-associated | 2 (1.2%) | 0 (0%) | 1 (1.4%) | 0 (0%) | ||
Unkown | 4 (2.5%) | 2 (2%) | 2 (2.8%) | 2 (2.8%) | ||
Surgical source control | 124 (77%) | 88 (88%) | 0.058 | 49 (69%) | 63 (88.7%) | 0.014 |
Creatinine [mg/dL] | 1.73 (1.19; 2.51) | 1.575 (1.23; 2.2) | 0.198 | 1.7 (1.19; 2.53) | 1.48 (1.1; 1.98) | 0.06 |
Lactate [mg/dL] | 28.4 (21.7; 40.5) | 50 (31.85; 84.2) | <0.001 | 25.3 (20.5; 42.8) | 40.4 (26.9; 59.4) | 0.006 |
CRP [mg/L] | 184 (130; 274) | 139.05 (57; 212) | <0.001 | 196 (147; 281.1) | 139 (62; 211) | <0.001 |
PCT [ng/mL] | 8.17 (2.63; 32.64) | 10.23 (2.73; 40.305) | 0.59 | 7.85 (3.22; 35.32) | 9.15 (2.06; 23.64) | 0.572 |
Apache II | 32 (27; 36) | 33 (28.5; 36) | 0.54 | 31 (26; 35) | 33 (27; 38) | 0.11 |
SOFA | 12 (10; 14) | 14 (11.5; 15) | <0.001 | 13 (11; 15) | 14 (11; 15) | 0.897 |
VIS | 37 (27.6; 58) | 64.4 (37.6; 94) | <0.001 | 42.6 (28.2; 72.8) | 51 (34.8; 83.3) | 0.198 |
Leucocytes [1/nL] | 14.55 (9.39; 24) | 12.87 (5.81; 24.27) | 0.105 | 14.21 (9.52; 23.67) | 12.7 (6.88; 26.36) | 0.543 |
Platelets | 188 (121; 288) | 147 (68; 220) | 0.002 | 185 (99; 256) | 172 (71; 231) | 0.162 |
INR | 1.19 (1.12; 1.35) | 1.35 (1.19; 1.49) | <0.001 | 1.19 (1.11; 1.31) | 1.34 (1.18; 1.45) | <0.001 |
Plasma | ||||||
FFP 48 h [mL] | 2300 (1200; 3850) | 1800 (1200; 3400) | ||||
Indication | for Plasma | |||||
Bleeding event | 43 (43.4%) | 30 (42.9%) | ||||
High INR | 40 (40.4%) | 28 (40.0%) | ||||
Fluid resuscitation | 16 (16.2%) | 12 (17.1%) |
entire cohort | ||||
amount of fluids administered per day (mL) | ||||
baseline to 48 h | 48 h–98 h | 98 h–168 h | 168 h–14 d | |
control group | 3498 (2035; 4857) | 4344 (3645; 5320) | 4685 (3953; 5709) | 4528 (4006; 5317) |
plasma group | 4350 (2599; 6139) | 5114 (4296; 7189) | 4629 (4121; 5710) | 5234 (3920; 6204) |
p-value | 0.002 | <0.001 | 0.88 | 0.078 |
daily fluid balance (mL) | ||||
baseline to 48 h | 48 h–98 h | 98 h–168 h | 168 h–14 d | |
control group | 560 (−684; 1640) | −357(−1230; 741) | −432(−1168; 770) | 35 (−695; 508) |
plasma group | 1417 (166; 2838) | 44 (−1193; 2034) | −634(−1455; 270) | 1 (−984; 598) |
p-value | 0.001 | 0.042 | 0.28 | 0.83 |
amount of albumin administered per day (g) | ||||
baseline to 48 h | 48 h–98 h | 98 h–168 h | 168 h–14 d | |
control group | 0 (0; 10) | 0 (0; 20) | 7 (0; 20) | 9 (3; 17) |
plasma group | 0 (0; 20) | 10 (0; 30) | 13 (0; 27) | 11 (3; 20) |
p-value | 0.19 | 0.017 | 0.11 | 0.47 |
matched cohort | ||||
amount of fluids administered per day (mL) | ||||
baseline to 48 h | 48 h–98h | 98 h–168 h | 168 h–14 d | |
control group | 4439 (2910; 5972) | 4633 (3973; 5552) | 4755 (4141; 5685) | 4699 (4094; 5546) |
plasma group | 4370 (2872; 6820) | 4958 (4317; 6438) | 4647 (4032; 5374) | 4880 (4063; 6075) |
p-value | 0.67 | 0.13 | 0.52 | 0.5 |
daily fluid balance (mL) | ||||
baseline to 48 h | 48 h–98 h | 98 h–168 h | 168 h–14 d | |
control group | 1249 (193; 2755) | −391(−1630; 799) | −902(−1853; −19) | −245(−790; 626) |
plasma group | 1457 (177; 2772) | −203(−1133; 992) | −871(−1585; 49) | 149 (−645; 598) |
p-value | 0.55 | 0.27 | 0.61 | 0.53 |
amount of albumin administered per day (g) | ||||
baseline to 48 h | 48 h till 98 h | 98 h–168 h | 168 h–14 d | |
control group | 0 (0; 20) | 0 (0; 10) | 7 (0; 27) | 9 (3; 17) |
plasma group | 0 (0; 10) | 10 (0; 20) | 13 (0; 23) | 6 (3; 20) |
p-value | 0.71 | 0.071 | 0.81 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietrich, M.; Hölle, T.; Lalev, L.D.; Loos, M.; Schmitt, F.C.F.; Fiedler, M.O.; Hackert, T.; Richter, D.C.; Weigand, M.A.; Fischer, D. Plasma Transfusion in Septic Shock—A Secondary Analysis of a Retrospective Single-Center Cohort. J. Clin. Med. 2022, 11, 4367. https://doi.org/10.3390/jcm11154367
Dietrich M, Hölle T, Lalev LD, Loos M, Schmitt FCF, Fiedler MO, Hackert T, Richter DC, Weigand MA, Fischer D. Plasma Transfusion in Septic Shock—A Secondary Analysis of a Retrospective Single-Center Cohort. Journal of Clinical Medicine. 2022; 11(15):4367. https://doi.org/10.3390/jcm11154367
Chicago/Turabian StyleDietrich, Maximilian, Tobias Hölle, Lazar Detelinov Lalev, Martin Loos, Felix Carl Fabian Schmitt, Mascha Onida Fiedler, Thilo Hackert, Daniel Christoph Richter, Markus Alexander Weigand, and Dania Fischer. 2022. "Plasma Transfusion in Septic Shock—A Secondary Analysis of a Retrospective Single-Center Cohort" Journal of Clinical Medicine 11, no. 15: 4367. https://doi.org/10.3390/jcm11154367
APA StyleDietrich, M., Hölle, T., Lalev, L. D., Loos, M., Schmitt, F. C. F., Fiedler, M. O., Hackert, T., Richter, D. C., Weigand, M. A., & Fischer, D. (2022). Plasma Transfusion in Septic Shock—A Secondary Analysis of a Retrospective Single-Center Cohort. Journal of Clinical Medicine, 11(15), 4367. https://doi.org/10.3390/jcm11154367