Small Aperture IC-8 Extended-Depth-of-Focus Intraocular Lens in Cataract Surgery: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Visual Outcomes and Satisfaction
4.2. Complications
4.3. Unilateral vs. Bilateral
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.M.; Afshari, N.A. The global state of cataract blindness. Curr. Opin. Ophthalmol. 2017, 28, 98–103. [Google Scholar] [CrossRef]
- Olson, R.J.; Braga-Mele, R.; Chen, S.H.; Miller, K.M.; Pineda, R.; Tweeten, J.P.; Musch, D.C. Cataract in the Adult Eye Preferred Practice Pattern®. Ophthalmology 2017, 124, P1–P119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Fan, Z.; Gao, X.; Huang, W.; Yang, Q.; Li, Z.; Lin, M.; Xiao, H.; Ge, J. Illness uncertainty, anxiety and depression in Chinese patients with glaucoma or cataract. Sci. Rep. 2018, 8, 11671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.W.; Liu, P.P.S.; Lin, S.M.; Wang, J.H.; Huang, H.K.; Loh, C.H. Cataract and the increased risk of depression in general population: A 16-year nationwide population-based longitudinal study. Sci. Rep. 2020, 10, 13421. [Google Scholar] [CrossRef]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [Green Version]
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Mönestam, E.; Wachtmeister, L. Impact of cataract surgery on visual acuity and subjective functional outcomes: A population-based study in Sweden. Eye 1999, 13, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.S.; Karimova, G.; Hildreth, A.J.; Crabtree, L.; Allen, D.; O’Connell, J.E. Recovery of visual and functional disability following cataract surgery in older people: Sunderland Cataract Study. J. Cataract Refract. Surg. 2006, 32, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Lamoureux, E.L.; Fenwick, E.; Pesudovs, K.; Tan, D. The impact of cataract surgery on quality of life. Curr. Opin. Ophthalmol. 2011, 22, 19–27. [Google Scholar] [CrossRef]
- Lee, B.S.; Munoz, B.E.; West, S.K.; Gower, E.W. Functional improvement after one- and two-eye cataract surgery in the salisbury eye evaluation. Ophthalmology 2013, 120, 949–955. [Google Scholar] [CrossRef] [Green Version]
- Kanclerz, P.; Toto, F.; Grzybowski, A.; Alio, J.L. Extended depth-of-field intraocular lenses: An update. Asia-Pac. J. Ophthalmol. 2020, 9, 194–202. [Google Scholar] [CrossRef]
- Bianchi, G.R. Spectacle independence after cataract surgery: A prospective study with a multifocal intraocular lens. Med. Hypothesis Discov. Innov. Ophthalmol. 2020, 9, 38–46. [Google Scholar]
- Kyei, S.; Amponsah, B.K.; Asiedu, K.; Akoto, Y.O. Visual function, spectacle independence, and patients’ satisfaction after cataract surgery-a study in the central region of ghana. Afr. Health Sci. 2021, 21, 445–456. [Google Scholar] [CrossRef]
- Cheng, X.; Bradley, A.; Ravikumar, S.; Thibos, L.N. Visual impact of zernike and seidel forms of monochromatic aberrations. Optom. Vis. Sci. 2010, 87, 300–312. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, X.; Wang, H.; Fang, Z.; Yao, K. Intraocular Lens power calculation after laser refractive surgery: A Meta-Analysis. Sci. Rep. 2020, 10, 2645. [Google Scholar] [CrossRef]
- de Silva, S.R.; Evans, J.R.; Kirthi, V.; Ziaei, M.; Leyland, M. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst. Rev. 2016, 2016, CD003169. [Google Scholar] [CrossRef] [Green Version]
- Chiam, P.J.T.; Chan, J.H.; Aggarwal, R.K.; Kasaby, S. ReSTOR intraocular lens implantation in cataract surgery: Quality of vision. J. Cataract Refract. Surg. 2006, 32, 1459–1463. [Google Scholar] [CrossRef]
- Gil, M.A.; Varon, C.; Rosello, N.; Cardona, G.; Buil, J.A. Visual acuity, contrast sensitivity, subjective quality of vision, and quality of life with 4 different multifocal IOLs. Eur. J. Ophthalmol. 2012, 22, 175–187. [Google Scholar] [CrossRef]
- Gil, M.A.; Varón, C.; Cardona, G.; Vega, F.; Buil, J.A. Comparison of far and near contrast sensitivity in patients symmetrically implanted with multifocal and monofocal IOLs. Eur. J. Ophthalmol. 2013, 24, 44–52. [Google Scholar] [CrossRef]
- Häring, G.; Dick, H.B.; Krummenauer, F.; Weissmantel, U.; Kröncke, W. Subjective photic phenomena with refractive multifocal and monofocal intraocular lenses: Results of a multicenter questionnaire. J. Cataract Refract. Surg. 2001, 27, 245–249. [Google Scholar] [CrossRef]
- Pieh, S.; Lackner, B.; Hanselmayer, G.; Zöhrer, R.; Sticker, M.; Weghaupt, H.; Fercher, A.; Skorpik, C. Halo size under distance and near conditions in refractive multifocal intraocular lenses. Br. J. Ophthalmol. 2001, 85, 816–821. [Google Scholar] [CrossRef] [Green Version]
- Fenner, B.J.; Moriyama, A.S.; Mehta, J.S. Inlays and the cornea. Exp. Eye Res. 2021, 205, 108474. [Google Scholar] [CrossRef]
- Srinivasan, S.; Khoo, L.W.; Koshy, Z. Posterior segment visualization in eyes with small-aperture intraocular lens. J. Refract. Surg. 2019, 35, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Grabner, G.; Ang, R.E.; Vilupuru, S. The Small-Aperture IC-8 Intraocular Lens: A New Concept for Added Depth of Focus in Cataract Patients. Am. J. Ophthalmol. 2015, 160, 1176–1184.e1. [Google Scholar] [CrossRef]
- Dick, H.B.; Piovella, M.; Vukich, J.; Vilupuru, S.; Lin, L.; Grabner, G.; Findl, O.; Mertens, E.; Schmickler, S.; Tetz, M.; et al. Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery. J. Cataract Refract. Surg. 2017, 43, 956–968. [Google Scholar] [CrossRef]
- Burkhard Dick, H.; Elling, M.; Schultz, T. Binocular and monocular implantation of small-aperture intraocular lenses in cataract surgery. J. Refract. Surg. 2018, 34, 629–631. [Google Scholar] [CrossRef]
- Hooshmand, J.; Allen, P.; Huynh, T.; Chan, C.; Singh, R.; Moshegov, C.; Agarwal, S.; Thornell, E.; Vote, B.J. Small aperture IC-8 intraocular lens in cataract patients: Achieving extended depth of focus through small aperture optics. Eye 2019, 33, 1096–1103. [Google Scholar] [CrossRef]
- Ang, R.E.; Picache, G.C.S.; Rivera, M.C.R.; Lopez, L.R.L.; Cruz, E.M. A comparative evaluation of visual, refractive, and patient-reported outcomes of three extended depth of focus (Edof) intraocular lenses. Clin. Ophthalmol. 2020, 14, 2339–2351. [Google Scholar] [CrossRef]
- Schojai, M.; Schultz, T.; Jerke, C.; Böcker, J.; Dick, H.B. Visual performance comparison of 2 extended depth-of-focus intraocular lenses. J. Cataract Refract. Surg. 2020, 46, 388–393. [Google Scholar] [CrossRef]
- Yang, L.W.Y.; Ong, H.S.; Chiam, N.; Mehta, J.S. Centration and Stability of Small-Aperture Intraocular Lens in Aberrated Eyes. J. Refract. Surg. 2022, 38, 98–105. [Google Scholar] [CrossRef]
- Burkhard Dick, H. Small-aperture strategies for the correction of presbyopia. Curr. Opin. Ophthalmol. 2019, 30, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Bagias, C.; Sukumar, N.; Weldeselassie, Y.; Oyebode, O.; Saravanan, P. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Int. J. Environ. Res. Public Health 2021, 18, 1–16. [Google Scholar]
- Schultz, T.; Dick, H.B. Small-aperture intraocular lens implantation in a patient with an irregular cornea. J. Refract. Surg. 2016, 32, 706–708. [Google Scholar] [CrossRef]
- Agarwal, S.; Thornell, E.M. Cataract surgery with a small-aperture intraocular lens after previous corneal refractive surgery: Visual outcomes and spectacle independence. J. Cataract Refract. Surg. 2018, 44, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Ang, R.E. Small-aperture intraocular lens tolerance to induced astigmatism. Clin. Ophthalmol. 2018, 12, 1659–1664. [Google Scholar] [CrossRef] [Green Version]
- Barnett, V.; Barsam, A.; Than, J.; Srinivasan, S. Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy. J. Cataract Refract. Surg. 2018, 44, 1042–1045. [Google Scholar] [CrossRef]
- Ang, R.E. Comparison of tolerance to induced astigmatism in pseudophakic eyes implanted with small aperture, trifocal, or monofocal intraocular lenses. Clin. Ophthalmol. 2019, 13, 905–911. [Google Scholar] [CrossRef] [Green Version]
- Son, H.S.; Khoramnia, R.; Yildirim, T.M.; Baur, I.; Labuz, G.; Auffarth, G.U. Functional outcomes and reading performance after combined implantation of a small-aperture lens and a segmental refractive bifocal lens. J. Refract. Surg. 2019, 35, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Ang, R.E. Visual performance of a small-aperture intraocular lens: First comparison of results after contralateral and bilateral implantation. J. Refract. Surg. 2020, 36, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, S.; Thornell, E. Spectacle independence in patients with prior radial keratotomy following cataract surgery: A case series. Int. Med. Case Rep. J. 2020, 13, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shajari, M.; Mackert, M.J.; Langer, J.; Kreutzer, T.; Wolf, A.; Kohnen, T.; Priglinger, S.; Mayer, W.J. Safety and efficacy of a small-aperture capsular bag-fixated intraocular lens in eyes with severe corneal irregularities. J. Cataract Refract. Surg. 2020, 46, 188–192. [Google Scholar] [CrossRef]
- Son, H.S.; Yildirim, T.; Khoramnia, R.; Labuz, G.; Mayer, C.; Auffarth, G.U. Implantation of a small-aperture intraocular lens and a partial aniridia implant in eyes with traumatic iris defects. Am. J. Ophthalmol. Case Rep. 2020, 18, 100673. [Google Scholar] [CrossRef]
- Hartmann, M.; Hamon, L.; Flockerzi, E.; Ardjomand, N.; Seitz, B.; Daas, L. Implantation of a small-aperture intraocular lens (IOL) in two patients with irregular astigmatism after keratorefractive surgery. Ophthalmologe 2021, 118, 1264–1266. [Google Scholar] [CrossRef]
- Langer, J.; Shajari, M.; Kreutzer, T.; Priglinger, S.; Mayer, W.J.; Mackert, M.J. Predictability of refractive outcome of a small-aperture intraocular lens in eyes with irregular corneal astigmatism. J. Refract. Surg. 2021, 35, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Northey, L.C.; Holland, S.P.; Lin, D.T.C.; Moloney, G. New treatment algorithm for keratoconus and cataract: Small-aperture IOL insertion with sequential topography-guided photorefractive keratectomy and simultaneous accelerated corneal crosslinking. J. Cataract Refract. Surg. 2021, 47, 1411–1416. [Google Scholar] [CrossRef]
- Baur, I.D.; Auffarth, G.U.; Łabuz, G.; Mayer, C.S.; Khoramnia, R. Presbyopia correction after previous Intracor treatment: Combined implantation of a small-aperture and a non-diffractive extended-depth-of-focus lens. Am. J. Ophthalmol. Case Rep. 2022, 25, 101398. [Google Scholar] [CrossRef]
- Rodov, L.; Reitblat, O.; Levy, A.; Assia, E.I.; Kleinmann, G. Visual outcomes and patient satisfaction for trifocal, extended depth of focus and monofocal intraocular lenses. J. Refract. Surg. 2019, 35, 434–440. [Google Scholar] [CrossRef]
- Sevik, M.O.; Akkaya Turhan, S.; Toker, E. Clinical outcomes with a low add multifocal and an extended depth of focus intraocular lenses both implanted with mini-monovision. Eye 2022, 36, 1168–1177. [Google Scholar] [CrossRef]
- Murrill, C.A.; Stanfield, D.L.; Van Brocklin, M.D. Capsulotomy. Optom. Clin. 1995, 4, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Dvali, M.; Tsertsvadze, O.; Mekvabishvili, G. Comparison of Posterior Capsule Opacification After Implantation of Same Design Single-Piece Hydrophilic and Hydrophobic Acrylic Intraocular Lenses. Georgian Med. News 2020, 301, 59–62. [Google Scholar]
- Nordlund, M.L.; Marques, D.M.V.; Marques, F.F.; Cionni, R.J.; Osher, R.H. Techniques for managing common complications of cataract surgery. Curr. Opin. Ophthalmol. 2003, 14, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Mahroo, O.A.R.; Spalton, D.J. Complications of cataract surgery. Clin. Exp. Optom. 2010, 93, 379–389. [Google Scholar] [CrossRef] [PubMed]
Author (Date) | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 |
---|---|---|---|---|---|---|---|
Grabner et al. [24] (2015) | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Schultz and Dick [35] (2016) | Yes | Yes | Yes | NA | Yes | No | No |
Dick et al. [25] (2017) | Yes | Yes | Yes | Yes | Yes | No | Yes |
Agarwal and Thornell [36] (2018) | Yes | Yes | Yes | No | Yes | No | No |
Ang [37] (2018) | Yes | Yes | Yes | Yes | Yes | No | Yes |
Barnett et al. [38] (2018) | Yes | Yes | Yes | NA | Yes | No | No |
Dick et al. [26] (2018) | Yes | Yes | Yes | Yes | Yes | No | Yes |
Ang [39] (2019) | No | Yes | Yes | Yes | Yes | Yes | Yes |
Hooshmand et al. [27] (2019) | Yes | Yes | Yes | Yes | Yes | No | Yes |
Son et al. [40] (2019) | Yes | Yes | Yes | Yes | Yes | No | No |
Srinivasan et al. [23] (2019) | No | Yes | Yes | Yes | Yes | No | Yes |
Ang [41] (2020) | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Ang et al. [28] (2020) | Yes | Yes | Yes | Yes | Yes | No | Yes |
Agarwal and Thornell [42] (2020) | Yes | Yes | Yes | No | Yes | No | No |
Schojai et al. [29] (2020) | Yes | Yes | Yes | Yes | Yes | No | Yes |
Shajari et al. [43] (2020) | Yes | Yes | Yes | Yes | Yes | No | Yes |
Son et al. [44] (2020) | Yes | Yes | Yes | No | Yes | Yes | No |
Hartmann et al. [45] (2021) | No | Yes | Yes | No | Yes | No | No |
Langer et al. [46] (2021) | Yes | Yes | Yes | No | Yes | No | No |
Northey et al. [47] (2021) | Yes | Yes | Yes | No | Yes | No | No |
Baur et al. [48] (2022) | Yes | Yes | Yes | NA | Yes | No | Yes |
Yang et al. [30] (2022) | Yes | Yes | Yes | Yes | Yes | No | Yes |
Author (Date) | Design | AcuFocus Disclosure | Follow-Up (Months) | Patients | Eyes | IOL Side | Age (Years) | Sex (F/M) | Refractive Target (D) |
---|---|---|---|---|---|---|---|---|---|
Grabner et al. [24] (2015) | CS | CI and Employee | 12 | 12 | 12 | ML | 60.5 | 9/3 | −0.75 |
Schultz and Dick [35] (2016) | CR | None | 6 | 1 | 1 | ML | 17.0 | 0/1 | 0.00 |
Dick et al. [25] (2017) | CS | CI, MA and Employee | 6 | 105 | 105 | ML | 67.5 | 60/45 | −0.50 |
Agarwal and Thornell [36] (2018) | CS | None | 6 | 3 | 3 | ML | 67.6 | NR | −0.25 |
Ang [37] (2018) | CS | CI and MA | NR | 10 | 11 | ML and BL | 65.1 | 6/4 | NR |
Barnett et al. [38] (2018) | CR | None | 1 | 1 | 1 | ML | 73.0 | 0/1 | −0.50 |
Dick et al. [26] (2018) | CS | Consultant and PA | 6 | 17 | 23 | ML and BL | NR | NR | −0.50 |
Ang [39] (2019) | CS | CI and MA | 23.6 | 12 | 12 | ML | 62.4 | 5/7 | NR |
Hooshmand et al. [27] (2019) | CS | None | 6.76 | 126 | 126 | ML | 68.0 | 64/62 | −0.75 |
Son et al. [40] (2019) | CS | Research Grants | 5 | 13 | 13 | ML | 68.5 | 9/4 | −0.50 |
Srinivasan et al. [23] (2019) | CS | MA | NR | 15 | 15 | ML | NR | NR | NR |
Ang [41] (2020) | CS | Research Grants | 12 | 20 | 30 | ML and BL | 62.6 | 13/7 | −0.50 |
Ang et al. [28] (2020) | CS | CI and Research Grants | 3 | 30 | 30 | ML | 60.7 | 20/10 | −0,75 |
Agarwal and Thornell [42] (2020) | CS | None | 6 | 4 | 4 | ML | 69.7 | NR | −0.75 |
Schojai et al. [29] (2020) | CS | MA | 3 | 18 | 18 | ML | 69.0 | 12/6 | −0.75 |
Shajari et al. [43] (2020) | CS | None | 3 | 17 | 17 | ML | 54.0 | 9/8 | 0.00 |
Son et al. [44] (2020) | CS | Research Grants | 12 | 3 | 3 | ML | 65.6 | 0/3 | −1.50 |
Hartmann et al. [45] (2021) | CS | None | 6 | 2 | 2 | ML | 62.5 | NR | −0.75 |
Langer et al. [46] (2021) | CS | None | 3 | 17 | 17 | ML | 54.0 | 9/8 | 0.00 |
Northey et al. [47] (2021) | CS | None | 3 | 4 | 4 | ML | 63.0 | 2/2 | −1.73 |
Baur et al. [48] (2022) | CR | Research Grant and PF | 3 | 1 | 1 | ML | 66.0 | 0/1 | −0.75 |
Yang et al. [30] (2022) | CS | None | 3 | 12 | 12 | ML | 61.7 | 6/6 | −0.50 |
Author (Date) | Previous History | Pre MRSE (D) | Post MSRE (D) | UNVA * | UIVA * | UDVA * | Photic Phenomena | Satisfaction ** | Complications (n) |
---|---|---|---|---|---|---|---|---|---|
Grabner et al. [24] (2015) | Cataract | +0.95 | −0.10 | 92 | 100 | 100 | Glare and Halo | 7.28 | Hyphema (1) |
Schultz and Dick [35] (2016) | Cornea Trauma | NR | NR | 100 | NR | 100 | Glare | NR | None |
Dick et al. [25] (2017) | Cataract | +0.30 | −0.42 | 79 | 95 | 99 | Glare and Halo | 8.6 | ↑ IOP (2) CME (1) |
Agarwal and Thornell [36] (2018) | LASIK | NR | −0.69 | 0 | 100 | 100 | None | NR | NR |
Ang [37] (2018) | RC | −0.57 | NR | NR | NR | NR | NR | NR | NR |
Barnett et al. [38] (2018) | RK | +5.43 | +3.50 | NR | NR | 100 | NR | NR | None |
Dick et al. [26] (2018) | Cataract | NR | NR | 82 | 100 | 100 | Glare and Halo | 7.5 | NR |
Ang [39] (2019) | RC | −0.61 | NR | NR | NR | NR | NR | NR | NR |
Hooshmand et al. [27] (2019) | Cataract | +0.60 | NR | 76.2 | 83.3 | 98 | Glare and Halo | 8.6 | IOL Exchange (7) |
Son et al. [40] (2019) | Cataract | NR | −0.43 | NR | NR | 100 | Glare and Halo | NR | NR |
Srinivasan et al. [23] (2019) | Cataract | NR | NR | NR | NR | NR | NR | NR | None |
Ang [41] (2020) | Cataract | +0.87 | −0.50 | 100 | 100 | 100 | Glare | 8.2 | NR |
Ang et al. [28] (2020) | Cataract | NR | −0.17 | NR | NR | NR | Glare and Halo | 8.78 | PCO (2) |
Agarwal and Thornell [42] (2020) | RK | +0.08 | −1.08 | 25 | 100 | 100 | None | NR | NR |
Schojai et al. [29] (2020) | Cataract | NR | −0.53 | 85 | 100 | 100 | Glare and Halo | 8.99 | None |
Shajari et al. [43] (2020) | KC/RK/PK | NR | −1.22 | 0 | 11.7 | 88.2 | NR | NR | PCO (2) |
Son et al. [44] (2020) | PK/Aniridia/OP | −2.91 | −0.81 | NR | NR | 33.3 | Halo | NR | None |
Hartmann et al. [45] (2021) | RK | +4.00 | −1.25 | NR | NR | 100 | NR | NR | None |
Langer et al. [46] (2021) | KC/RK/PK | NR | −1.22 | 0 | 23.5 | 88.2 | NR | NR | NR |
Northey et al. [47] (2021) | KC | −3.18 | −2.12 | 0 | NR | 75 | NR | NR | NR |
Baur et al. [48] (2022) | IntraCOR | +1.75 | −0.62 | 0 | NR | 100 | Halo | NR | NR |
Yang et al. [30] (2022) | Cataract | −2.99 | −0.84 | 90 | 80 | 58 | NR | NR | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-González, J.-M.; Sánchez-González, M.C.; De-Hita-Cantalejo, C.; Ballesteros-Sánchez, A. Small Aperture IC-8 Extended-Depth-of-Focus Intraocular Lens in Cataract Surgery: A Systematic Review. J. Clin. Med. 2022, 11, 4654. https://doi.org/10.3390/jcm11164654
Sánchez-González J-M, Sánchez-González MC, De-Hita-Cantalejo C, Ballesteros-Sánchez A. Small Aperture IC-8 Extended-Depth-of-Focus Intraocular Lens in Cataract Surgery: A Systematic Review. Journal of Clinical Medicine. 2022; 11(16):4654. https://doi.org/10.3390/jcm11164654
Chicago/Turabian StyleSánchez-González, José-María, María Carmen Sánchez-González, Concepción De-Hita-Cantalejo, and Antonio Ballesteros-Sánchez. 2022. "Small Aperture IC-8 Extended-Depth-of-Focus Intraocular Lens in Cataract Surgery: A Systematic Review" Journal of Clinical Medicine 11, no. 16: 4654. https://doi.org/10.3390/jcm11164654
APA StyleSánchez-González, J. -M., Sánchez-González, M. C., De-Hita-Cantalejo, C., & Ballesteros-Sánchez, A. (2022). Small Aperture IC-8 Extended-Depth-of-Focus Intraocular Lens in Cataract Surgery: A Systematic Review. Journal of Clinical Medicine, 11(16), 4654. https://doi.org/10.3390/jcm11164654