A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection
Abstract
:1. Introduction
2. Literature Overview
3. Materials and Methods
3.1. Support Vector Machines
3.2. K-Nearest Neighbors
3.3. Random Forest
3.4. Performance Evaluation Measures
- Accuracy: may be defined as the accurate classification ratio of the total categorized outcomes.
- Precision: positive predictive and is often known as the ratio of real positives to the total number of positively-predicted samples; it is defined as:
- Recall: also known as sensitivity—it is the ratio of positively-predicted samples to the total number of really positive samples; it is defined as:
- f1-score: the harmonic mean of precision and recall; it is expressed as:
3.5. Signal Quality Evaluation Measures
3.6. ECG Databases
3.7. Data Preparation
3.8. Data Pre-Processing
3.8.1. Normalization
3.8.2. Segmentation
3.9. Hyperparameters Selection
- SVM: C = 1, gamma = 0.1, kernel = ‘rbf’.
- KNN: metric = ‘euclidean’, n-neighbors = 5, weights = ‘distance’.
- RF: n-estimators = 800, max-depth = 25, min-samples-split = 5.
4. Results
4.1. Model Tuning
4.2. Model’s Robustness Test
4.3. Quality Evaluation of the Noisy Signals
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECG | electrocardiogram |
SVM | support vector machine |
RF | random forest |
KNN | K-nearest neighbors |
LD | linear discriminant |
MLP | multilayer perceptron |
NOR | normal beat |
MI | myocardial infarction Beat |
HRV | heart rate variability |
EMG | electromyography |
CVDs | cardiovascular diseases |
FeEx | feature extraction |
CM | classifier model |
Se | sensitivity |
positive predictive | |
Sp | specificity |
Ref | reference |
References
- World Health Organisation. Cardiovascular Diseases (CVDs). 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 2 November 2021).
- Hall, J.E.; Hall, M.E. Guyton and Hall Textbook of Medical Physiology e-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Heart Attack, NHLBI, NIH. 2022. Available online: https://www.nhlbi.nih.gov/health-topics/heart-attacka (accessed on 24 March 2022).
- Kulick, D.L.; Marks, J.W.; Davis, C.P. Heart Attack (Myocardial Infarction). 2021. Available online: https://www.medicinenet.com/heart_attack/article.htm (accessed on 24 March 2022).
- Liu, W.; Wang, F.; Huang, Q.; Chang, S.; Wang, H.; He, J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inf. 2019, 24, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Surawicz, B.; Knilans, T. Chou’s Electrocardiography in Clinical Practice: Adult and Pediatric; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Zhang, Y.; Li, J. Application of Heartbeat-Attention Mechanism for Detection of Myocardial Infarction Using 12-Lead ECG Records. Appl. Sci. 2019, 9, 3328. [Google Scholar] [CrossRef] [Green Version]
- Peels, C.H.; Visser, C.A.; Kupper, A.J.F.; Visser, F.C.; Roos, J.P. Usefulness of two-dimensional echocardiography for immediate detection of myocardial ischemia in the emergency room. Am. J. Cardiol. 1990, 65, 687–691. [Google Scholar] [CrossRef]
- Ahmed, N.; Carrick, D.; Layland, J.; Oldroyd, K.G.; Berry, C. The role of cardiac magnetic resonance imaging (MRI) in acute myocardial infarction (AMI). Hear. Lung Circ. 2013, 22, 243–255. [Google Scholar] [CrossRef]
- Plebani, M.; Zaninotto, M. Diagnostic strategies using myoglobin measurement in myocardial infarction. Clin. Chim. Acta 1998, 272, 69–77. [Google Scholar] [CrossRef]
- McCord, J.; Nowak, R.M.; McCullough, P.A.; Foreback, C.; Borzak, S.; Tokarski, G.; Tomlanovich, M.C.; Jacobsen, G.; Weaver, W.D. Ninety-minute exclusion of acute myocardial infarction by use of quantitative point-of-care testing of myoglobin and troponin I. Circulation 2001, 104, 1483–1488. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Kannathal, N.; Hua, L.M.; Yi, L.M. Study of heart rate variability signals at sitting and lying postures. J. Bodyw. Mov. Ther. 2005, 9, 134–141. [Google Scholar] [CrossRef]
- Herring, N.; Paterson, D. ECG diagnosis of acute ischaemia and infarction: Past, present and future. J. Assoc. Phys. 2006, 99, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Stern, S. Electrocardiogram. Circulation 2006, 113. [Google Scholar] [CrossRef] [Green Version]
- Members, A.F.; Van de Werf, F.; Bax, J.; Betriu, A.; Blomstrom-Lundqvist, C.; Crea, F.; Falk, V.; Filippatos, G.; Fox, K.; Huber, K.; et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: The Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur. Heart J. 2008, 29, 2909–2945. [Google Scholar] [CrossRef]
- Bax, J.J.; Baumgartner, H.; Ceconi, C.; Dean, V.; UK, C.D.; Fagard, R.; Funck-Brentano, C.; Hasdai, D.; Hoes, A.; Kirchhof, P.; et al. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2012, 60, 1581–1598. [Google Scholar]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; Vasileva, E.Y. Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 2012, 9, 620–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Yaagoubi, M.; Goya-Esteban, R.; Jabrane, Y.; Muñoz-Romero, S.; García-Alberola, A.; Rojo-Álvarez, J.L. On the robustness of multiscale indices for long-term monitoring in cardiac signals. Entropy 2019, 21, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martis, R.J.; Acharya, U.R.; Adeli, H. Current methods in electrocardiogram characterization. Comput. Biol. Med. 2014, 48, 133–149. [Google Scholar] [CrossRef]
- Chen, Z.; Brown, E.N.; Barbieri, R. Characterizing nonlinear heartbeat dynamics within a point process framework. IEEE Trans. Biomed. Eng. 2010, 57, 1335–1347. [Google Scholar] [CrossRef]
- Padmanabhan, M.; Yuan, P.; Chada, G.; Nguyen, H.V. Physician-Friendly Machine Learning: A Case Study with Cardiovascular Disease Risk Prediction. J. Clin. Med. 2019, 8, 1050. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Chatterjee, S.; Majumder, K.; Shaw, R.N.; Ghosh, A.A.; Chatterjee, S.; Majumder, K.; Shaw, R.N.; Ghosh, A. A Comparative Study of Myocardial Infarction Detection from ECG Data Using Machine Learning. In Advanced Computing and Intelligent Technologies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 257–267. [Google Scholar]
- Sraitih, M.; Jabrane, Y.; Hajjam El Hassani, A. An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques. J. Clin. Med. 2021, 10, 5450. [Google Scholar] [CrossRef]
- Khan, M.U.; Aziz, S.; Malik, A.; Imtiaz, M.A. Detection of Myocardial Infarction using Pulse Plethysmograph Signals. In Proceedings of the 2019 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 16–18 December 2019; pp. 95–955. [Google Scholar] [CrossRef]
- Kumar, M.; Pachori, R.B.; Acharya, U.R. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 2017, 19, 488. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, L.; Han, C.; Shi, L. Application of multi-feature fusion and random forests to the automated detection of myocardial infarction. Cogn. Syst. Res. 2020, 59, 15–26. [Google Scholar] [CrossRef]
- Sopic, D.; Aminifar, A.; Aminifar, A.; Atienza, D. Real-Time Event-Driven Classification Technique for Early Detection and Prevention of Myocardial Infarction on Wearable Systems. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 982–992. [Google Scholar] [CrossRef] [Green Version]
- Arenas, W.J.; Sotelo, S.A.; Zequera, M.L.; Altuve, M. Morphological and temporal ecg features for myocardial infarction detection using support vector machines. In Latin American Conference on Biomedical Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 172–181. [Google Scholar]
- Arenas, W.J.; Zequera, M.L.; Altuve, M.; Sotelo, S.A. Linear and Nonlinear Features for Myocardial Infarction Detection Using Support Vector Machine on 12-Lead ECG Recordings. In Proceedings of the European Medical and Biological Engineering Conference, Portorož, Slovenia, 29 November–3 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 758–766. [Google Scholar]
- Fatimah, B.; Singh, P.; Singhal, A.; Pramanick, D.; Pranav, S.; Pachori, R.B. Efficient detection of myocardial infarction from single lead ECG signal. Biomed. Signal Process. Control. 2021, 68, 102678. [Google Scholar] [CrossRef]
- Kora, P. ECG based myocardial infarction detection using hybrid firefly algorithm. Comput. Methods Programs Biomed. 2017, 152, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Si, Y.; Wang, D.; Yang, W.; Sun, Y. Automated Detection of Myocardial Infarction Using a Gramian Angular Field and Principal Component Analysis Network. IEEE Access 2019, 7, 171570–171583. [Google Scholar] [CrossRef]
- Jian, J.Z.; Ger, T.R.; Lai, H.H.; Ku, C.M.; Chen, C.A.; Abu, P.A.R.; Chen, S.L. Detection of Myocardial Infarction Using ECG and Multi-Scale Feature Concatenate. Sensors 2021, 21, 1906. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Lu, B.; Nie, B.; Peng, Z.; Liu, H.; Pi, X. Hybrid network with attention mechanism for detection and location of myocardial infarction based on 12-lead electrocardiogram signals. Sensors 2020, 20, 1020. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, C.; Lih, O.S.; Jahmunah, V.; Koh, J.E.; Ciaccio, E.J.; San, T.R.; Arunkumar, N.; Kadry, S.; Rajendra Acharya, U. Accurate detection of myocardial infarction using non linear features with ECG signals. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3227–3244. [Google Scholar] [CrossRef]
- Xiao, C.; Guo, Y.; Zhao, K.; Liu, S.; He, N.; He, Y.; Guo, S.; Chen, Z. Prognostic Value of Machine Learning in Patients with Acute Myocardial Infarction. J. Cardiovasc. Dev. Dis. 2022, 9, 56. [Google Scholar] [CrossRef]
- Sharma, M.; San Tan, R.; Acharya, U.R. A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Comput. Biol. Med. 2018, 102, 341–356. [Google Scholar] [CrossRef]
- Dohare, A.K.; Kumar, V.; Kumar, R. Detection of myocardial infarction in 12 lead ECG using support vector machine. Appl. Soft Comput. 2018, 64, 138–147. [Google Scholar] [CrossRef]
- Diker, A.; Comert, Z.; Avci, E.; Velappan, S. Intelligent system based on Genetic Algorithm and support vector machine for detection of myocardial infarction from ECG signals. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Han, C.; Shi, L. Automated interpretable detection of myocardial infarction fusing energy entropy and morphological features. Comput. Methods Programs Biomed. 2019, 175, 9–23. [Google Scholar] [CrossRef]
- Han, C.; Shi, L. ML–ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 2020, 185, 105138. [Google Scholar] [CrossRef] [PubMed]
- Venton, J.; Harris, P.; Sundar, A.; Smith, N.; Aston, P. Robustness of convolutional neural networks to physiological electrocardiogram noise. Philos. Trans. R. Soc. 2021, 379, 20200262. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liang, L. Enhance CNN Robustness Against Noises for Classification of 12-Lead ECG with Variable Length. In Proceedings of the 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020; pp. 839–846. [Google Scholar]
- Pandey, S.K.; Janghel, R.R.; Vani, V. Patient Specific Machine Learning Models for ECG Signal Classification. Procedia Comput. Sci. 2020, 167, 2181–2190. [Google Scholar] [CrossRef]
- Karunakaran, V.; Saranr, M.; Abishek, S.; Vojaswwin, A.; Ramachandran, K. Detection of Obstructive Sleep Apnea from ECG Signal Using SVM Based Grid Search. Int. J. Electron. Telecommun. 2021, 67, 5–12. [Google Scholar]
- Karpagachelvi, S.; Arthanari, M.; Sivakumar, M. Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Comput. Appl. 2012, 21, 1331–1339. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, D.X. Analysis of support vector machine classification. J. Comput. Anal. Appl. 2006, 8, 99–119. [Google Scholar]
- Awad, M.; Khanna, R. Support vector machines for classification. In Efficient Learning Machines; Springer: Berlin/Heidelberg, Germany, 2015; pp. 39–66. [Google Scholar]
- Van Messem, A. Chapter 10—Support vector machines: A robust prediction method with applications in bioinformatics. In Principles and Methods for Data Science; Srinivasa Rao, A.S., Rao, C., Eds.; Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2020; Volume 43, pp. 391–466. [Google Scholar]
- Schölkop, B. An Introduction to Support Vector Machines. In Recent Advances and Trends in Nonparametric Statistics; Akritas, M.G., Politis, D.N., Eds.; JAI: Amsterdam, The Netherlands, 2003; pp. 3–17. [Google Scholar]
- Li, T.; Gao, M.; Song, R.; Yin, Q.; Chen, Y. Support Vector Machine Classifier for Accurate Identification of piRNA. Appl. Sci. 2018, 8, 2204. [Google Scholar] [CrossRef] [Green Version]
- Lekhal, R.; Zidelmal, Z.; Ould-Abdesslam, D. Optimized time–frequency features and semi-supervised SVM to heartbeat classification. Signal Image Video Process. 2020, 14, 1471–1478. [Google Scholar] [CrossRef]
- Raj, S.; Ray, K.C. ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Trans. Instrum. Meas. 2017, 66, 470–478. [Google Scholar] [CrossRef]
- Samanthula, B.K.; Elmehdwi, Y.; Jiang, W. K-nearest neighbor classification over semantically secure encrypted relational data. IEEE Trans. Knowl. Data Eng. 2014, 27, 1261–1273. [Google Scholar] [CrossRef] [Green Version]
- Khatibi, T.; Rabinezhadsadatmahaleh, N. Proposing feature engineering method based on deep learning and K-NNs for ECG beat classification and arrhythmia detection. Phys. Eng. Sci. Med. 2020, 43, 49–68. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, D.P.; Silva, H.; Gamboa, H.; Fred, A.; Figueiredo, M. Novel fiducial and non-fiducial approaches to electrocardiogram-based biometric systems. IET Biom. 2013, 2, 64–75. [Google Scholar] [CrossRef]
- Kutlu, Y.; Kuntalp, D. A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 2011, 41, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Martis, R.J.; Acharya, U.R.; Prasad, H.; Chua, C.K.; Lim, C.M.; Suri, J.S. Application of higher order statistics for atrial arrhythmia classification. Biomed. Signal Process. Control. 2013, 8, 888–900. [Google Scholar] [CrossRef]
- Homaeinezhad, M.R.; Atyabi, S.A.; Tavakkoli, E.; Toosi, H.N.; Ghaffari, A.; Ebrahimpour, R. ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 2012, 39, 2047–2058. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kung, B.H.; Hu, P.Y.; Huang, C.C.; Lee, C.C.; Yao, C.Y.; Kuan, C.H. An Efficient ECG Classification System using Resource-Saving Architecture and Random Forest. IEEE J. Biomed. Health Inf. 2020, 25, 1904–1914. [Google Scholar] [CrossRef]
- Kropf, M.; Hayn, D.; Schreier, G. ECG classification based on time and frequency domain features using random forests. In Proceedings of the Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar]
- Asl, B.M.; Setarehdan, S.K.; Mohebbi, M. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 2008, 44, 51–64. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, K.; Nair, S.S.; Nagaraj, N. Classification of periodic, chaotic and random sequences using approximate entropy and Lempel–Ziv complexity measures. Pramana 2015, 84, 365–372. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. In The Theory of Chaotic Attractors; Springer: Berlin/Heidelberg, Germany, 2004; pp. 170–189. [Google Scholar]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. In The theory of Chaotic Attractors; Springer: Berlin/Heidelberg, Germany, 1985; pp. 273–312. [Google Scholar]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Bousseljot, R.D.; Kreiseler, D.; Schnabel, A. The PTB Diagnostic ECG Database. 2004. Available online: https://physionet.org/content/ptbdb/1.0.0/ (accessed on 20 February 2022). [CrossRef]
- Moody, G.B.; Mark, R.G. MIT-BIH Arrhythmia Database. 1992. Available online: https://physionet.org/content/mitdb/1.0.0/ (accessed on 24 February 2022). [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Shi, H.; Wang, H.; Zhang, F.; Huang, Y.; Zhao, L.; Liu, C. Inter-patient heartbeat classification based on region feature extraction and ensemble classifier. Biomed. Signal Process. Control. 2019, 51, 97–105. [Google Scholar] [CrossRef]
Data Set | Class | No. of Records | No. of 12-Lead Records |
---|---|---|---|
G1 | NOR | 27 | 324 |
MI | 27 | 324 | |
G2 | NOR | 26 | 312 |
MI | 26 | 312 | |
Total | 106 | 1272 |
Data Set | Class | No. of Samples |
---|---|---|
G1 | NOR | 13.380 |
MI | 13.245 | |
G2 | NOR | 12.135 |
MI | 10.755 |
Models | Range of Grid |
---|---|
SVM | kernel = [‘rbf’, ‘sigmoid’], C = [10, 100], gammas = [0.1, 0.01, 0.001] |
kNN | metric = [‘euclidean’, ‘manhattan’], n-neighbors = [1:11] interval: 2, |
weights = [‘uniform’, ‘distance’] | |
RF | n-estimators = [200, 400, 800], criterion = [‘gini’, ‘entropy’], |
max-depth = [5, 15, 25], min-samples-split = [5, 10, 15] |
Classifier | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
SVM | NOR | 0.75 | 0.78 | 0.76 | 0.74 |
MI | 0.73 | 0.70 | 0.72 | ||
KNN | NOR | 0.69 | 0.78 | 0.73 | 0.70 |
MI | 0.71 | 0.61 | 0.66 | ||
RF | NOR | 0.76 | 0.77 | 0.77 | 0.75 |
MI | 0.74 | 0.73 | 0.73 |
Classifier | Classification Report | |||
---|---|---|---|---|
SVM | predicted label | |||
NOR | MI | |||
True label | NOR | 0.78 | 0.22 | |
MI | 0.3 | 0.70 | ||
predicted label | ||||
NOR | MI | |||
KNN | True label | NOR | 0.78 | 0.22 |
MI | 0.39 | 0.61 | ||
predicted label | ||||
NOR | MI | |||
RF | True label | NOR | 0.77 | 0.23 |
MI | 0.27 | 0.73 |
Classifier | Classes | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
SVM | NOR | 0.70 | 0.70 | 0.70 | 0.68 |
MI | 0.66 | 0.66 | 0.66 | ||
KNN | NOR | 0.66 | 0.69 | 0.67 | 0.65 |
MI | 0.63 | 0.60 | 0.61 | ||
RF | NOR | 0.72 | 0.61 | 0.66 | 0.66 |
MI | 0.62 | 0.73 | 0.67 |
Classifier | Classification Report | |||
---|---|---|---|---|
SVM | predicted label | |||
NOR | MI | |||
True label | NOR | 0.70 | 0.30 | |
MI | 0.34 | 0.66 | ||
predicted label | ||||
NOR | MI | |||
KNN | True label | NOR | 0.69 | 0.31 |
MI | 0.40 | 0.60 | ||
predicted label | ||||
NOR | MI | |||
RF | True label | NOR | 0.61 | 0.39 |
MI | 0.27 | 0.73 |
Ref. | FeEx | CM | Acc(%) | Se | Sp | ||
---|---|---|---|---|---|---|---|
Dohare et al. [38] | yes | SVM | 96.66 | 96.66 | 96.66 | ||
Sopic et al. [27] | yes | RF | 82.36 | 87.95 | 78.82 | ||
Diker et al. [39] | yes | SVM | 87.80 | 86.97 | 88.67 | ||
Liu et al. [5] | yes | CNN + BLSTM | 93.08 | 94.42 | 86.29 | ||
Han and Shi [41] | yes | ML-ResNet | 95.49 | 94.85 | 97.37 | ||
Wang et al. [26] | yes | KNN | 77.51 | 73 | 82.01 | ||
Ma and Liang [43] | No | CNN + 1.0NSR | 0.65–0.83 * | - | - | ||
NOR | MI | ||||||
Se | Se | ||||||
Proposed method | No | RF | 0.5–75 | 77 | 76 | 73 | 74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sraitih, M.; Jabrane, Y.; Hajjam El Hassani, A. A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection. J. Clin. Med. 2022, 11, 4935. https://doi.org/10.3390/jcm11174935
Sraitih M, Jabrane Y, Hajjam El Hassani A. A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection. Journal of Clinical Medicine. 2022; 11(17):4935. https://doi.org/10.3390/jcm11174935
Chicago/Turabian StyleSraitih, Mohamed, Younes Jabrane, and Amir Hajjam El Hassani. 2022. "A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection" Journal of Clinical Medicine 11, no. 17: 4935. https://doi.org/10.3390/jcm11174935
APA StyleSraitih, M., Jabrane, Y., & Hajjam El Hassani, A. (2022). A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection. Journal of Clinical Medicine, 11(17), 4935. https://doi.org/10.3390/jcm11174935