Sensory Integration Disorders in Patients with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
- Primary progressive and secondary progressive forms of MS—this criterion was used to exclude the potential impact of the course of different types of MS on the results;
- SI disorders diagnosed in childhood;
- Mental illness;
- People before the age of 25 and over 45—we decided to include in the study only subjects not older than 45, because available studies show that sensory integration is changing over a lifetime [31].
2.2. Methods
2.3. Control Group
2.4. Statistical Analysis
3. Results
4. Discussion
Study Limitations
- The study is a subjective judgement of somatosensory parameters in patients with MS.
- The evaluation should be long-term and carried out on an even larger number of patients.
5. Conclusions
- In preliminary studies, it can be concluded that impaired sensory integration affects the occurrence and course of MS.
- Patients with MS will start to have general sensory processing disorders more often and less often emotional and social disorders in the past compared to the group of healthy people.
- Patients with MS who had experienced a relapse in the past year showed greater sensory discrimination disorders compared to patients without relapses.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koziol, L.F.; Budding, D.E.; Chidekel, D. Sensory Integration, Sensory Processing, and Sensory Modulation Disorders: Putative Functional Neuroanatomic Underpinnings. Cerebellum 2011, 10, 770–792. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.J. Sensory Integration and Learning Disorders; Western Psychological Services: Los Angeles, CA, USA, 1972. [Google Scholar]
- Ayres, A.J. Sensory Integration and the Child: Understanding Hidden Sensory Challenges; Western Psychological Services: Los Angeles, CA, USA, 2005. [Google Scholar]
- Lane, S.J.; Mailloux, Z.; Schoen, S.; Bundy, A.; May-Benson, T.A.; Parham, L.D.; Roley, S.S.; Schaaf, R.C. Neural Foundations of Ayres Sensory Integration®. Brain Sci. 2019, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Asan, A.S.; McIntosh, J.R.; Carmel, J.B. Targeting Sensory and Motor Integration for Recovery of Movement after CNS Injury. Front. Neurosci. 2022, 15, 791824. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.J.; Anzalone, M.E.; Lane, S.J.; Cermak, S.A.; Osten, E.T. Concept Evolution in Sensory Integration: A Proposed Nosology for Diagnosis. Am. J. Occup. Ther. 2007, 61, 135–142. [Google Scholar] [CrossRef]
- Wood, E.T.; Cummings, K.K.; Jung, J.; Patterson, G.; Okada, N.; Guo, J.; O’Neill, J.; Dapretto, M.; Bookheimer, S.Y.; Green, S.A. Sensory Over-Responsivity Is Related to GABAergic Inhibition in Thalamocortical Circuits. Transl. Psychiatry 2021, 11, 39. [Google Scholar] [CrossRef]
- Dunn, W. The Impact of Sensory Processing Abilities on the Daily Lives of Young Children and Their Families: A Conceptual Model. Infants Young Child. 1997, 9, 23–25. [Google Scholar] [CrossRef]
- Koenig, K.P.; Rudney, S.G. Performance Challenges for Children and Adolescents with Difficulty Processing and Integrating Sensory Information: A Systematic Review. Am. J. Occup. Ther. 2010, 64, 430–442. [Google Scholar] [CrossRef]
- Moran, R.N.; Meek, J.; Allen, J.; Robinson, J. Sex Differences and Normative Data for the M-CTSIB and Sensory Integration on Baseline Concussion Assessment in Collegiate Athletes. Brain Inj. 2020, 34, 20–25. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, N.; Lin, Y.; Chen, R.; Zhang, J. Hemispheric Differences in Functional Interactions between the Dorsal Lateral Prefrontal Cortex and Ipsilateral Motor Cortex. Front. Hum. Neurosci. 2020, 14, 202. [Google Scholar] [CrossRef]
- Cotsapas, C.; Mitrovic, M.; Hafler, D. Multiple Sclerosis. In Handbook of Clinical Neurology; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 148, pp. 723–730. [Google Scholar]
- Yamout, B.I.; Alroughani, R. Multiple Sclerosis. Semin. Neurol. 2018, 38, 212–225. [Google Scholar]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple Sclerosis: Clinical Aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef]
- Sospedra, M.; Martin, R. Immunology of Multiple Sclerosis. Semin. Neurol. 2016, 36, 115–127. [Google Scholar] [CrossRef]
- Williams, A.E.; Vietri, J.T.; Isherwood, G.; Flor, A. Symptoms and Association with Health Outcomes in Relapsing-Remitting Multiple Sclerosis: Results of a US Patient Survey. Mult. Scler. Int. 2014, 2014, 203183. [Google Scholar] [CrossRef]
- Christogianni, A.; Bibb, R.; Davis, S.L.; Jay, O.; Barnett, M.; Evangelou, N.; Filingeri, D. Temperature sensitivity in multiple sclerosis: An overview of its impact on sensory and cognitive symptoms. Temperature 2018, 5, 208–223. [Google Scholar] [CrossRef]
- Thompson, T.L.; Amedee, R. Vertigo: A Review of Common Peripheral and Central Vestibular Disorders. Ochsner J. 2009, 9, 20–26. [Google Scholar]
- Herrera, W.G. Vestibular and other balance disorders in multiple sclerosis. Differential diagnosis of disequilibrium and topognostic localization. Neurol. Clin. 1990, 8, 407–420. [Google Scholar] [CrossRef]
- Larocca, N.G. Impact of Walking Impairment in Multiple Sclerosis Perspectives of Patients and Care Partners. Patient 2011, 4, 189–201. [Google Scholar] [CrossRef]
- Rae-Grant, A.D.; Eckert, N.J.; Bartz, S.; Reed, J.F. Sensory Symptoms of Multiple Sclerosis: A Hidden Reservoir of Morbidity. Mult. Scler. 1999, 5, 179–183. [Google Scholar] [CrossRef]
- Arpin, D.J.; Gehringer, J.E.; Wilson, T.W.; Kurz, M.J. A Reduced Somatosensory Gating Response in Individuals with Multiple Sclerosis Is Related to Walking Impairment. J. Neurophysiol. 2017, 118, 2052–2058. [Google Scholar] [CrossRef]
- Krbot Skorić, M.; Crnošija, L.; Gabelić, T.; Adamec, I.; Habek, M. Relationship between Sensory Dysfunction and Walking Speed in Patients with Clinically Isolated Syndrome. J. Clin. Neurophysiol. 2018, 35, 65–70. [Google Scholar] [CrossRef]
- Conte, A.; Giannì, C.; Belvisi, D.; Cortese, A.; Petsas, N.; Tartaglia, M.; Cimino, P.; Millefiorini, E.; Berardelli, A.; Pantano, P. Deep Grey Matter Involvement and Altered Sensory Gating in Multiple Sclerosis. Mult. Scler. 2020, 26, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Giannì, C.; Belvisi, D.; Conte, A.; Tommasin, S.; Cortese, A.; Petsas, N.; Baione, V.; Tartaglia, M.; Millefiorini, E.; Berardelli, A.; et al. Altered Sensorimotor Integration in Multiple Sclerosis: A Combined Neurophysiological and Functional MRI Study. Clin. Neurophysiol. 2021, 132, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Giurgola, S.; Casati, C.; Stampatori, C.; Perucca, L.; Mattioli, F.; Vallar, G.; Bolognini, N. Abnormal Multisensory Integration in Relapsing–Remitting Multiple Sclerosis. Exp. Brain Res. 2022, 240, 953–968. [Google Scholar] [CrossRef] [PubMed]
- Sarrias-Arrabal, E.; Eichau, S.; Galvao-Carmona, A.; Dominguez, E.; Izquierdo, G.; Vázquez-Marrufo, M. Deficits in Early Sensory and Cognitive Processing Are Related to Phase and Nonphase Eeg Activity in Multiple Sclerosis Patients. Brain Sci. 2021, 11, 629. [Google Scholar] [CrossRef]
- Colbeck, M. Sensory Processing, Cognitive Fatigue, and Quality of Life in Multiple Sclerosis: Traitement de l’Information Sensorielle, Fatigue Cognitive et Qualité de Vie des Personnes Atteintes de Sclérose en Plaques. Can. J. Occup. Ther. 2018, 85, 169–175. [Google Scholar] [CrossRef]
- Engel-Yeger, B.; DeLuca, J.; Hake, P.; Goverover, Y. The Role of Sensory Processing Difficulties, Cognitive Impairment, and Disease Severity in Predicting Functional Behavior among Patients with Multiple Sclerosis. Disabil. Rehabil. 2021, 43, 1129–1136. [Google Scholar] [CrossRef]
- Stern, B.Z.; Strober, L.B.; Goverover, Y. Relationship between Sensory Processing Patterns, Trait Anxiety, and Health-Related Quality of Life in Multiple Sclerosis. J. Health Psychol. 2021, 26, 2106–2117. [Google Scholar] [CrossRef]
- Völter, C.; Thomas, J.P.; Maetzler, W.; Guthoff, R.; Grunwald, M.; Hummel, T. Sensory Dysfunction in Old Age. Dtsch. Arztebl. Int. 2021, 118, 512–520. [Google Scholar] [CrossRef]
- Patten, S.B.; Svenson, L.W.; Metz, L.M. Descriptive Epidemiology of Affective Disorders in Multiple Sclerosis. CNS Spectr. 2005, 10, 365–371. [Google Scholar] [CrossRef]
- Kaas, J.H. Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci. 1991, 14, 137–167. [Google Scholar] [CrossRef]
- Buonomano, D.V.; Merzenich, M.M. Cortical plasticity: From synapses to maps. Annu. Rev. Neurosci. 1998, 21, 149–186. [Google Scholar] [CrossRef]
- Weinberger, D.R.; Lipska, B.K. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: A search for common ground. Schizophr. Res. 1995, 16, 87–110. [Google Scholar] [CrossRef]
- Österberg, A.; Boivie, J. Central Pain in Multiple Sclerosis—Sensory Abnormalities. Eur. J. Pain 2010, 14, 104–110. [Google Scholar] [CrossRef]
- Garraghty, P.E.; Muja, N. NMDA receptors and plasticity in adult primate somatosensory cortex. J. Comp. Neurol. 1996, 367, 319–326. [Google Scholar] [CrossRef]
- Cremer, R.; Zeef, E.J. What kind of noise increases with age? J. Gerontol. 1987, 42, 515–518. [Google Scholar] [CrossRef]
- Kail, R. Processing time, imagery, and spatial memory. J. Exp. Child. Psychol. 1997, 64, 67–78. [Google Scholar] [CrossRef]
- Mozolic, J.L.; Hugenschmidt, C.E.; Peiffer, A.M.; Laurienti, P.J. Chapter 20 Multisensory Integration and Aging. In The Neural Bases of Multisensory Processes; Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Jazayeri, M.; Movshon, J.A. Integration of Sensory Evidence in Motion Discrimination. J. Vis. 2007, 7, 7. [Google Scholar] [CrossRef]
- Isaacson, M.; Hoon, M.A. An Operant Temperature Sensory Assay Provides a Means to Assess Thermal Discrimination. Mol. Pain 2021, 17, 17448069211013633. [Google Scholar] [CrossRef]
- Damasceno, A.; Moraes, A.S.; Farias, A.; Damasceno, B.P.; dos Santos, L.M.B.; Cendes, F. A spring to summer shift of pro-inflammatory cytokine production in multiple sclerosis patients. J. Neurol. Sci. 2016, 360, 37–40. [Google Scholar] [CrossRef]
- Durlach, J.; Pagès, N.; Bac, P.; Bara, M.; Guiet-Bara, A.; Agrapart, C. Chronopathological forms of magnesium depletion with hypofunction or with hyperfunction of the biological clock. Magnes. Res. 2002, 15, 263–268. [Google Scholar]
- Meier, D.S.; Balashov, K.E.; Healy, B.; Weiner, H.L.; Guttmann, C.R. Seasonal prevalence of MS disease activity. Neurology 2010, 75, 799–806. [Google Scholar] [CrossRef]
- Popa, D.; Spolidoro, M.; Proville, R.D.; Guyon, N.; Belliveau, L.; Léna, C. Functional Role of the Cerebellum in Gamma-Band Synchronization of the Sensory and Motor Cortices. J. Neurosci. 2013, 33, 6552–6556. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, D.M.; Diedrichsen, J.; Flanagan, J.R. Principles of sensorimotor learning. Nat. Rev. Neurosci. 2011, 12, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Einarsson, U.; Gottberg, K.; Fredrikson, S.; von Koch, L.; Holmqvist, L.W. Activities of daily living and social activities in people with multiple sclerosis in Stockholm County. Clin. Rehabil. 2006, 20, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, A.B.M.; Wieser, M.J.; Alpers, G.W. Emotional Pictures and Sounds: A Review of Multimodal Interactions of Emotion Cues in Multiple Domains. Front. Psychol. 2014, 5, 1351. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, L.; Gounot, D.; Chanson, J.B.; de Seze, J.; Blanc, F. Emotional Experience Is Increased and Emotion Recognition Decreased in Multiple Sclerosis. Sci. Rep. 2021, 11, 21885. [Google Scholar] [CrossRef] [PubMed]
- Vuralli, D.; Wattiez, A.S.; Russo, A.F.; Bolay, H. Behavioral and Cognitive Animal Models in Headache Research Cenk Ayata. J. Headache Pain 2019, 20, 11. [Google Scholar] [CrossRef]
- Molnár, Z. Cortical Layer with No Known Function. Eur. J. Neurosci. 2019, 49, 957–963. [Google Scholar] [CrossRef]
- Luhmann, H.J. Models of Cortical Malformation-Chemical and Physical. J. Neurosci. Methods 2016, 260, 62–72. [Google Scholar] [CrossRef]
- Bicks, L.K.; Koike, H.; Akbarian, S.; Morishita, H. Prefrontal Cortex and Social Cognition in Mouse and Man. Front. Psychol. 2015, 6, 1805. [Google Scholar] [CrossRef]
- Canitano, R.; Pallagrosi, M. Autism Spectrum Disorders and Schizophrenia Spectrum Disorders: Excitation/Inhibition Imbalance and Developmental Trajectories. Front. Psychiatry 2017, 8, 69. [Google Scholar] [CrossRef]
- Demerens, C.; Stankoff, B.; Logak, M.; Anglade, P.; Allinquant, B.; Couraud, F.; Zalc, B.; Lubetzki, C. Induction of myelination in the central nervous system by electrical activity. Proc. Natl. Acad. Sci. USA 1996, 93, 9887–9892. [Google Scholar] [CrossRef]
- Barrera, K.; Chu, P.; Abramowitz, J.; Steger, R.; Ramos, R.L.; Brumberg, J.C. Organization of Myelin in the Mouse Somatosensory Barrel Cortex and the Effects of Sensory Deprivation. Dev. Neurobiol. 2013, 73, 297–314. [Google Scholar] [CrossRef]
- Hagberg, H.; Mallard, C. Effect of inflammation on central nervous system development and vulnerability. Curr. Opin. Neurol. 2005, 18, 117–123. [Google Scholar] [CrossRef]
Parameters | All Patients with MS (n = 141) | Control Group (n = 72) | |
---|---|---|---|
Demographic data | |||
Age (years; mean ± SD) | 40.2 ± 10.4 | 36.3 ± 5.7 | |
Sex | females | 94 (66.6%) | 53 (73.6%) |
males | 47 (33.3%) | 19 (26.3%) | |
Characteristics of the groups | |||
Handedness | right-handedness | 125 (88.6%) | 61 (84.7%) |
left-handedness | 16 (11.3%) | 11 (15.2%) | |
EDSS Scale (points; mean ± SD) | 1.9 ± 1.2 | _ | |
Duration of the disease (years; mean ± SD) | 0.8 ± 0.8 | _ | |
Number of relapses in the last year (mean ± SD) | 1.1 ± 0.6 | _ | |
Relapses in the past year | yes | 115 (82.1%) | _ |
no | 25 (17.8%) |
Variables | Patients with MS with Relapses in the Last Year (n = 115) | Patients with MS without Relapses in the Last Year (n = 25) | p-Value |
---|---|---|---|
General modulation (points; mean ± SD) | 9.7 ± 7.1 | 8.3 ± 6.9 | 0.3 |
General modulation in the past (points; mean ± SD) | 0.0 ± 0.2 | 0.1 ± 0.4 | 0.1 |
Over-Responsiveness(points; mean ± SD) | 23.6 ± 17.9 | 22.4 ± 20.5 | 0.5 |
Over-Responsiveness in the past (points; mean ± SD) | 0.1 ± 0.4 | 0.4 ± 0.7 | 0.1 |
Under-Responsiveness/Sensory Seeking (points; mean ± SD) | 18.9 ± 12.2 | 15.4 ± 11.0 | 0.1 |
Under-Responsiveness in the past /Sensory Seeking in the past (points; mean ± SD) | 0.2 ± 0.5 | 0.2 ± 0.7 | 0.3 |
Sensory Discrimination(points; mean ± SD) | 17.5 ± 17.2 | 10.0 ± 12.5 | 0.0 * |
Sensory Discrimination in the past (points; mean ± SD) | 0.2 ± 0.9 | 0.0 ± 0.0 | 0.3 |
Sensory-Based Motor Abilities (points; mean ± SD) | 16.7 ± 16.2 | 12.3 ± 14.0 | 0.1 |
Sensory-Based Motor Abilities in the past (points; mean ± SD) | 0.1 ± 0.4 | 0.0 ± 0.2 | 0.6 |
Social and Emotional (points; mean ± SD) | 21.5 ± 17.8 | 17.6 ± 14.9 | 0.3 |
Social and Emotional in the past (points; mean ± SD) | 0.0 ± 0.3 | 0.0 ± 0.2 | 0.9 |
Variables | Group of Patients with MS up to 2.5 Points on the EDSS scale (n = 118) | Group of Patients with MS 3 or more Points on the EDSS scale (n = 23) | p-Value |
---|---|---|---|
General modulation (points; mean ± SD) | 9.4 ± 7.2 | 10.0 ± 5.9 | 0.4 |
General modulation in the past (points; mean ± SD) | 0.0 ± 0.3 | 0.0 ± 0.2 | 0.9 |
Over-Responsiveness (points; mean ± SD) | 22.3 ± 18.0 | 29.1 ± 18.8 | 0.1 |
Over-Responsiveness in the past (points; mean ± SD) | 0.2 ± 0.5 | 0.1 ± 0.6 | 0.4 |
Under-Responsiveness/Sensory Seeking (points; mean ± SD) | 18.8 ± 12.3 | 15.7 ± 10.1 | 0.4 |
Under-Responsiveness in the past /Sensory Seeking in the past (points; mean ± SD) | 0.2 ± 0.5 | 0.2 ± 0.5 | 0.9 |
Sensory Discrimination (points; mean ± SD) | 15.3 ± 16.5 | 21.0 ± 16.8 | 0.1 |
Sensory Discrimination in the past (points; mean ± SD) | 0.2 ± 0.9 | 0.0 ± 0.2 | 0.9 |
Sensory-Based Motor Abilities (points; mean ± SD) | 14.0 ± 14.6 | 26.9 ± 18.3 | 0.0 * |
Sensory-Based Motor Abilities in the past (points; mean ± SD) | 0.1 ± 0.4 | 0.0 ± 0.0 | 0.4 |
Social and Emotional (points; mean ± SD) | 20.5 ± 16.7 | 23.1 ± 20.5 | 0.7 |
Social and Emotional in the past (points; mean ± SD) | 0.0 ± 0.3 | 0.0 ± 0.0 | 0.7 |
Variables | Group of MS Patients (n = 141) | Control Group (n = 72) | p-Value | |
---|---|---|---|---|
Age (years; mean ± SD) | 40.2 ± 10.4 | 36.3 ± 5.7 | 0.0 * | |
Sex | females | 94 (66.6%) | 53 (73.6%) | 0.2 |
males | 47 (33.3%) | 19 (26.3%) | ||
Handedness | right-handedness | 125 (88.6%) | 61 (84.7%) | 0.4 |
left-handedness | 16 (11.3%) | 11 (15.2%) | ||
General modulation (points; mean ± SD) | 9.5 ± 7.0 | 10.0 ± 5.9 | 0.3 | |
General modulation in the past (points; mean ± SD) | 0.0 ± 0.3 | 0.3 ± 1.2 | 0.0 * | |
Over-Responsiveness (points; mean ± SD) | 23.4 ± 18.3 | 22.8 ± 15.1 | 0.8 | |
Over-Responsiveness in the past (points; mean ± SD) | 0.1 ± 0.5 | 0.8 ± 3.3 | 0.4 | |
Under-Responsiveness/Sensory Seeking (points; mean ± SD) | 18.3 ± 12.0 | 20.9 ± 12.5 | 0.1 | |
Under-Responsiveness in the past /Sensory Seeking in the past (points; mean ± SD) | 0.2 ± 0.5 | 0.4 ± 1.1 | 0.1 | |
Sensory Discrimination (points; mean ± SD) | 16.2 ± 16.6 | 15.7 ± 14.4 | 0.6 | |
Sensory Discrimination in the past (points; mean ± SD) | 0.1 ± 0.8 | 0.0 ± 0.4 | 0.1 | |
Sensory-Based Motor Abilities (points; mean ± SD) | 16.1 ± 16.0 | 10.7 ± 10.2 | 0.0 * | |
Sensory-Based Motor Abilities in the past (points; mean ± SD) | 0.1 ± 0.3 | 0.0 ± 0.3 | 0.3 | |
Social and Emotional (points; mean ± SD) | 20.9 ± 17.3 | 23.8 ± 15.6 | 0.1 | |
Social and Emotional in the past (points; mean ± SD) | 0.0 ± 0.3 | 0.3 ± 1.4 | 0.0 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mross, K.; Jankowska, M.; Meller, A.; Machowska-Sempruch, K.; Nowacki, P.; Masztalewicz, M.; Pawlukowska, W. Sensory Integration Disorders in Patients with Multiple Sclerosis. J. Clin. Med. 2022, 11, 5183. https://doi.org/10.3390/jcm11175183
Mross K, Jankowska M, Meller A, Machowska-Sempruch K, Nowacki P, Masztalewicz M, Pawlukowska W. Sensory Integration Disorders in Patients with Multiple Sclerosis. Journal of Clinical Medicine. 2022; 11(17):5183. https://doi.org/10.3390/jcm11175183
Chicago/Turabian StyleMross, Krystian, Marta Jankowska, Agnieszka Meller, Karolina Machowska-Sempruch, Przemysław Nowacki, Marta Masztalewicz, and Wioletta Pawlukowska. 2022. "Sensory Integration Disorders in Patients with Multiple Sclerosis" Journal of Clinical Medicine 11, no. 17: 5183. https://doi.org/10.3390/jcm11175183
APA StyleMross, K., Jankowska, M., Meller, A., Machowska-Sempruch, K., Nowacki, P., Masztalewicz, M., & Pawlukowska, W. (2022). Sensory Integration Disorders in Patients with Multiple Sclerosis. Journal of Clinical Medicine, 11(17), 5183. https://doi.org/10.3390/jcm11175183