REM-Predominant Obstructive Sleep Apnea in Patients with Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Questionnaires
2.3. Sleep Recordings
2.4. Comorbidities
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of Adult Obstructive Sleep Apnea with Positive Airway Pressure: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2019, 15, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Peker, Y.; Balcan, B. Cardiovascular outcomes of continuous positive airway pressure therapy for obstructive sleep apnea. J. Thorac. Dis. 2018, 10, S4262–S4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinchuk, A.V.; Gentry, M.J.; Concato, J.; Yaggi, H.K. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med. Rev. 2017, 35, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.L.; Edwards, B.A.; Eckert, D.J.; Jordan, A.S.; Sands, S.A.; Malhotra, A.; White, D.P.; Loring, S.H.; Butler, J.P.; Wellman, A. An Integrative Model of Physiological Traits Can be Used to Predict Obstructive Sleep Apnea and Response to Non Positive Airway Pressure Therapy. Sleep 2015, 38, 961–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strollo, P.J., Jr.; Soose, R.J.; Maurer, J.T.; de Vries, N.; Cornelius, J.; Froymovich, O.; Hanson, R.D.; Padhya, T.A.; Steward, D.L.; Gillespie, M.B.; et al. Upper-airway stimulation for obstructive sleep apnea. N. Engl. J. Med. 2014, 370, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somers, V.K.; Dyken, M.E.; Clary, M.P.; Abboud, F.M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Investig. 1995, 96, 1897–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhlesi, B.; Punjabi, N.M. “REM-related” obstructive sleep apnea: An epiphenomenon or a clinically important entity? Sleep 2012, 35, 5–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palagini, L.; Baglioni, C.; Ciapparelli, A.; Gemignani, A.; Riemann, D. REM sleep dysregulation in depression: State of the art. Sleep Med. Rev. 2013, 17, 377–390. [Google Scholar] [CrossRef]
- Harlev, D.; Ravona-Springer, R.; Nuriel, Y.; Fruchter, E. Sleep Monitoring Using WatchPAT Device to Predict Recurrence of Major Depression in Patients at High Risk for Major Depression Disorder Recurrence: A Case Report. Front. Psychiatry 2021, 12, 572660. [Google Scholar] [CrossRef]
- Geckil, A.A.; Ermis, H. The relationship between anxiety, depression, daytime sleepiness in the REM-related mild OSAS and the NREM-related mild OSAS. Sleep Breath. = Schlaf. Atm. 2020, 24, 71–75. [Google Scholar] [CrossRef]
- Chami, H.A.; Baldwin, C.M.; Silverman, A.; Zhang, Y.; Rapoport, D.; Punjabi, N.M.; Gottlieb, D.J. Sleepiness, quality of life, and sleep maintenance in REM versus non-REM sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 2010, 181, 997–1002. [Google Scholar] [CrossRef] [Green Version]
- Chami, H.A.; Gottlieb, D.J.; Redline, S.; Punjabi, N.M. Association between Glucose Metabolism and Sleep-disordered Breathing during REM Sleep. Am. J. Respir. Crit. Care Med. 2015, 192, 1118–1126. [Google Scholar] [CrossRef] [Green Version]
- Appleton, S.L.; Vakulin, A.; Martin, S.A.; Lang, C.J.; Wittert, G.A.; Taylor, A.W.; McEvoy, R.D.; Antic, N.A.; Catcheside, P.G.; Adams, R.J. Hypertension Is Associated with Undiagnosed OSA during Rapid Eye Movement Sleep. Chest 2016, 150, 495–505. [Google Scholar] [CrossRef]
- Mokhlesi, B.; Hagen, E.W.; Finn, L.A.; Hla, K.M.; Carter, J.R.; Peppard, P.E. Obstructive sleep apnoea during REM sleep and incident non-dipping of nocturnal blood pressure: A longitudinal analysis of the Wisconsin Sleep Cohort. Thorax 2015, 70, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunstrom, E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef]
- Peker, Y.; Thunström, E.; Glantz, H.; Eulenburg, C. Effect of Obstructive Sleep Apnea and CPAP Treatment on Cardiovascular Outcomes in Acute Coronary Syndrome in the RICCADSA Trial. J. Clin. Med. 2020, 9, 4051. [Google Scholar] [CrossRef]
- Peker, Y.; Glantz, H.; Thunstrom, E.; Kallryd, A.; Herlitz, J.; Ejdeback, J. Rationale and design of the Randomized Intervention with CPAP in Coronary Artery Disease and Sleep Apnoea—RICCADSA trial. Scand. Cardiovasc. J. 2009, 43, 24–31. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Zung, W.W.; Richards, C.B.; Short, M.J. Self-rating depression scale in an outpatient clinic. Further validation of the SDS. Arch. Gen. Psychiatry 1965, 13, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Zung, W.W. A rating instrument for anxiety disorders. Psychosomatics 1971, 12, 371–379. [Google Scholar] [CrossRef]
- Dunstan, D.A.; Scott, N.; Todd, A.K. Screening for anxiety and depression: Reassessing the utility of the Zung scales. BMC Psychiatry 2017, 17, 329. [Google Scholar] [CrossRef]
- Weaver, T.E.; Laizner, A.M.; Evans, L.K.; Maislin, G.; Chugh, D.K.; Lyon, K.; Smith, P.L.; Schwartz, A.R.; Redline, S.; Pack, A.I.; et al. An instrument to measure functional status outcomes for disorders of excessive sleepiness. Sleep 1997, 20, 835–843. [Google Scholar] [PubMed]
- Weaver, T.E.; Maislin, G.; Dinges, D.F.; Bloxham, T.; George, C.F.; Greenberg, H.; Kader, G.; Mahowald, M.; Younger, J.; Pack, A.I. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep 2007, 30, 711–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, J.E., Jr. SF-36 health survey update. Spine 2000, 25, 3130–3139. [Google Scholar] [CrossRef] [PubMed]
- Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 1999, 22, 667–689. [CrossRef]
- Obesity: Preventing and Managing the Global Epidemic; WHO Technical Report Series 894; World Health Organization: Geneva, Switzerland, 2000; 252p.
- Chervin, R.D.; Aldrich, M.S. The relation between multiple sleep latency test findings and the frequency of apneic events in REM and non-REM sleep. Chest 1998, 113, 980–984. [Google Scholar] [CrossRef] [Green Version]
- Punjabi, N.M.; Bandeen-Roche, K.; Marx, J.J.; Neubauer, D.N.; Smith, P.L.; Schwartz, A.R. The association between daytime sleepiness and sleep-disordered breathing in NREM and REM sleep. Sleep 2002, 25, 307–314. [Google Scholar]
- Duce, B.; Kulkas, A.; Langton, C.; Töyräs, J.; Hukins, C. The prevalence of REM-related obstructive sleep apnoea is reduced by the AASM 2012 hypopnoea criteria. Sleep Breath. Schlaf. Atm. 2018, 22, 57–64. [Google Scholar] [CrossRef]
- Hu, X.Y.; Cho, J.G.; Perri, R.; Ting, T.; Al Oweidat, K.; Lambert, S.; Wheatley, J. CPAP treatment in REM-related obstructive sleep apnea: A distinct clinical phenotype of sleep disordered breathing. Sleep Breath. Schlaf. Atm. 2021, 25, 1875–1884. [Google Scholar] [CrossRef]
- Conwell, W.; Patel, B.; Doeing, D.; Pamidi, S.; Knutson, K.L.; Ghods, F.; Mokhlesi, B. Prevalence, clinical features, and CPAP adherence in REM-related sleep-disordered breathing: A cross-sectional analysis of a large clinical population. Sleep Breath. Schlaf. Atm. 2012, 16, 519–526. [Google Scholar] [CrossRef]
- Mokhlesi, B.; Finn, L.A.; Hagen, E.W.; Young, T.; Hla, K.M.; Van Cauter, E.; Peppard, P.E. Obstructive sleep apnea during REM sleep and hypertension. results of the Wisconsin Sleep Cohort. Am. J. Respir. Crit. Care Med. 2014, 190, 1158–1167. [Google Scholar] [CrossRef] [Green Version]
- McSharry, D.G.; Saboisky, J.P.; Deyoung, P.; Jordan, A.S.; Trinder, J.; Smales, E.; Hess, L.; Chamberlin, N.L.; Malhotra, A. Physiological mechanisms of upper airway hypotonia during REM sleep. Sleep 2014, 37, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Trinder, J.; Kleiman, J.; Carrington, M.; Smith, S.; Breen, S.; Tan, N.; Kim, Y. Autonomic activity during human sleep as a function of time and sleep stage. J. Sleep Res. 2001, 10, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Pamidi, S.; Knutson, K.L.; Ghods, F.; Mokhlesi, B. Depressive symptoms and obesity as predictors of sleepiness and quality of life in patients with REM-related obstructive sleep apnea: Cross-sectional analysis of a large clinical population. Sleep Med. 2011, 12, 827–831. [Google Scholar] [CrossRef]
REM-Predominant OSA N = 73 | Non-Stage Specific OSA N = 213 | p-Value | |
---|---|---|---|
Age, years | 63.2 ± 7.5 | 63.8 ± 8.1 | 0.539 |
Age ≥ 65 years, % | 43.8 | 43.2 | 0.924 |
Female sex, % | 26.0 | 9.9 | 0.001 |
BMI, kg/m2 | 29.0 (26.3–32.2) | 28.1 (25.8–29.9) | 0.020 |
Obesity, % | 42.5 | 24.4 | 0.003 |
Current smoker, % | 16.4 | 16.4 | 1.000 |
CABG at baseline, % | 20.5 | 23.9 | 0.552 |
AMI at baseline, % | 43.8 | 51.2 | 0.279 |
Former revascularization, % | 24.3 | 21.0 | 0.554 |
Hypertension,% | 64.4 | 60.6 | 0.563 |
History of atrial fibrillation, % | 11.0 | 16.9 | 0.225 |
Diabetes mellitus, % | 24.7 | 22.1 | 0.648 |
History of stroke,% | 8.2 | 7.6 | 0.861 |
Pulmonary disease,% | 5.5 | 6.1 | 0.846 |
Anti-depressive medication, % | 5.6 | 3.4 | 0.419 |
REM-Predominant OSA N = 73 | Non-Stage Specific OSA N = 213 | p-Value | |
---|---|---|---|
TST, min | 430.5 (374.8–469.3) | 413.3 (371.7–451.5) | 0.320 |
Sleep Onset, min | 10.0 (5.3–14.1) | 9.3 (5.7–16.6) | 0.702 |
Sleep Efficiency, % of TST | 84.6 (78.3–91.0) | 82.4 (75.5–88.3) | 0.041 |
SWS, min | 32.5 (3.5–59.5) | 22.0 (0.5–47.3) | 0.039 |
SWS, % of TST | 7.8 (0.9–15.3) | 5.6 (0.1–11.5) | 0.044 |
REM sleep, min | 63.5 (47.5–79.8) | 59.5 (42.0–71.8) | 0.077 |
REM sleep, % of TST | 15.7 (12.3–19.4) | 14.4 (10.9–18.0) | 0.151 |
AHI, events/hour | 22.6 (13.9–31.9) | 36.6 (24.4–55.7) | <0.001 |
REM—AHI, events/hour | 53.5 (33.4–69.0) | 34.5 (18.2–56.8) | <0.001 |
Non-REM—AHI, events/hour | 16.1 (9.7–27.4) | 38.1 (25.9–57.1) | <0.001 |
ODI, events/hour | 10.2 (6.7–19.9) | 19.2 (9.2–31.5) | <0.001 |
Average SpO2 % | 94.0 (93.2–95.1) | 93.9 (92.8–94.8) | 0.098 |
Nadir SpO2 % | 82.0 (78.0–86.5) | 84.0 (79.0–87.0) | 0.289 |
SpO2 < 90%, min | 5.1 (1.2–16.9) | 5.1 (1.0–24.0) | 0.473 |
SpO2 < 90%, % of TST | 1.5 (0.3–4.8) | 1.2 (0.2–5.3) | 0.820 |
Heart rate, beats/min | 58.8 (53.4–64.8) | 57.0 (51.3–63.2) | 0.167 |
REM-Predominant OSA N = 73 | Non-Stage Specific OSA N = 213 | p-Value | |
---|---|---|---|
ESS score | 8 (4.0–11.0) | 8.0 (5.0–11.0) | 0.504 |
EDS (ESS score ≥ 10), % | 42.5 | 39.9 | 0.598 |
FOSQ scores | |||
General Productivity | 3.8 (3.6–4.0) | 4.0 (3.7–4.0) | 0.216 |
Social Outcome | 4.0 (4.0–4.0) | 4.0 (4.0–4.0) | 0.580 |
Activity level | 3.8 (3.2–3.9) | 3.7(3.3–3.9) | 0.872 |
Vigilance | 3.7 (3.4–4.0) | 3.7 (3.3–4.0) | 0.891 |
Intimate relationship | 3.5 (3.0–4.0) | 3.8 (3.0–4.0) | 0.988 |
Total score | 18.5 (17.6–19.4) | 18.7 (17.3–19.6) | 0.594 |
Zung SDS score | 38.8 (33.4–50.0) | 41.3 (35.0–50.0) | 0.244 |
Depression (Zung SDS score ≥ 50), % | 31.4 | 28.3 | 0.618 |
Zung SAS score | 36.3 (31.3–43.8) | 38.8 (33.8–41.3) | 0.211 |
Anxiety (Zung SAS score ≥ 45), % | 21.4 | 15.9 | 0.294 |
SF-36 domains | |||
Physical Functioning | 85.0 (65.0–95.0) | 83.3 (68.3–90.0) | 0.577 |
Role Physical | 75.0 (25.0–100.0) | 75.0 (25.0–100.0) | 0.575 |
Bodily Pain | 84.0 (61.0–100.0) | 74.0 (51.0–100.0) | 0.090 |
General Health | 70.0 (57.0–82.0) | 67.0 (52.0–82.0) | 0.610 |
Vitality | 70.0 (55.0–85.0) | 70.0 (50.0–85.0) | 0.782 |
Social Functioning | 100.0 (87.5–100.0) | 100.0 (75.0–100.0) | 0.230 |
Role Emotional | 100.0 (66.7–100.0) | 100.0 (66.7–100.0) | 0.307 |
Mental Health | 88.0 (75.0–96.0) | 88.0 (72.0–96.0) | 0.379 |
PCS | 46.2 (39.4–52.9) | 46.0 (37.6–52.6) | 0.690 |
MCS | 55.1 (46.9–58.7) | 54.2 (45.3–57.9) | 0.335 |
Variables | OR | 95 CI% | p-Value |
---|---|---|---|
Unadjusted | |||
Age, years | 0.98 | 0.96–1.02 | 0.538 |
Female sex | 3.22 | 1.61–6.41 | 0.001 |
BMI | 1.09 | 1.02–1.16 | 0.011 |
Obesity | 2.29 | 1.30–3.99 | 0.004 |
ESS | 0.96 | 0.90–1.03 | 0.316 |
EDS (ESS ≥ 10) | 1.16 | 0.67–1.98 | 0.598 |
SWS, % of TST | 1.04 | 1.01–1.08 | 0.015 |
AHI, events/h | 0.95 | 0.93–0.97 | <0.001 |
ODI, events/h | 0.96 | 0.94–0.98 | <0.001 |
Nadir SpO2 % | 0.98 | 0.95–1.02 | 0.346 |
SpO2 < 90%, min | 0.99 | 0.98–1.00 | 0.098 |
SpO2 < 90%, % of TST | 0.97 | 0.93–1.01 | 0.115 |
Current smoker | 1.00 | 0.48–2.05 | 0.999 |
Baseline AMI | 0.75 | 0.44–1.27 | 0.280 |
Hypertension | 1.18 | 0.68–2.05 | 0.563 |
History of atrial fibrillation | 0.61 | 0.27–1.37 | 0.228 |
Diabetes mellitus | 1.16 | 0.62–2.16 | 0.649 |
Stroke | 1.09 | 0.41–2.90 | 0.861 |
Pulmonary disease | 0.89 | 0.28–2.83 | 0.846 |
Zung SDS score | 0.99 | 0.96–1.01 | 0.297 |
Zung SAS score | 0.98 | 0.94–1.01 | 0.217 |
PCS | 1.01 | 0.98–1.04 | 0.507 |
MCS | 1.01 | 0.99–1.04 | 0.355 |
Adjusted | |||
Model 1 | |||
Age, years | 0.98 | 0.94–1.02 | 0.374 |
Female sex vs. Male sex | 4.64 | 1.85–11.64 | 0.001 |
BMI, kg/m2 | 1.17 | 1.07–1.28 | <0.001 |
SWS, % of TST | 0.99 | 0.96–1.03 | 0.716 |
AHI, events/h | 0.93 | 0.91–0.95 | <0.001 |
Model 2 | |||
Age, years | 0.98 | 0.94–1.02 | 0.359 |
Female sex vs. Male sex | 2.96 | 1.30–6.72 | 0.009 |
BMI, kg/m2 | 1.14 | 1.05–1.23 | 0.003 |
SWS, % of TST | 1.01 | 0.98–1.05 | 0.606 |
ODI, events/h | 0.95 | 0.92–0.97 | <0.001 |
β Coefficient | 95% CI | p-Value | |
---|---|---|---|
Model 1 | |||
Age | −0.04 | −0.46, −0.25 | 0.544 |
BMI | 0.30 | 1.15, 2.61 | <0.001 |
Zung SDS score | 0.12 | 0.01, 0.57 | 0.045 |
Model 2 | |||
Age | −0.08 | −0.59, 0.11 | 0.177 |
BMI | 0.27 | 0.95, 2.38 | <0.001 |
Zung SDS score | 0.09 | −0.05, 0.50 | 0.115 |
Female sex | 0.23 | 7.95, 23.70 | <0.001 |
Model 3 | |||
Age | −0.08 | −0.59, 0.12 | 0.185 |
BMI | 0.27 | 0.99–2.42 | <0.001 |
Vitality | −0.07 | −0.19, 0.05 | <0.001 |
Female sex | 0.24 | 9.30, 25.01 | 0.231 |
Model 4 | |||
Age | −0.08 | −0.59, 0.12 | 0.192 |
BMI | 0.27 | 1.00, 2.42 | <0.001 |
Mental Health | −0.09 | −0.28, 0.02 | 0.094 |
Female sex | 0.24 | 8.99, 24.64 | <0.001 |
Model 5 | |||
Age | −0.08 | −0.61, 0.11 | 0.168 |
BMI | 0.28 | 1.06, 2.49 | <0.001 |
MCS | −0.12 | −0.55, −0.02 | 0.033 |
Female sex | 0.25 | 9.81, 25.82 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcan, B.; Celik, Y.; Newitt, J.; Strollo, P.J., Jr.; Peker, Y. REM-Predominant Obstructive Sleep Apnea in Patients with Coronary Artery Disease. J. Clin. Med. 2022, 11, 4402. https://doi.org/10.3390/jcm11154402
Balcan B, Celik Y, Newitt J, Strollo PJ Jr., Peker Y. REM-Predominant Obstructive Sleep Apnea in Patients with Coronary Artery Disease. Journal of Clinical Medicine. 2022; 11(15):4402. https://doi.org/10.3390/jcm11154402
Chicago/Turabian StyleBalcan, Baran, Yeliz Celik, Jennifer Newitt, Patrick J. Strollo, Jr., and Yüksel Peker. 2022. "REM-Predominant Obstructive Sleep Apnea in Patients with Coronary Artery Disease" Journal of Clinical Medicine 11, no. 15: 4402. https://doi.org/10.3390/jcm11154402
APA StyleBalcan, B., Celik, Y., Newitt, J., Strollo, P. J., Jr., & Peker, Y. (2022). REM-Predominant Obstructive Sleep Apnea in Patients with Coronary Artery Disease. Journal of Clinical Medicine, 11(15), 4402. https://doi.org/10.3390/jcm11154402