Effects of SARS-CoV-2 Infection on Pulmonary Function Tests and Exercise Tolerance
Abstract
:1. Introduction
2. Materials and Methods
3. Pulmonary Function Testing
4. 6MWT
5. Statistical Analysis
6. Results
6.1. Subjects
6.2. Pulmonary Function Tests
6.3. 6MWT
6.4. Symptom Perception
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
%pr | %predicted value |
6MWT | Six Minute Walk Test |
ANOVA | One-way Analysis of Variance |
COVID-19 | Coronavirus Disease 2019 |
DDR | Desaturation Distance Ratio |
DLco-SB | Diffusing Lung Capacity for Carbon Monoxide—Single Breath |
FEV1 | Forced Expiratory Volume in 1 s |
FVC | Forced Vital Capacity |
HFNC | High Flow Nasal Cannula |
MEP | Maximal Expiratory Pressure |
MIP | Maximal Inspiratory Pressure |
mMRC | Modified Medical Research Council Dyspnea Scale |
MVV | Maximal Voluntary Ventilation |
NIMV | Non-invasive Mechanical Ventilation |
P0.1 | Airway Occlusion Pressure after 0.1 s |
PFTs | Pulmonary Function Tests |
SARS-CoV-2 | Severe Acute Respiratory Syndrome CoronaVirus-2 |
SpO2 | Peripheral Saturation of Oxygen |
T90 | Time of Saturation Under SpO2: 90% |
TLC | Total Lung Capacity |
VA | Alveolar Ventilation |
WHO | World Health Organization |
References
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Jian, W.; Su, Z.; Chen, M.; Peng, H.; Peng, P.; Lei, C.; Chen, R.; Zhong, N.; Li, S. Abnormal Pulmonary Function in COVID-19 Patients at Time of Hospital Discharge. Eur. Respir. J. 2020, 55, 2001217. [Google Scholar] [CrossRef] [PubMed]
- Laveneziana, P.; Sesé, L.; Gille, T. Pathophysiology of Pulmonary Function Anomalies in COVID-19 Survivors. Breathe 2021, 17, 210065. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, T.; Frieman, M.B. The Role of Epidermal Growth Factor Receptor (EGFR) Signaling in SARS Coronavirus-Induced Pulmonary Fibrosis. Antivir. Res. 2017, 143, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Frija-Masson, J.; Bancal, C.; Plantier, L.; Benzaquen, H.; Mangin, L.; Penaud, D.; Arnoult, F.; Flamant, M.; d’Ortho, M.-P. Alteration of Diffusion Capacity After SARS-CoV-2 Infection: A Pathophysiological Approach. Front. Physiol. 2021, 12, 624062. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, Complications and Management of Long COVID: A Review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef]
- Anastasio, F.; Barbuto, S.; Scarnecchia, E.; Cosma, P.; Fugagnoli, A.; Rossi, G.; Parravicini, M.; Parravicini, P. Medium-Term Impact of COVID-19 on Pulmonary Function, Functional Capacity and Quality of Life. Eur. Respir. J. 2021, 58, 2004015. [Google Scholar] [CrossRef]
- Cortés-Telles, A.; López-Romero, S.; Figueroa-Hurtado, E.; Pou-Aguilar, Y.N.; Wong, A.W.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A. Pulmonary Function and Functional Capacity in COVID-19 Survivors with Persistent Dyspnoea. Respir. Physiol. Neurobiol. 2021, 288, 103644. [Google Scholar] [CrossRef]
- Lerum, T.V.; Aaløkken, T.M.; Brønstad, E.; Aarli, B.; Ikdahl, E.; Lund, K.M.A.; Durheim, M.T.; Rodriguez, J.R.; Meltzer, C.; Tonby, K.; et al. Dyspnoea, Lung Function and CT Findings 3 Months after Hospital Admission for COVID-19. Eur. Respir. J. 2021, 57, 2003448. [Google Scholar] [CrossRef]
- Lombardi, F.; Calabrese, A.; Iovene, B.; Pierandrei, C.; Lerede, M.; Varone, F.; Richeldi, L.; Sgalla, G. Gemelli Against COVID-19 Post-Acute Care Study Group Residual Respiratory Impairment after COVID-19 Pneumonia. BMC Pulm. Med. 2021, 21, 241. [Google Scholar] [CrossRef]
- Eksombatchai, D.; Wongsinin, T.; Phongnarudech, T.; Thammavaranucupt, K.; Amornputtisathaporn, N.; Sungkanuparph, S. Pulmonary Function and Six-Minute-Walk Test in Patients after Recovery from COVID-19: A Prospective Cohort Study. PLoS ONE 2021, 16, e0257040. [Google Scholar] [CrossRef] [PubMed]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and Psychophysical Sequelae Among Patients With COVID-19 Four Months After Hospital Discharge. JAMA Netw. Open. 2021, 4, e2036142. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, 31. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- WHO World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance; WHO World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of Spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Brusasco, V.; Burgos, F.; Cooper, B.G.; Jensen, R.; Kendrick, A.; MacIntyre, N.R.; Thompson, B.R.; Wanger, J. 2017 ERS/ATS Standards for Single-Breath Carbon Monoxide Uptake in the Lung. Eur. Respir. J. 2017, 49, 1600016. [Google Scholar] [CrossRef]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS Technical Standard on Interpretive Strategies for Routine Lung Function Tests. Eur. Respir. J. 2021, 60, 2101499. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Tammeling, G.J.; Cotes, J.E.; Pedersen, O.F.; Peslin, R.; Yernault, J.C. Lung Volumes and Forced Ventilatory Flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993, 16, 5–40. [Google Scholar] [CrossRef]
- ATS/ERS Statement on Respiratory Muscle Testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [CrossRef]
- Evans, J.A.; Whitelaw, W.A. The Assessment of Maximal Respiratory Mouth Pressures in Adults. Respir. Care 2009, 54, 1348–1359. [Google Scholar]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef] [PubMed]
- Enright, P.L.; Sherrill, D.L. Reference Equations for the Six-Minute Walk in Healthy Adults. Am. J. Respir. Crit. Care Med. 1998, 158, 1384–1387. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, S.P.; da Rocha, R.B.; Baldi, B.G.; de Melo Kawassaki, A.; Kairalla, R.A.; Carvalho, C.R.R. Desaturation—Distance Ratio: A New Concept for a Functional Assessment of Interstitial Lung Diseases. Clinics 2010, 65, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Ijiri, N.; Kanazawa, H.; Yoshikawa, T.; Hirata, K. Application of a New Parameter in the 6-Minute Walk Test for Manifold Analysis of Exercise Capacity in Patients with COPD. Int. J. Chron. Obstr. Pulm. Dis. 2014, 9, 1235–1240. [Google Scholar] [CrossRef]
- Ora, J.; Calzetta, L.; Pezzuto, G.; Senis, L.; Paone, G.; Mari, A.; Portalone, S.; Rogliani, P.; Puxeddu, E.; Saltini, C. A 6MWT Index to Predict O2 Flow Correcting Exercise Induced SpO2 Desaturation in ILD. Respir. Med. 2013, 107, 2014–2021. [Google Scholar] [CrossRef]
- Aiello, M.; Marchi, L.; Calzetta, L.; Speroni, S.; Frizzelli, A.; Ghirardini, M.; Celiberti, V.; Sverzellati, N.; Majori, M.; Mori, P.A.; et al. Coronavirus Disease 2019: COSeSco—A Risk Assessment Score to Predict the Risk of Pulmonary Sequelae in COVID-19 Patients. Respiration 2022, 101, 272–280. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, C.; Wu, J.; Chen, M.; Wang, Z.; Luo, L.; Zhou, X.; Liu, X.; Huang, X.; Yuan, S.; et al. Impact of Coronavirus Disease 2019 on Pulmonary Function in Early Convalescence Phase. Respir. Res. 2020, 21, 163. [Google Scholar] [CrossRef]
- Guler, S.A.; Ebner, L.; Aubry-Beigelman, C.; Bridevaux, P.-O.; Brutsche, M.; Clarenbach, C.; Garzoni, C.; Geiser, T.K.; Lenoir, A.; Mancinetti, M.; et al. Pulmonary Function and Radiological Features 4 Months after COVID-19: First Results from the National Prospective Observational Swiss COVID-19 Lung Study. Eur. Respir. J. 2021, 57, 2003690. [Google Scholar] [CrossRef]
- Rogliani, P.; Calzetta, L.; Coppola, A.; Puxeddu, E.; Sergiacomi, G.; D’Amato, D.; Orlacchio, A. Are There Pulmonary Sequelae in Patients Recovering from COVID-19? Respir. Res. 2020, 21, 286. [Google Scholar] [CrossRef]
- Brown, J.T.; Saigal, A.; Karia, N.; Patel, R.K.; Razvi, Y.; Constantinou, N.; Steeden, J.A.; Mandal, S.; Kotecha, T.; Fontana, M.; et al. Ongoing Exercise Intolerance Following COVID-19: A Magnetic Resonance-Augmented Cardiopulmonary Exercise Test Study. J. Am. Heart Assoc. 2022, 11, e024207. [Google Scholar] [CrossRef]
- Baratto, C.; Caravita, S.; Faini, A.; Perego, G.B.; Senni, M.; Badano, L.P.; Parati, G. Impact of COVID-19 on Exercise Pathophysiology: A Combined Cardiopulmonary and Echocardiographic Exercise Study. J. Appl. Physiol. 2021, 130, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, E.; Dorelli, G.; Sartori, G.; Dalle Carbonare, L. Exercise Ventilatory Inefficiency May Be a Relevant CPET-Feature in COVID-19 Survivors. Int. J. Cardiol. 2021, 343, 200. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long Covid—Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Daher, A.; Balfanz, P.; Cornelissen, C.; Müller, A.; Bergs, I.; Marx, N.; Müller-Wieland, D.; Hartmann, B.; Dreher, M.; Müller, T. Follow up of Patients with Severe Coronavirus Disease 2019 (COVID-19): Pulmonary and Extrapulmonary Disease Sequelae. Respir. Med. 2020, 174, 106197. [Google Scholar] [CrossRef]
- Liu, M.; Lv, F.; Huang, Y.; Xiao, K. Follow-Up Study of the Chest CT Characteristics of COVID-19 Survivors Seven Months After Recovery. Front. Med. 2021, 8, 636298. [Google Scholar] [CrossRef]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J.; et al. Persistent Fatigue Following SARS-CoV-2 Infection Is Common and Independent of Severity of Initial Infection. PLoS ONE 2020, 15, e0240784. [Google Scholar] [CrossRef]
All Groups (n = 75) | Mild (n = 23) | Moderate (n = 16) | Severe (n = 26) | Very Severe (n = 10) | p-Value | |
---|---|---|---|---|---|---|
Male, n (%) | 52 (69.3%) | 13 (56.5%) | 12 (75%) | 19 (73.1%) | 8 (80%) | ns |
Age, yrs | 59.4 ± 11.1 | 56.8 ± 15.6 | 60.2 ± 7.0 | 61.1 ± 9.4 | 59.7 ± 7.4 | ns |
Height, cm | 171.2 ± 9.6 | 168.4 ± 9.7 | 174.6 ± 7.8 | 170.2 ± 9.6 | 175 ± 10.4 | ns |
Weight, kg | 81.2 ± 16.8 | 73.9 ± 16.3 | 83.0 ± 14.4 | 84.7 ± 17.3 | 86.2 ± 16.9 | ns |
BMI, Kg/m2 | 27.4 ± 4.5 | 25.7 ± 4.1 | 27.0 ± 4.6 | 28.9 ± 4.4 | 27.8 ± 4.4 | ns |
mMRC, U | 0.5 ± 0.7 | 0.6 ± 0.7 | 0.4 ± 0.8 | 0.3 ± 0.5 | 1.0 ± 0.6 | ns |
Follow up, days | 171 ± 93 | 191 ± 92 | 212 ± 104 | 134 ± 75 | 158 ± 95 | 0.032 |
FEV1, %pr | 112.0 ± 17.3 | 110.0 ± 14.3 | 115.9 ± 18.8 | 114.6 ± 19.6 | 103.2 ± 12.3 | ns |
FVC, %pr | 115.7 ± 16.3 | 116.0 ± 13.1 | 121.9 ± 19.6 | 117.2 ± 15.9 | 100.3 ± 9.9 | 0.012 |
FEV1/FVC, % | 78.3 ± 7.9 | 78.0 ± 10.8 | 76.6 ± 3.8 | 78.1 ± 7.1 | 82.1 ± 5.8 | ns |
TLC, %pr | 104.6 ± 13.0 | 102.2 ± 9.8 | 108.4 ± 15.0 | 108.2 ± 12.3 | 94.0 ± 13.1 | 0.016 |
DLco-sb, %pr | 80.3 ± 17.6 | 81.6 ± 13.5 | 88.0 ± 10.9 | 78.5 ± 23.2 | 71.1 ± 11.7 | ns |
DLco-sb/VA, %pr | 90.9 ± 14.3 | 90.2 ± 14.3 | 98.1 ± 16.4 | 89.2 ± 13.8 | 86.7 ± 10.9 | ns |
MIP, %pr | 105.8 ± 31.7 | 97.8 ± 23.4 | 111.1 ± 30.9 | 115.2 ± 37.1 | 89.4 ± 28.3 | ns |
MEP, %pr | 105.3 ± 26.0 | 101.0 ± 24.6 | 112.2 ± 26.7 | 105.2 ± 25.3 | 104.1 ± 32.4 | ns |
P0.1, %pr | 169.3 ± 73.3 | 165.9 ± 57.2 | 138.5 ± 53.1 | 203.1 ± 93.2 | 135.4 ± 29.9 | 0.020 |
P0.1/MIP, % | 143.3 ± 90.1 | 178.4 ± 102.9 | 110.3 ± 83.2 | 144.8 ± 85.0 | 104.1 ± 39.4 | ns |
MVV, %pr | 109.8 ± 23.7 | 105.2 ± 15.8 | 113.7 ± 28.1 | 116.0 ± 27.3 | 96.7 ± 15.4 | ns |
All Groups (n = 75) | Mild (n = 23) | Moderate (n = 16) | Severe (n = 26) | Very Severe (n = 10) | |
---|---|---|---|---|---|
SAH, (%) | 33 (100) | 8 (24) | 6 (18) | 12 (36) | 7 (21) |
IHD, (%) | 12 (100) | 4 (33) | 1 (8) | 5 (42) | 2 (17) |
Diabetes, (%) | 10 (100) | 2 (20) | 2 (20) | 5 (50) | 1 (10) |
COPD, (%) | 3 (100) | 2 (67) | 0 (0) | 1 (33) | 0 (0) |
Pulmonary Emphysema, (%) | 6 (100) | 1 (17) | 0 (0) | 4 (67) | 1 (17) |
asthma, (%) | 3 (100) | 2 (67) | 0 (0) | 1 (33) | 0 (0) |
OSAS, (%) | 4 (100) | 2 (50) | 0 (0) | 0 (0) | 2 (50) |
CKD, (%) | 3 (100) | 0 (0) | 1 (33) | 2 (67) | 0 (0) |
LAMA, (%) | 2 (100) | 1 (50) | 0 (0) | 1 (50) | 0 (0) |
LABA, (%) | 4 (100) | 2 (50) | 0 (0) | 2 (50) | 0 (0) |
ICS, (%) | 2 (100) | 1 (50) | 0 (0) | 1 (50) | 0 (0) |
ACE-I, (%) | 14 (100) | 3 (21) | 3 (21) | 5 (36) | 3 (21) |
All Groups (n = 75) | Mild (n = 23) | Moderate (n = 16) | Severe (n = 26) | Very Severe (n = 10) | |
---|---|---|---|---|---|
OCS, (%) | 56 (100) | 12 (21) | 13 (23) | 24 (43) | 7 (13) |
Remdesevir, (%) | 25 (100) | 1 (44) | 7 (28) | 12 (48) | 5 (20) |
Tocilizumab, (%) | 8 (100) | 0 (0) | 2 (25) | 6 (75) | 0 (0) |
Ritonavir + lopinavir, (%) | 19 (100) | 7 (37) | 7 (37) | 4 (21) | 1 (5) |
LMWH, (%) | 52 (100) | 11 (21) | 11 (21) | 22 (42) | 8 (15) |
Hydroxychloroquine, (%) | 19 (100) | 8 (42) | 6 (32) | 4 (21) | 1 (5) |
Macrolide, (%) | 33 (100) | 14 (42) | 9 (27) | 8 (24) | 2 (6) |
Azythromicine, (%) | 25 (100) | 13 (52) | 7 (28) | 4 (16) | 1 (4) |
Clarithromicyn, (%) | 11 (100) | 3 (27) | 3 (27) | 4 (36) | 1 (9) |
Ceftriaxone, (%) | 24 (100) | 6 (25) | 5 (21) | 10 (42) | 3 (13) |
All Groups (n = 75) | Mild (n = 23) | Moderate (n = 16) | Severe (n = 26) | Very Severe (n = 10) | p-Value | |
---|---|---|---|---|---|---|
6MWTD, %pr | 105.3 ± 17.9 | 106.7 ± 17.8 | 110.8 ± 18.5 | 105.4 ± 15.8 | 92.0 ± 19.3 | ns |
SpO2 rest, % | 97.0 ± 1.0 | 97.3 ± 0.9 | 96.9 ± 0.7 | 96.9 ± 0.1 | 96.6 ± 1.0 | ns |
SpO2 Nadir, % | 93.6 ± 2.7 | 93.6 ± 2.4 | 93.3 ± 2.5 | 93.8 ± 3.1 | 93.7 ± 2.6 | ns |
T90, % | 0.5 ± 2.3 | 0.1 ± 0.3 | 0.4 ± 1.1 | 1.1 ± 3.7 | 0.0 ± 0.0 | ns |
HR max, bpm | 125.7 ± 15.3 | 130.4 ± 16.1 | 123.9 ± 10.5 | 126.5 ± 16.1 | 114.7 ± 14.0 | ns |
SpO2rest-nadir | 3.3 ± 2.8 | 3.8 ± 2.4 | 3.7 ± 2.9 | 3.1 ± 3.2 | 2.6 ± 2.5 | ns |
DDR | 0.5 ± 0.8 | 0.4 ± 0.5 | 0.7 ± 0.8 | 0.6 ± 1.0 | 0.4 ± 0.5 | ns |
O2-GAP index | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | ns |
All Group (n = 75) | Mild (n = 23) | Moderate (n = 16) | Severe (n = 26) | Very Severe (n = 10) | |
---|---|---|---|---|---|
Dyspnea, (%) | 39 (52) | 15 (65) | 4 (25) | 11 (42) | 9 (90) |
Fatigue, (%) | 40 (53) | 14 (61) | 6 (38) | 13 (33) | 7 (70) |
Insomnia, (%) | 5 (7) | 2 (9) | 1 (6) | 2 (8) | 0 (0) |
Brain fog, (%) | 8 (11) | 2 (9) | 2 (13) | 4 (15) | 0 (0) |
Gastrointestinal discomfort, (%) | 3 (4) | 0 (0) | 1 (6) | 1 (4) | 1 (10) |
Anxiety/depression, (%) | 8 (11) | 3 (13) | 2 (13) | 1 (4) | 2 (20) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ora, J.; Zerillo, B.; De Marco, P.; Manzetti, G.M.; De Guido, I.; Calzetta, L.; Rogliani, P. Effects of SARS-CoV-2 Infection on Pulmonary Function Tests and Exercise Tolerance. J. Clin. Med. 2022, 11, 4936. https://doi.org/10.3390/jcm11174936
Ora J, Zerillo B, De Marco P, Manzetti GM, De Guido I, Calzetta L, Rogliani P. Effects of SARS-CoV-2 Infection on Pulmonary Function Tests and Exercise Tolerance. Journal of Clinical Medicine. 2022; 11(17):4936. https://doi.org/10.3390/jcm11174936
Chicago/Turabian StyleOra, Josuel, Bartolomeo Zerillo, Patrizia De Marco, Gian Marco Manzetti, Ilaria De Guido, Luigino Calzetta, and Paola Rogliani. 2022. "Effects of SARS-CoV-2 Infection on Pulmonary Function Tests and Exercise Tolerance" Journal of Clinical Medicine 11, no. 17: 4936. https://doi.org/10.3390/jcm11174936
APA StyleOra, J., Zerillo, B., De Marco, P., Manzetti, G. M., De Guido, I., Calzetta, L., & Rogliani, P. (2022). Effects of SARS-CoV-2 Infection on Pulmonary Function Tests and Exercise Tolerance. Journal of Clinical Medicine, 11(17), 4936. https://doi.org/10.3390/jcm11174936