Systematic Review of Risk Factors Assessed in Predictive Scoring Tools for Drug-Related Problems in Inpatients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definitions
2.2. Inclusion and Exclusion Criteria
2.3. Information Sources and Search Strategies
2.4. Selection Process
2.5. Data Collection and Risk Bias Assessment
2.6. Synthesis Methods
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk Factors
3.3.1. Drug-Related Risk Factors
3.3.2. Diagnosis-Related Risk Factors
3.3.3. Laboratory Value-Related Risk Factors
3.3.4. Vital Sign-Related Risk Factors
3.3.5. Patient-Related Risk Factors
3.3.6. Medication Process/Setting-Related Risk Factors
4. Discussion
4.1. Five Most Investigated and Included Risk Factors
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schurig, A.M.; Böhme, M.; Just, K.S.; Scholl, C.; Dormann, H.; Plank-Kiegele, B.; Seufferlein, T.; Gräff, I.; Schwab, M.; Stingl, J.C. Adverse Drug Reactions (ADR) and Emergencies. Dtsch. Ärzteblatt Int. 2018, 115, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Classen, D.C.; Pestotnik, S.L.; Evans, R.S.; Lloyd, J.F.; Burke, J.P. Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA 1997, 277, 301–306. [Google Scholar] [CrossRef]
- Meier, F.; Maas, R.; Sonst, A.; Patapovas, A.; Müller, F.; Plank-Kiegele, B.; Pfistermeister, B.; Schöffski, O.; Bürkle, T.; Dormann, H. Adverse drug events in patients admitted to an emergency department: An analysis of direct costs. Pharmacoepidemiol. Drug Saf. 2015, 24, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Krähenbühl-Melcher, A.; Schlienger, R.; Lampert, M.; Haschke, M.; Drewe, J.R.; Krähenbühl, S. Drug-related problems in hospitals: A review of the recent literature. Drug Saf. 2007, 30, 379–407. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bemt, P.M.L.A.; Egberts, T.C.G.; De Jong-Van Den Berg, L.T.W.; Brouwers, J.R.B.J. Drug-Related Problems in Hospitalised Patients. Drug Saf. 2000, 22, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Dormann, H.; Pfistermeister, B.; Sonst, A.; Patapovas, A.; Vogler, R.; Hartmann, N.; Plank-Kiegele, B.; Kirchner, M.; Bürkle, T.; et al. Application of the Pareto principle to identify and address drug-therapy safety issues. Eur. J. Clin. Pharmacol. 2014, 70, 727–736. [Google Scholar] [CrossRef]
- Stevenson, J.; Williams, J.L.; Burnham, T.G.; Prevost, A.T.; Schiff, R.; Erskine, S.D.; Davies, J.G. Predicting adverse drug reactions in older adults; a systematic review of the risk prediction models. Clin. Interv. Aging 2014, 9, 1581–1593. [Google Scholar] [CrossRef]
- Falconer, N.; Barras, M.; Cottrell, N. Systematic review of predictive risk models for adverse drug events in hospitalized patients. Br. J. Clin. Pharmacol. 2018, 84, 846–864. [Google Scholar] [CrossRef]
- Alshakrah, M.A.; Steinke, D.T.; Lewis, P.J. Patient prioritization for pharmaceutical care in hospital: A systematic review of assessment tools. Res. Soc. Adm. Pharm. 2019, 15, 767–779. [Google Scholar] [CrossRef]
- Puumalainen, E.; Airaksinen, M.; Jalava, S.E.; Chen, T.F.; Dimitrow, M. Comparison of drug-related problem risk assessment tools for older adults: A systematic review. Eur. J. Clin. Pharmacol. 2020, 76, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Brady, A.; Curtis, C.E.; Jalal, Z. Screening Tools Used by Clinical Pharmacists to Identify Elderly Patients at Risk of Drug-Related Problems on Hospital Admission: A Systematic Review. Pharmacy 2020, 8, 64. [Google Scholar] [CrossRef]
- Botelho, S.F.; Neiva Pantuzza, L.L.; Marinho, C.P.; Moreira Reis, A.M. Prognostic prediction models and clinical tools based on consensus to support patient prioritization for clinical pharmacy services in hospitals: A scoping review. Res Soc. Adm. Pharm. 2021, 17, 653–663. [Google Scholar] [CrossRef]
- Deawjaroen, K.; Sillabutra, J.; Poolsup, N.; Stewart, D.; Suksomboon, N. Clinical usefulness of prediction tools to identify adult hospitalized patients at risk of drug-related problems: A systematic review of clinical prediction models and risk assessment tools. Br. J. Clin. Pharm. 2022, 88, 1613–1629. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Yu, K.H. Multiplicity of medication safety terms, definitions and functional meanings: When is enough enough? Qual. Saf. Health Care 2005, 14, 358–363. [Google Scholar] [CrossRef]
- Bürkle, T.; Müller, F.; Patapovas, A.; Sonst, A.; Pfistermeister, B.; Plank-Kiegele, B.; Dormann, H.; Maas, R. A new approach to identify, classify and count drug-related events. Br. J. Clin. Pharmacol. 2013, 76, 56–68. [Google Scholar] [CrossRef]
- Lima, S.I.V.C.; Martins, R.R.; Saldanha, V.; Silbiger, V.N.; Dos Santos, I.C.C.; Araújo, I.B.D.; Oliveira, A.G. Development and validation of a clinical instrument to predict risk of an adverse drug reactions in hospitalized patients. PLoS ONE 2020, 15, e0243714. [Google Scholar] [CrossRef]
- O’Mahony, D.; O’Connor, M.N.; Eustace, J.; Byrne, S.; Petrovic, M.; Gallagher, P. The adverse drug reaction risk in older persons (ADRROP) prediction scale: Derivation and prospective validation of an ADR risk assessment tool in older multi-morbid patients. Eur. Geriatr. Med. 2018, 9, 191–199. [Google Scholar] [CrossRef]
- Tangiisuran, B.; Scutt, G.; Stevenson, J.; Wright, J.; Onder, G.; Petrovic, M.; Van Der Cammen, T.J.; Rajkumar, C.; Davies, G. Development and Validation of a Risk Model for Predicting Adverse Drug Reactions in Older People during Hospital Stay: Brighton Adverse Drug Reactions Risk (BADRI) Model. PLoS ONE 2014, 9, e111254. [Google Scholar] [CrossRef]
- Geeson, C.; Wei, L.; Franklin, B.D. Development and performance evaluation of the Medicines Optimisation Assessment Tool (MOAT): A prognostic model to target hospital pharmacists’ input to prevent medication-related problems. BMJ Qual. Saf. 2019, 28, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.-L.; Leguelinel-Blache, G.; Kinowski, J.-M.; Roux-Marson, C.; Rougier, M.; Spence, J.; Le Manach, Y.; Landais, P. Improving medication safety: Development and impact of a multivariate model-based strategy to target high-risk patients. PLoS ONE 2017, 12, e0171995. [Google Scholar] [CrossRef]
- Onder, G.; Petrovic, M.; Tangiisuran, B.; Meinardi, M.C.; Markito-Notenboom, W.P.; Somers, A.; Rajkumar, C.; Bernabei, R.; Van Der Cammen, T.J.M. Development and Validation of a Score to Assess Risk of Adverse Drug Reactions Among In-Hospital Patients 65 Years or Older. Arch. Intern. Med. 2010, 170, 1142–1148. [Google Scholar] [CrossRef]
- Falconer, N.; Barras, M.; Cottrell, N. How hospital pharmacists prioritise patients at high-risk for medication harm. Res. Soc. Adm. Pharm. 2019, 15, 1266–1273. [Google Scholar] [CrossRef]
- Falconer, N.; Barras, M.; Abdel-Hafez, A.; Radburn, S.; Cottrell, N. Development and validation of the Adverse Inpatient Medication Event model (AIME). Br. J. Clin. Pharmacol. 2020, 87, 1512–1524. [Google Scholar] [CrossRef]
- Petrovic, M.; Tangiisuran, B.; Rajkumar, C.; Van Der Cammen, T.; Onder, G. Predicting the Risk of Adverse Drug Reactions in Older Inpatients: External Validation of the GerontoNet ADR Risk Score Using the CRIME Cohort. Drugs Aging 2017, 34, 135–142. [Google Scholar] [CrossRef]
- Saedder, E.A.; Lisby, M.; Nielsen, L.P.; Rungby, J.; Andersen, L.V.; Bonnerup, D.K.; Brock, B. Detection of Patients at High Risk of Medication Errors: Development and Validation of an Algorithm. Basic Clin. Pharmacol. Toxicol. 2016, 118, 143–149. [Google Scholar] [CrossRef]
- Sakuma, M.; Bates, D.W.; Morimoto, T. Clinical prediction rule to identify high-risk inpatients for adverse drug events: The JADE Study. Pharmacoepidemiol. Drug Saf. 2012, 21, 1221–1226. [Google Scholar] [CrossRef]
- Urbina, O.; Ferrández, O.; Grau, S.; Luque, S.; Mojal, S.; Marin-Casino, M.; Mateu-de-Antonio, J.; Carmona, A.; Conde-Estévez, D.; Espona, M.; et al. Design of a score to identify hospitalized patients at risk of drug-related problems. Pharmacoepidemiol. Drug Saf. 2014, 23, 923–932. [Google Scholar] [CrossRef]
- Bos, J.M.; Kalkman, G.A.; Groenewoud, H.; Van Den Bemt, P.M.L.A.; De Smet, P.A.G.M.; Nagtegaal, J.E.; Wieringa, A.; Van Der Wilt, G.J.; Kramers, C. Prediction of clinically relevant adverse drug events in surgical patients. PLoS ONE 2018, 13, e0201645. [Google Scholar] [CrossRef]
- Trivalle, C.; Burlaud, A.; Ducimetière, P. Risk factors for adverse drug events in hospitalized elderly patients: A geriatric score. Eur. Geriatr. Med. 2011, 2, 284–289. [Google Scholar] [CrossRef]
- Hohl, C.M.; Yu, E.; Hunte, G.S.; Brubacher, J.R.; Hosseini, F.; Argent, C.P.; Chan, W.W.Y.; Wiens, M.O.; Sheps, S.B.; Singer, J. Clinical Decision Rules to Improve the Detection of Adverse Drug Events in Emergency Department Patients. Acad. Emerg. Med. 2012, 19, 640–649. [Google Scholar] [CrossRef]
- Lisby, M.; Bonnerup, D.K.; Brock, B.; Gregersen, P.A.; Jensen, J.; Larsen, M.-L.; Rungby, J.; Sonne, J.; Mainz, J.; Nielsen, L.P. Medication Review and Patient Outcomes in an Orthopedic Department: A Randomized Controlled Study. J. Patient Saf. 2018, 14, 74–81. [Google Scholar] [CrossRef]
- Lisby, M.; Thomsen, A.; Nielsen, L.P.; Lyhne, N.M.; Breum-Leer, C.; Fredberg, U.; Jã¸Rgensen, H.; Brock, B. The Effect of Systematic Medication Review in Elderly Patients Admitted to an Acute Ward of Internal Medicine. Basic Clin. Pharmacol. Toxicol. 2009. [Google Scholar] [CrossRef]
- Falconer, N.; Nand, S.; Liow, D.; Jackson, A.; Seddon, M. Development of an electronic patient prioritization tool for clinical pharmacist interventions. Am. J. Health-Syst. Pharm. 2014, 71, 311–320. [Google Scholar] [CrossRef]
- Bos, J.M.; Van Den Bemt, P.M.L.A.; Kievit, W.; Pot, J.L.W.; Nagtegaal, J.E.; Wieringa, A.; Van Der Westerlaken, M.M.L.; Van Der Wilt, G.J.; De Smet, P.A.G.M.; Kramers, C. A multifaceted intervention to reduce drug-related complications in surgical patients. Br. J. Clin. Pharmacol. 2017, 83, 664–677. [Google Scholar] [CrossRef]
- Geeson, C.; Wei, L.; Franklin, B.D. Medicines Optimisation Assessment Tool (MOAT): A prognostic model to target hospital pharmacists’ input to improve patient outcomes. Protocol for an observational study. BMJ Open 2017, 7, e017509. [Google Scholar] [CrossRef]
- O’Connor, M.N.; Gallagher, P.; Byrne, S.; O’Mahony, D. Adverse drug reactions in older patients during hospitalisation: Are they predictable? Age Ageing 2012, 41, 771–776. [Google Scholar] [CrossRef]
- Hamilton, H.; Gallagher, P.; Ryan, C.; Byrne, S.; O’Mahony, D. Potentially Inappropriate Medications Defined by STOPP Criteria and the Risk of Adverse Drug Events in Older Hospitalized Patients. Arch. Intern. Med. 2011, 171, 1013–1019. [Google Scholar] [CrossRef]
- O’Sullivan, D.; O’Mahony, D.; O’Connor, M.N.; Gallagher, P.; Gallagher, J.; Cullinan, S.; O’Sullivan, R.; Eustace, J.; Byrne, S. Prevention of Adverse Drug Reactions in Hospitalised Older Patients Using a Software-Supported Structured Pharmacist Intervention: A Cluster Randomised Controlled Trial. Drugs Aging 2016, 33, 63–73. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.N.; O’Sullivan, D.; Gallagher, P.F.; Eustace, J.; Byrne, S.; O’Mahony, D. Prevention of Hospital-Acquired Adverse Drug Reactions in Older People Using Screening Tool of Older Persons’ Prescriptions and Screening Tool to Alert to Right Treatment Criteria: A Cluster Randomized Controlled Trial. J. Am. Geriatr. Soc. 2016, 64, 1558–1566. [Google Scholar] [CrossRef]
- Morimoto, T.; Sakuma, M.; Matsui, K.; Kuramoto, N.; Toshiro, J.; Murakami, J.; Fukui, T.; Saito, M.; Hiraide, A.; Bates, D.W. Incidence of Adverse Drug Events and Medication Errors in Japan: The JADE Study. J. Gen. Intern. Med. 2011, 26, 148–153. [Google Scholar] [CrossRef]
- Tangiisuran, B.; Graham Davies, J.; Wright, J.E.; Rajkumar, C. Adverse Drug Reactions in a Population of Hospitalized Very Elderly Patients. Drugs Aging 2012, 29, 669–679. [Google Scholar] [CrossRef]
- Trivalle, C.; Cartier, T.; Verny, C.; Mathieu, A.M.; Davrinche, P.; Agostini, H.; Becquemont, L.; Demolis, P. Identifying and preventing adverse drug events in elderly hospitalised patients: A randomised trial of a program to reduce adverse drug effects. J. Nutr. Health Aging 2010, 14, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Falconer, N.; Liow, D.; Zeng, I.; Parsotam, N.; Seddon, M.; Nand, S. Validation of the assessment of risk tool: Patient prioritisation technology for clinical pharmacist interventions. Eur. J. Hosp. Pharm. 2017, 24, 320–326. [Google Scholar] [CrossRef]
- Hohl, C.M.; Badke, K.; Zhao, A.; Wickham, M.E.; Woo, S.A.; Sivilotti, M.L.A.; Perry, J.J. Prospective Validation of Clinical Criteria to Identify Emergency Department Patients at High Risk for Adverse Drug Events. Acad. Emerg. Med. 2018, 25, 1015–1026. [Google Scholar] [CrossRef]
- Høj, K.; Pedersen, H.S.; Lundberg, A.S.B.; Bro, F.; Nielsen, L.P.; Sædder, E.A. External validation of the Medication Risk Score in polypharmacy patients in general practice: A tool for prioritizing patients at greatest risk of potential drug-related problems. Basic Clin. Pharmacol. Toxicol. 2021, 129, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Ferrández, O.; Grau, S.; Urbina, O.; Mojal, S.; Riu, M.; Salas, E. Validation of a score to identify inpatients at risk of a drug-related problem during a 4-year period. Saudi Pharm. J. 2018, 26, 703–708. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Guideline on Good Pharmacovigilance Practices (GVP) Annex I—Definitions (Rev 4). 2017. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-annex-i-definitions-rev-4_en.pdf (accessed on 9 February 2022).
- Fromm, M.F.; Maas, R.; Tümena, T.; Gaßmann, K.-G. Potentially inappropriate medications in a large cohort of patients in geriatric units: Association with clinical and functional characteristics. Eur. J. Clin. Pharmacol. 2013, 69, 975–984. [Google Scholar] [CrossRef]
- Wauters, M.; Elseviers, M.; Vaes, B.; Degryse, J.; Dalleur, O.; Vander Stichele, R.; Christiaens, T.; Azermai, M. Too many, too few, or too unsafe? Impact of inappropriate prescribing on mortality, and hospitalization in a cohort of community-dwelling oldest old. Br. J. Clin. Pharmacol. 2016, 82, 1382–1392. [Google Scholar] [CrossRef]
- Guthrie, B.; Makubate, B.; Hernandez-Santiago, V.; Dreischulte, T. The rising tide of polypharmacy and drug-drug interactions: Population database analysis 1995–2010. BMC Med. 2015, 13, 74. [Google Scholar] [CrossRef] [Green Version]
- O’Mahony, D.; O’Sullivan, D.; Byrne, S.; O’Connor, M.N.; Ryan, C.; Gallagher, P. STOPP/START criteria for potentially inappropriate prescribing in older people: Version 2. Age Ageing 2014, 44, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.; Schmiedl, S.; Thürmann, P.A. Potentially Inappropriate Medications in the Elderly. Dtsch. Ärzteblatt Int. 2010, 107, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Pazan, F.; Weiss, C.; Wehling, M. The FORTA (Fit fOR The Aged) List 2018: Third Version of a Validated Clinical Tool for Improved Drug Treatment in Older People. Drugs Aging 2019, 36, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Sommer, J.; Seeling, A.; Rupprecht, H. Adverse Drug Events in Patients with Chronic Kidney Disease Associated with Multiple Drug Interactions and Polypharmacy. Drugs Aging 2020, 37, 359–372. [Google Scholar] [CrossRef]
- Shouqair, T.M.; Rabbani, S.A.; Sridhar, S.B.; Kurian, M.T. Evaluation of Drug-Related Problems in Chronic Kidney Disease Patients. Cureus 2022. [Google Scholar] [CrossRef]
- Routledge, P.A.; O’Mahony, M.S.; Woodhouse, K.W. Adverse drug reactions in elderly patients. Br. J. Clin. Pharmacol. 2003, 57, 121–126. [Google Scholar] [CrossRef]
- Milton, J.C.; Hill-Smith, I.; Jackson, S.H.D. Prescribing for older people. BMJ 2008, 336, 606–609. [Google Scholar] [CrossRef]
- Edwards, I.R.; Aronson, J.K. Adverse drug reactions: Definitions, diagnosis, and management. Lancet 2000, 356, 1255–1259. [Google Scholar] [CrossRef]
- Aronson, J.K.; Ferner, R.E. Clarification of Terminology in Drug Safety. Drug Saf. 2005, 28, 851–870. [Google Scholar] [CrossRef]
- Pharmaceutical Care Network Europe. The PCNE Classification V 7.0. 2016. Available online: https://www.pcne.org/upload/files/152_PCNE_classification_V7-0.pdf (accessed on 27 July 2022).
- World Health Organization. International drug monitoring: The role of the hospital. In World Health Organization Technical Report Series, No. 425; WHO: Geneva, Switzerland, 1969; Available online: https://apps.who.int/iris/handle/10665/40747 (accessed on 27 July 2022).
- Nebeker, J.R.; Barach, P.; Samore, M.H. Clarifying adverse drug events: A clinician’s guide to terminology, documentation, and reporting. Ann. Intern. Med. 2004, 140, 795–801. [Google Scholar] [CrossRef]
- World Health Organization. Requirements for Adverse Reaction Reporting; WHO: Geneva, Switzerland, 1975. [Google Scholar]
- World Health Organization. International drug monitoring: the role of national centres. In World Health Organization Technical Report Series, No. 498; WHO: Geneva, Switzerland, 1972; Available online: https://apps.who.int/iris/handle/10665/40968 (accessed on 27 July 2022).
- Lisby, M.; Nielsen, L.P.; Brock, B.; Mainz, J. How should medication errors be defined? Development and test of a definition. Scand. J. Public Health 2012, 40, 203–210. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Clinical Safety Data Management: Definitions and Standards for Expedited Reporting ICH Topic E2A. 1995. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-15.pdf (accessed on 27 July 2022).
- European Medicines Agency. Guideline on Good Pharmacovigilance Practices-Module VI. Management and Reporting of Adverse Reactions to Medicinal Products. Available online: https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/medication-errors (accessed on 27 July 2022).
- Morimoto, T.; Gandhi, T.K.; Seger, A.C.; Hsieh, T.C.; Bates, D.W. Adverse drug events and medication errors: Detection and classification methods. Qual. Saf. Health Care 2004, 13, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Dequito, A.B.; Mol, P.G.; van Doormaal, J.E.; Zaal, R.J.; van den Bemt, P.M.; Haaijer-Ruskamp, F.M.; Kosterink, J.G. Preventable and non-preventable adverse drug events in hospitalized patients: A prospective chart review in the Netherlands. Drug Saf. 2011, 34, 1089–1100. [Google Scholar] [CrossRef]
- National Coordinating Council for Medication Error Reporting and Prevention (NCC MERP). Available online: http://www.nccmerp.org (accessed on 27 July 2022).
- Bates, D.W.; Cullen, D.J.; Laird, N.; Petersen, L.A.; Small, S.D.; Servi, D.; Laffel, G.; Sweitzer, B.J.; Shea, B.F.; Hallisey, R.; et al. Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA 1995, 274, 29–34. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Name of Scoring Tool | Country | Study Design | |||
Bos, J.M. 2018 [29] | no specific name | The Netherlands | prospective | |||
Falconer, N. 2014 [34] | ART (Assessment of Risk Tool) | New Zealand | n.a. (practice report) | |||
Falconer, N. 2020 [24] | AIME (Adverse Inpatient Medication Event model) | Australia | retrospective | |||
Geeson, C. 2019 [20] | MOAT (Medicines Optimisation Assessment Tool) | United Kingdom | prospective | |||
Hohl, C.M. 2012 [31] | (1) ADR CDR (2) ADE CDR | Canada | prospective | |||
Lima, S. 2020 [17] | no specific name | Brazil | retrospective | |||
Nguyen, T.-L. 2017 [21] | PRISMOR (Predicting In-hospital Significant Medication errors) | France | prospective | |||
O’Mahony, D. 2018 [18] | ADRROP (ADR Risk in Older People) | Ireland | retrospective and prospective | |||
Onder, G. 2010 [22] | GerontoNet ADR Risk Score | Italy, Belgium, United Kingdom, the Netherlands | retrospective and prospective | |||
Saedder, E. 2016 [26] | MERIS (Medicine Risk Score) | Denmark | retrospective and prospective | |||
Sakuma, M. 2012 [27] | no specific name | Japan | prospective | |||
Tangiisuran, B. 2014 [19] | BADRI (Brighton Adverse Drug Reactions Risk model) | United Kingdom, Italy, Belgium, the Netherlands | prospective | |||
Trivalle, C. 2011 [30] | no specific name | France | prospective | |||
Urbina, O. 2014 [28] | no specific name | Spain | prospective | |||
Author, Year | Setting and Population | Sample Size | ||||
Bos, J.M. 2018 [29] | patients admitted to the surgical, urological, and orthopedic ward [29,35] | 6780 admissions corresponding to 5940 patients (200 bootstrap samples for internal validation) | ||||
Falconer, N. 2014 [34] | n.a. (practice report) | n.a. (practice report) | ||||
Falconer, N. 2020 [24] | adult patients admitted to the general medical and/or the Geriatric Assessment and Rehabilitation Unit [24] | 1982 (data were split into deciles: model development in 9 out of 10 parts and validation in 1 out of 10 parts. Repetition of the process 200 times.) | ||||
Geeson, C. 2019 [20] | patients (≥18 years old) admitted to medical wards: general, emergency, elderly medicine [20,36] | 1503 admissions corresponding to 1444 patients (200 bootstrap samples for internal validation.) | ||||
Hohl, C.M. 2012 [31] | patients (>18 years old) presenting to the emergency department [31] | 1591 | ||||
Lima, S. 2020 [17] | patients (>18 years old) admitted to specific departments: neurology, mental health, nephrology, urology, cardiology, oncology (not receiving chemotherapy), gastroenterology, rheumatology, surgery [17] | 343 occurrences of ADR 686 matched controls Total: 1029 (development sample: 2/3 of the cases and the respective controls; validation sample: 1/3) | ||||
Nguyen, T.-L. 2017 [21] | patients (≥18 years old) admitted to hospital [21] | 1408 (500 bootstrap samples for internal validation) | ||||
O’Mahony, D. 2018 [18] | (1) patients (≥65 years old) admitted to the general medical and surgical services (emergency admissions) [18,37] (2) patients (≥65 years old) admitted to medical and surgical services (emergency admissions) [18,38] (3) patients (≥65 years old) (emergency admissions) [18,39] (4) patients (≥65 years old) admitted to medical and surgical services (emergency admissions) [18,40] | 513 (1) 600 (2) 732 (3) 372 (4) Total: 2217 (derivation set: 1687; validation set: 530) | ||||
Onder, G. 2010 [22] | (1) patients (≥65 years old) from GIFA sample [22] (2) patients (≥65 years old) admitted to geriatric and internal medicine wards [22] | 5936 (1) (development set) 483 (2) (validation set) | ||||
Saedder, E. 2016 [26] | (1) historic patients: patients (≥65 years old), orthopedic ward [26,32] (2) historic patients: patients (≥70 years old), internal medicine [26,33] (3) recent patients: patients (≥18 years old), medical admission unit (endocrinology, respiratory medicine, gastroenterology, hepatology, cardiology) [26] (4) prospective pilot study: patients (≥18 years old), acute admission unit [26] | 53 (1) 50 (2) 146 (3) Total: 249 (modeling set) 53 (4) (validation set) | ||||
Sakuma, M. 2012 [27] | patients (≥15 years old) admitted to medical and surgical wards and intensive care units [27,41] | 1729 (derivation set) 1730 (validation set) Total: 3459 | ||||
Tangiisuran, B. 2014 [19] | (1) patients (≥65 years old) admitted to elderly care and stroke wards (elderly care wards only accept patients ≥ 80 years old) [19,42] (2) patients (≥65 years old) admitted to geriatric and internal medicine wards [19,22] | 690 (1) (development set) 483 (2) (validation set) | ||||
Trivalle, C. 2011 [30] | patients (≥65 years old) who experienced an ADE during 4 weeks of the study period in geriatric rehabilitation centers [30,43] | 576 (bootstrapping for internal validation) | ||||
Urbina, O. 2014 [28] | patients (>18 years old) admitted to surgical and medical wards [28] | 8713 admissions corresponding to 7202 patients (training set) 4058 admissions corresponding to 3598 patients (validation set) | ||||
Identification/Evaluation of Individual Risk Factors | ||||||
Author, Year | Number of Risk Factors Included in the Final Scoring Tool | Literature Review/Search | (Expert) Consensus | Statistical Method | Internal Validation | External Validation |
Bos, J.M. 2018 [29] | 5 | ✓ | ✗ | ✓ | ✓ | |
Falconer, N. 2014 [34] | 38 | ✓ | ✓ | ✗ | ✗ | Falconer et al., 2017 [44] |
Falconer, N. 2020 [24] | 10 | ✓ | ✓ | ✓ | ✓ | |
Geeson, C. 2019 [20] | 11 | ✓ | ✓ | ✓ | ✓ | |
Hohl, C.M. 2012 [31] | 5 (1) 8 (2) | ✓ | ✓ | ✓ | ✓ | Hohl et al., 2018 [45] |
Lima, S. 2020 [17] | 14 | ✗ | ✗ | ✓ | ✓ | |
Nguyen, T.-L. 2017 [21] | 11 | ✗ | ✗ | ✓ | ✓ | |
O’Mahony, D. 2018 [18] | 9 | ✓ | ✗ | ✓ | ✓ | |
Onder, G. 2010 [22] | 6 | ✓ | ✗ | ✓ | ✗ | Onder et al., 2010 [22] O’Connor et al., 2012 [37] Petrovic et al., 2017 [25] |
Saedder, E. 2016 [26] | 3 | ✓ | ✓ | ✗ | ✓ | Høj et al., 2021 [46] |
Sakuma, M. 2012 [27] | 8 | ✗ | ✗ | ✓ | ✓ | |
Tangiisuran, B. 2014 [19] | 5 | ✓ | ✗ | ✓ | ✓ | Tangiisuran et al., 2014 [19] |
Trivalle, C. 2011 [30] | 3 | ✗ | ✗ | ✓ | ✓ | |
Urbina, O. 2014 [28] | 14 | ✗ | ✗ | ✓ | ✓ | Ferrández et al., 2018 [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung-Poppe, L.; Nicolaus, H.F.; Roggenhofer, A.; Altenbuchner, A.; Dormann, H.; Pfistermeister, B.; Maas, R. Systematic Review of Risk Factors Assessed in Predictive Scoring Tools for Drug-Related Problems in Inpatients. J. Clin. Med. 2022, 11, 5185. https://doi.org/10.3390/jcm11175185
Jung-Poppe L, Nicolaus HF, Roggenhofer A, Altenbuchner A, Dormann H, Pfistermeister B, Maas R. Systematic Review of Risk Factors Assessed in Predictive Scoring Tools for Drug-Related Problems in Inpatients. Journal of Clinical Medicine. 2022; 11(17):5185. https://doi.org/10.3390/jcm11175185
Chicago/Turabian StyleJung-Poppe, Lea, Hagen Fabian Nicolaus, Anna Roggenhofer, Anna Altenbuchner, Harald Dormann, Barbara Pfistermeister, and Renke Maas. 2022. "Systematic Review of Risk Factors Assessed in Predictive Scoring Tools for Drug-Related Problems in Inpatients" Journal of Clinical Medicine 11, no. 17: 5185. https://doi.org/10.3390/jcm11175185
APA StyleJung-Poppe, L., Nicolaus, H. F., Roggenhofer, A., Altenbuchner, A., Dormann, H., Pfistermeister, B., & Maas, R. (2022). Systematic Review of Risk Factors Assessed in Predictive Scoring Tools for Drug-Related Problems in Inpatients. Journal of Clinical Medicine, 11(17), 5185. https://doi.org/10.3390/jcm11175185