MSProDiscuss™ Clinical Decision Support Tool for Identifying Multiple Sclerosis Progression
Abstract
:1. Introduction
2. The Importance and Potential Challenges of Early Identification of MS Progression
3. Overview of the Development of MSProDiscuss
3.1. Stage 1
3.2. Stage 2
3.3. Stage 3
3.4. Stage 4
4. Use and Impact of MSProDiscuss in Clinical Practice
5. Regulatory Classification
- The European Union (EU) recently released new medical device regulation (Regulation EU 2017/745) [47], applicable from 26 May 2021, that classifies medical devices (including standalone software as a medical device) into rule/risk-based categories, based on the consequences to the patient’s health/condition. Annex VIII, Rule 11 classifies CDS software intended to provide information of a non-life-threatening or immediate nature to support clinical decision-making as “Class IIa” (low-to-medium risk case). Class IIa products require review by a designated Notified Body for CE certification (CE Mark).
- A CE mark demonstrates that a product conforms to the general safety and performance requirements of all relevant European medical device regulations and is a legal requirement to place a device on the market in the EU [48].
- Following exit from the EU in 2020, EU medical device regulations will continue to apply until 30 June 2023 [49]. In the United Kingdom, the Medicines and Healthcare products Regulatory Agency is in the process of developing guidance for the classification of CDS software as a medical device and has taken strides to provide detailed assessment guidance for the risk-based understanding of the rules that govern CDS software [50].
- In the US, medical devices are regulated using a risk-based approach through a regulatory framework governed by US Food and Drug Administration’s (FDA) Center for Devices and Radiological Health. The 2019 draft guidance on CDS software describes the FDA’s regulatory approach to CDS software functions, in line with changes suggested by the 21st Century Cures Act [51]; MSProDiscuss meets the criteria for low-risk software as defined in the guidance (criteria are based on: intended purpose, HCP as the intended user, recommendation through algorithm calculation that can be understood and independently reviewed, and determination of International Medical Device Regulators Forum (IMDRF) low-risk category I.ii.) [52]. Based on these criteria, MSProDiscuss is not subject to FDA regulation at this time.
- Other countries (exemplified by Canada) have regulations closely aligned with either IMDRF or EU guidelines; Brazil and Australia are currently reconsidering their regulatory framework for software as a medical device, aiming to increase regulatory scrutiny while fostering innovation.
6. Patient Data and Privacy Considerations for MSProDiscuss
7. Barriers to Clinical Adoption of Digital CDS Tools
8. Other Tools for Assessment of MS Progression
9. Future Applications of New Technologies in MS
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Giazkoulidou, A.; Messinis, L.; Nasios, G. Cognitive functions and social cognition in multiple sclerosis: An overview. Hell. J. Nucl. Med. 2019, 22, 102–110. [Google Scholar] [PubMed]
- Rahn, K.; Slusher, B.; Kaplin, A. Cognitive impairment in multiple sclerosis: A forgotten disability remembered. Cerebrum Dana Forum Brain Sci. 2012, 2012, 14. [Google Scholar]
- Lakin, L.; Davis, B.E.; Binns, C.C.; Currie, K.M.; Rensel, M.R. Comprehensive Approach to Management of Multiple Sclerosis: Addressing Invisible Symptoms—A Narrative Review. Neurol. Ther. 2021, 10, 75–98. [Google Scholar] [CrossRef]
- Giovannoni, G.; Popescu, V.; Wuerfel, J.; Hellwig, K.; Iacobeus, E.; Jensen, M.B.; García-Domínguez, J.M.; Sousa, L.; De Rossi, N.; Hupperts, R.; et al. Smouldering multiple sclerosis: The ‘real MS’. Ther. Adv. Neurol. Disord. 2022, 15, 1–18. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sorensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Lublin, F.D.; Coetzee, T.; Cohen, J.A.; Marrie, R.A.; Thompson, A.J.; International Advisory Committee on Clinical Trials in MS. The 2013 clinical course descriptors for multiple sclerosis: A clarification. Neurology 2020, 94, 1088–1092. [Google Scholar] [CrossRef]
- Koch, M.; Kingwell, E.; Rieckmann, P.; Tremlett, H. The natural history of secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1039–1043. [Google Scholar] [CrossRef] [Green Version]
- Scalfari, A.; Neuhaus, A.; Daumer, M.; Muraro, P.A.; Ebers, G.C. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2014, 85, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Confavreux, C.; Vukusic, S. Natural history of multiple sclerosis: A unifying concept. Brain 2006, 129, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Lublin, F.D.; Haring, D.A.; Ganjgahi, H.; Ocampo, A.; Hatami, F.; Cuklina, J.; Aarden, P.; Dahlke, F.; Arnold, D.L.; Wiendl, H.; et al. How patients with multiple sclerosis acquire disability. Brain 2022, awac016, ahead of print. [Google Scholar] [CrossRef]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132–1140. [Google Scholar] [CrossRef]
- Graf, J.; Leussink, V.I.; Soncin, G.; Lepka, K.; Meinl, I.; Kümpfel, T.; Meuth, S.G.; Hartung, H.P.; Havla, J.; Aktas, O.; et al. Relapse-independent multiple sclerosis progression under natalizumab. Brain Commun. 2021, 3, fcab229. [Google Scholar] [CrossRef]
- Scalfari, A.; Lederer, C.; Daumer, M.; Nicholas, R.; Ebers, G.C.; Muraro, P.A. The relationship of age with the clinical phenotype in multiple sclerosis. Mult. Scler. 2016, 22, 1750–1758. [Google Scholar] [CrossRef]
- Dahlke, F.; Arnold, D.L.; Aarden, P.; Ganjgahi, H.; Haring, D.A.; Cuklina, J.; Nichols, T.E.; Gardiner, S.; Bermel, R.; Wiendl, H. Characterisation of MS phenotypes across the age span using a novel data set integrating 34 clinical trials (NO.MS cohort): Age is a key contributor to presentation. Mult. Scler. 2021, 27, 2062–2076. [Google Scholar] [CrossRef]
- Popescu, V.; Agosta, F.; Hulst, H.E.; Sluimer, I.C.; Knol, D.L.; Sormani, M.P.; Enzinger, C.; Ropele, S.; Alonso, J.; Sastre-Garriga, J.; et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1082–1091. [Google Scholar] [CrossRef]
- Horakova, D.; Dwyer, M.G.; Havrdova, E.; Cox, J.L.; Dolezal, O.; Bergsland, N.; Rimes, B.; Seidl, Z.; Vaneckova, M.; Zivadinov, R. Gray matter atrophy and disability progression in patients with early relapsing-remitting multiple sclerosis: A 5-year longitudinal study. J. Neurol. Sci. 2009, 282, 112–119. [Google Scholar] [CrossRef]
- Radue, E.W.; Barkhof, F.; Kappos, L.; Sprenger, T.; Häring, D.A.; de Vera, A.; von Rosenstiel, P.; Bright, J.R.; Francis, G.; Cohen, J.A. Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis. Neurology 2015, 84, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Wattjes, M.P.; Ciccarelli, O.; Reich, D.S.; Banwell, B.; de Stefano, N.; Enzinger, C.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Gasperini, C.; et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021, 20, 653–670. [Google Scholar] [CrossRef]
- Inojosa, H.; Proschmann, U.; Akgün, K.; Ziemssen, T. Should We Use Clinical Tools to Identify Disease Progression? Front. Neurol. 2021, 11, 628542. [Google Scholar] [CrossRef]
- Cohen, M.; Bresch, S.; Thommel Rocchi, O.; Morain, E.; Benoit, J.; Levraut, M.; Fakir, S.; Landes, C.; Lebrun-Frénay, C. Should we still only rely on EDSS to evaluate disability in multiple sclerosis patients? A study of inter and intra rater reliability. Mult. Scler. Relat. Disord. 2021, 54, 103144. [Google Scholar] [CrossRef]
- Kalincik, T.; Cutter, G.; Spelman, T.; Jokubaitis, V.; Havrdova, E.; Horakova, D.; Trojano, M.; Izquierdo, G.; Girard, M.; Duquette, P.; et al. Defining reliable disability outcomes in multiple sclerosis. Brain 2015, 138, 3287–3298. [Google Scholar] [CrossRef]
- Amato, M.P.; Portaccio, E. Clinical outcome measures in multiple sclerosis. J. Neurol. Sci. 2007, 259, 118–122. [Google Scholar] [CrossRef]
- Inojosa, H.; Schriefer, D.; Ziemssen, T. Clinical outcome measures in multiple sclerosis: A review. Autoimmun. Rev. 2020, 19, 102512. [Google Scholar] [CrossRef] [PubMed]
- Feys, P.; Lamers, I.; Francis, G.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult. Scler. 2017, 23, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cree, B.A.C.; Arnold, D.L.; Chataway, J.; Chitnis, T.; Fox, R.J.; Pozo Ramajo, A.; Murphy, N.; Lassmann, H. Secondary Progressive Multiple Sclerosis: New Insights. Neurology 2021, 97, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G.; Butzkueven, H.; Dhib-Jalbut, S.; Hobart, J.; Kobelt, G.; Pepper, G.; Sormani, M.P.; Thalheim, C.; Traboulsee, A.; Vollmer, T. Brain health: Time matters in multiple sclerosis. Mult. Scler. Relat. Disord. 2016, 9 (Suppl. S1), S5–S48. [Google Scholar] [CrossRef] [Green Version]
- Inojosa, H.; Proschmann, U.; Akgün, K.; Ziemssen, T. The need for a strategic therapeutic approach: Multiple sclerosis in check. Ther. Adv. Chronic Dis. 2022, 13, 1–15. [Google Scholar] [CrossRef]
- Inojosa, H.; Ziemssen, T. How to reduce the delay of diagnosing secondary progression in multiple sclerosis. Mult. Scler. 2021, 27, 646–647. [Google Scholar] [CrossRef]
- Katz Sand, I.; Krieger, S.; Farrell, C.; Miller, A.E. Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Mult. Scler. 2014, 20, 1654–1657. [Google Scholar] [CrossRef]
- Meca-Lallana, V.; Berenguer-Ruiz, L.; Carreres-Polo, J.; Eichau-Madueño, S.; Ferrer-Lozano, J.; Forero, L.; Higueras, Y.; Téllez Lara, N.; Vidal-Jordana, A.; Pérez-Miralles, F.C. Deciphering Multiple Sclerosis Progression. Front. Neurol. 2021, 12, 608491. [Google Scholar] [CrossRef]
- Inojosa, H.; Proschmann, U.; Akgün, K.; Ziemssen, T. A focus on secondary progressive multiple sclerosis (SPMS): Challenges in diagnosis and definition. J. Neurol. 2021, 268, 1210–1221. [Google Scholar] [CrossRef]
- Kapoor, R.; Smith, K.E.; Allegretta, M.; Arnold, D.L.; Carroll, W.; Comabella, M.; Furlan, R.; Harp, C.; Kuhle, J.; Leppert, D.; et al. Serum neurofilament light as a biomarker in progressive multiple sclerosis. Neurology 2020, 95, 436–444. [Google Scholar] [CrossRef]
- Ziemssen, T.; Tolley, C.; Bennett, B.; Kilgariff, S.; Jones, E.; Pike, J.; Tomic, D.; Piani-Meier, D.; Lahoz, R. A mixed methods approach towards understanding key disease characteristics associated with the progression from RRMS to SPMS: Physicians’ and patients’ views. Mult. Scler. Relat. Disord. 2020, 38, 101861. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.; Vogel, S. Illustration of Clinical Decision Support System Development Complexity. Stud. Health Technol. Inform. 2020, 272, 261–264. [Google Scholar] [CrossRef]
- Souza-Pereira, L.; Pombo, N.; Ouhbi, S.; Felizardo, V.; Garcia, N. Clinical decision support systems for chronic diseases: A Systematic literature review. Comput. Methods Programs Biomed. 2020, 195, 105565. [Google Scholar] [CrossRef]
- Tolley, C.; Piani-Meier, D.; Bentley, S.; Bennett, B.; Jones, E.; Pike, J.; Dahlke, F.; Tomic, D.; Ziemssen, T. A Novel, Integrative Approach for Evaluating Progression in Multiple Sclerosis: Development of a Scoring Algorithm. JMIR Med. Inform. 2020, 8, e17592. [Google Scholar] [CrossRef]
- Ziemssen, T.; Piani-Meier, D.; Bennett, B.; Johnson, C.; Tinsley, K.; Trigg, A.; Hach, T.; Dahlke, F.; Tomic, D.; Tolley, C.; et al. A Physician-Completed Digital Tool for Evaluating Disease Progression (Multiple Sclerosis Progression Discussion Tool): Validation Study. J. Med. Internet Res. 2020, 22, e16932. [Google Scholar] [CrossRef]
- Ziemssen, T.; Giovannoni, G.; Alvarez, E.; Bhan, V.; Hersh, C.; Hoffmann, O.; Oreja-Guevara, C.; Robles-Cedeño, R.R.; Trojano, M.; Vermersch, P.; et al. Multiple Sclerosis Progression Discussion Tool Usability and Usefulness in Clinical Practice: Cross-sectional, Web-Based Survey. J. Med. Internet Res. 2021, 23, e29558. [Google Scholar] [CrossRef]
- Klinsing, S.; Yalachkov, Y.; Foerch, C. Difficulty in identification of patients with active secondary progressive multiple sclerosis by clinical classification tools. Eur. J. Neurol. 2022, 29, 1100–1105. [Google Scholar] [CrossRef]
- Visser, L.A.; Louapre, C.; Uyl-de Groot, C.A.; Redekop, W.K. Health-related quality of life of multiple sclerosis patients: A European multi-country study. Arch. Public Health 2021, 79, 39. [Google Scholar] [CrossRef]
- Baumstarck, K.; Boyer, L.; Boucekine, M.; Michel, P.; Pelletier, J.; Auquier, P. Measuring the quality of life in patients with multiple sclerosis in clinical practice: A necessary challenge. Mult. Scler. Int. 2013, 2013, 524894. [Google Scholar] [CrossRef] [Green Version]
- Bass, A.D.; Van Wijmeersch, B.; Mayer, L.; Mäurer, M.; Boster, A.; Mandel, M.; Mitchell, C.; Sharrock, K.; Singer, B. Effect of Multiple Sclerosis on Daily Activities, Emotional Well-being, and Relationships: The Global vsMS Survey. Int. J. MS Care 2020, 22, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Inojosa, H.; Rauser, B.; Ettle, B.; Ziemssen, T. The transitional phase of multiple sclerosis: The concept of PANGAEA 2.0 evolution study. Mult. Scler. Relat. Disord. 2020, 46, 102523. [Google Scholar] [CrossRef]
- Ziemssen, T.; Hoffmann, O.; Klotz, L.; Schreiber, H.; Weber, M.S.; Rauser, B. Gaining First Insights on Secondary Progressive Multiple Sclerosis Patients Treated with Siponimod in Clinical Routine: Protocol of the Noninterventional Study AMASIA. JMIR Res. Protoc. 2020, 9, e19598. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC. Off. J. Eur. Union 2017, 60, L117. [Google Scholar]
- The British Standards Institution (BSI). CE Marking for Medical Devices. Available online: https://www.bsigroup.com/en-GB/medical-devices/our-services/ce-marking/ (accessed on 28 February 2022).
- United Kingdom Government. Guidance Regulating Medical Devices in the UK. Last Updated 1 January 2022. Available online: https://www.gov.uk/guidance/regulating-medical-devices-in-the-uk#registrations-in-great-britain (accessed on 5 May 2022).
- Medicines & Healthcare Products Regulatory Agency (MHRA). Guidance: Medical Device Stand-Alone Software Including Apps (including IVDMDs) v1.08. 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/999908/Software_flow_chart_Ed_1-08b-IVD.pdf (accessed on 22 March 2022).
- FDA Center for Devices and Radiological Health. Clinical Decision Support Software. Draft Guidance for Industry and Food and Drug Administration Staff. 27 September 2019. Available online: https://www.fda.gov/media/109618/download (accessed on 22 March 2022).
- The British Standards Institution (BSI). White Paper “Software as a Medical Device”. 2020. Available online: https://www.bsigroup.com/globalassets/meddev/localfiles/fr-fr/whitepapers/md-wp-software.pdf (accessed on 28 February 2022).
- Gordon, W.J.; Landman, A.; Zhang, H.; Bates, D.W. Beyond validation: Getting health apps into clinical practice. NPJ Digit. Med. 2020, 3, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gromisch, E.S.; Turner, A.P.; Haselkorn, J.K.; Lo, A.C.; Agresta, T. Mobile health (mHealth) usage, barriers, and technological considerations in persons with multiple sclerosis: A literature review. JAMIA Open 2021, 4, ooaa067. [Google Scholar] [CrossRef]
- The Your MS Questionnaire. Available online: https://www.yourms.com/#/welcome (accessed on 18 May 2022).
- Giovannoni, G.; Alvarez, E.; Hoffmann, O.; Oreja-Guevara, C.; Vermersch, P.; Khwaja, M.; Stadler, B.; Vandercappellen, J.; Ziemssen, T. Development of Your MS Questionnaire: A Patient-completed Digital Tool to Monitor Multiple Sclerosis Disease Symptoms and Their Impact on People’s Life. Poster P119. In Proceedings of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), 13–15 October 2021; Available online: https://www.medcommshydhosting.com/MSKnowledgecenter/ectrims/2021/posters/P119_ECTRIMS2021.pdf (accessed on 18 May 2022).
- Manouchehrinia, A.; Zhu, F.; Piani-Meier, D.; Lange, M.; Silva, D.G.; Carruthers, R.; Glaser, A.; Kingwell, E.; Tremlett, H.; Hillert, J. Predicting risk of secondary progression in multiple sclerosis: A nomogram. Mult. Scler. 2019, 25, 1102–1112. [Google Scholar] [CrossRef]
- Ziemssen, T.; Haase, R. Digital Innovation in Multiple Sclerosis Management. Brain Sci. 2021, 12, 40. [Google Scholar] [CrossRef]
- Zasadzka, E.; Trzmiel, T.; Pieczyńska, A.; Hojan, K. Modern Technologies in the Rehabilitation of Patients with Multiple Sclerosis and Their Potential Application in Times of COVID-19. Medicina 2021, 57, 549. [Google Scholar] [CrossRef] [PubMed]
- Landi, D.; Ponzano, M.; Nicoletti, C.G.; Cola, G.; Cecchi, G.; Grimaldi, A.; Mataluni, G.; Mercuri, N.B.; Sormani, M.P.; Pacileo, G.; et al. Patient’s point of view on the use of telemedicine in multiple sclerosis: A web-based survey. Neurol. Sci. 2022, 43, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Voigt, I.; Inojosa, H.; Dillenseger, A.; Haase, R.; Akgün, K.; Ziemssen, T. Digital Twins for Multiple Sclerosis. Front. Immunol. 2021, 12, 669811. [Google Scholar] [CrossRef]
- Matthews, P.M.; Block, V.J.; Leocani, L. E-health and multiple sclerosis. Curr. Opin. Neurol. 2020, 33, 271–276. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemssen, T.; Vandercappellen, J.; Jordan Mondragon, V.; Giovannoni, G. MSProDiscuss™ Clinical Decision Support Tool for Identifying Multiple Sclerosis Progression. J. Clin. Med. 2022, 11, 4401. https://doi.org/10.3390/jcm11154401
Ziemssen T, Vandercappellen J, Jordan Mondragon V, Giovannoni G. MSProDiscuss™ Clinical Decision Support Tool for Identifying Multiple Sclerosis Progression. Journal of Clinical Medicine. 2022; 11(15):4401. https://doi.org/10.3390/jcm11154401
Chicago/Turabian StyleZiemssen, Tjalf, Jo Vandercappellen, Valeria Jordan Mondragon, and Gavin Giovannoni. 2022. "MSProDiscuss™ Clinical Decision Support Tool for Identifying Multiple Sclerosis Progression" Journal of Clinical Medicine 11, no. 15: 4401. https://doi.org/10.3390/jcm11154401
APA StyleZiemssen, T., Vandercappellen, J., Jordan Mondragon, V., & Giovannoni, G. (2022). MSProDiscuss™ Clinical Decision Support Tool for Identifying Multiple Sclerosis Progression. Journal of Clinical Medicine, 11(15), 4401. https://doi.org/10.3390/jcm11154401